Recent progress on Beilinson-Bloch-Kato conjecture

Yifeng Liu

Department of Mathematics Yale University

1st JNT Biennial Conference Grand Hotel San Michele, Cetraro, Italy

Yifeng Liu (Yale University)

Recent progress on Beilinson-Bloch-Kato conjecture

July 22–26, 2019 1 / 17

ヘロト 人間ト 人目ト 人目り

Yifeng Liu (Yale University)

イロン イボン イヨン イヨン 三日

Let F be a number field.

イロン イボン イヨン イヨン 三日

Let F be a number field.

Let A be an elliptic curve over F. We have three invariants:

イロン イロン イヨン イヨン

Let F be a number field.

Let A be an elliptic curve over F. We have three invariants:

• the Mordell–Weil group A(F), which is a finitely generated abelian group,

< ロ > < 回 > < 回 > < 回 > < 回 >

Let F be a number field.

Let A be an elliptic curve over F. We have three invariants:

- the Mordell-Weil group A(F), which is a finitely generated abelian group,
- the (complete) Hasse–Weil *L*-function *L*(*s*, *A*), which is absolutely convergent for Re(*s*) > ³/₂,

イロト イヨト イヨト イヨト

Let F be a number field.

Let A be an elliptic curve over F. We have three invariants:

- the Mordell-Weil group A(F), which is a finitely generated abelian group,
- the (complete) Hasse–Weil *L*-function *L*(*s*, *A*), which is absolutely convergent for Re(*s*) > ³/₂,
- the (\mathbb{Q}_{ℓ} -)Selmer group

$$\operatorname{Sel}_{\mathbb{Q}_\ell}(A) := \left(\varprojlim_n \operatorname{Sel}_{\ell^n}(A) \right) \otimes_{\mathbb{Z}_\ell} \mathbb{Q}_\ell$$

for every rational prime $\ell,$ which is a finite dimensional $\mathbb{Q}_\ell\text{-vector}$ space.

イロト イヨト イヨト イヨト

Let F be a number field.

Let A be an elliptic curve over F. We have three invariants:

- the Mordell–Weil group A(F), which is a finitely generated abelian group,
- the (complete) Hasse–Weil L-function L(s, A), which is absolutely convergent for Re(s) > ³/₂,
- the (\mathbb{Q}_{ℓ} -)Selmer group

$$\operatorname{Sel}_{\mathbb{Q}_\ell}(A) := \left(\varprojlim_n \operatorname{Sel}_{\ell^n}(A) \right) \otimes_{\mathbb{Z}_\ell} \mathbb{Q}_\ell$$

for every rational prime ℓ , which is a finite dimensional \mathbb{Q}_{ℓ} -vector space. Conjecturally, L(s, A) has an analytic continuation to the entire complex plane and satisfies a functional equation with center s = 1. This is known in many cases when F is totally real.

Yifeng Liu (Yale University)

イロン イボン イヨン イヨン 三日

Conjecture (Birch–Swinnerton-Dyer)

We have

$$\operatorname{rank} A(F) = \operatorname{ord}_{s=1} L(s, A) = \dim_{\mathbb{Q}_{\ell}} \operatorname{Sel}_{\mathbb{Q}_{\ell}}(E)$$

for every prime number ℓ .

ヘロン ヘロン ヘビン ヘビン

Conjecture (Birch–Swinnerton-Dyer)

We have

$$\operatorname{rank} A(F) = \operatorname{ord}_{s=1} L(s, A) = \dim_{\mathbb{Q}_{\ell}} \operatorname{Sel}_{\mathbb{Q}_{\ell}}(E)$$

for every prime number ℓ .

Theorem

Suppose $F = \mathbb{Q}$.

ヘロン ヘロン ヘビン ヘビン

Conjecture (Birch–Swinnerton-Dyer)

We have

$$\operatorname{rank} A(F) = \operatorname{ord}_{s=1} L(s, A) = \dim_{\mathbb{Q}_{\ell}} \operatorname{Sel}_{\mathbb{Q}_{\ell}}(E)$$

for every prime number ℓ .

Theorem

Suppose $F = \mathbb{Q}$.

(Coates–Wiles, Gross–Zagier, Kolyvagin) If ord_{s=1} L(s, A) ≤ 1, then the above conjecture holds.

(日)

Conjecture (Birch–Swinnerton-Dyer)

We have

$$\operatorname{rank} A(F) = \operatorname{ord}_{s=1} L(s, A) = \dim_{\mathbb{Q}_{\ell}} \operatorname{Sel}_{\mathbb{Q}_{\ell}}(E)$$

for every prime number ℓ .

Theorem

Suppose $F = \mathbb{Q}$.

- (Coates–Wiles, Gross–Zagier, Kolyvagin) If ord_{s=1} L(s, A) ≤ 1, then the above conjecture holds.
- (Rubin, Skinner–Urban, Skinner, W. Zhang, Burungale–Skinner–Tian) If dim_{Qℓ} Sel_{Qℓ}(A) ≤ 1 for some ℓ, then the above conjecture holds.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Yifeng Liu (Yale University)

イロン イボン イヨン イヨン 三日

Again let F be a number field, with an algebraic closure \overline{F} . Let E be another number field serving as the coefficient field.

ヘロト 人間ト 人間ト 人間ト

Again let F be a number field, with an algebraic closure \overline{F} . Let E be another number field serving as the coefficient field. Let M be a motive over F with coefficient E, together with a polarization $M \times M \rightarrow E(1)$.

イロト イヨト イヨト イヨト

Again let F be a number field, with an algebraic closure \overline{F} . Let E be another number field serving as the coefficient field.

Let *M* be a motive over *F* with coefficient *E*, together with a polarization $M \times M \rightarrow E(1)$.

It gives rise to a compatible system of Galois representations M_{λ} of F with coefficient E_{λ} for every prime λ of E, together with a Galois equivariant pairing $M_{\lambda} \times M_{\lambda} \to E_{\lambda}(1)$.

イロト 不得下 イヨト イヨト

Again let F be a number field, with an algebraic closure \overline{F} . Let E be another number field serving as the coefficient field.

Let *M* be a motive over *F* with coefficient *E*, together with a polarization $M \times M \rightarrow E(1)$.

It gives rise to a compatible system of Galois representations M_{λ} of F with coefficient E_{λ} for every prime λ of E, together with a Galois equivariant pairing $M_{\lambda} \times M_{\lambda} \to E_{\lambda}(1)$.

For such a motive M, we can define

イロト 不得下 イヨト イヨト

Again let F be a number field, with an algebraic closure \overline{F} . Let E be another number field serving as the coefficient field.

Let *M* be a motive over *F* with coefficient *E*, together with a polarization $M \times M \rightarrow E(1)$.

It gives rise to a compatible system of Galois representations M_{λ} of F with coefficient E_{λ} for every prime λ of E, together with a Galois equivariant pairing $M_{\lambda} \times M_{\lambda} \to E_{\lambda}(1)$.

For such a motive M, we can define

• an *L*-function L(s, M), which is conjectured to have a meromorphic continuation to the entire complex plain and satisfy certain functional equation with center s = 0,

Again let F be a number field, with an algebraic closure \overline{F} . Let E be another number field serving as the coefficient field.

Let *M* be a motive over *F* with coefficient *E*, together with a polarization $M \times M \rightarrow E(1)$.

It gives rise to a compatible system of Galois representations M_{λ} of F with coefficient E_{λ} for every prime λ of E, together with a Galois equivariant pairing $M_{\lambda} \times M_{\lambda} \to E_{\lambda}(1)$.

For such a motive M, we can define

- an *L*-function L(s, M), which is conjectured to have a meromorphic continuation to the entire complex plain and satisfy certain functional equation with center s = 0,
- a "Selmer group" $\mathrm{H}^{1}_{\mathrm{f}}(F, M_{\lambda})$, which is a finite dimensional vector space over E_{λ} for every prime λ of E, known as the **Bloch–Kato Selmer group**.

Again let F be a number field, with an algebraic closure \overline{F} . Let E be another number field serving as the coefficient field.

Let *M* be a motive over *F* with coefficient *E*, together with a polarization $M \times M \rightarrow E(1)$.

It gives rise to a compatible system of Galois representations M_{λ} of F with coefficient E_{λ} for every prime λ of E, together with a Galois equivariant pairing $M_{\lambda} \times M_{\lambda} \to E_{\lambda}(1)$.

For such a motive M, we can define

- an *L*-function L(s, M), which is conjectured to have a meromorphic continuation to the entire complex plain and satisfy certain functional equation with center s = 0,
- a "Selmer group" $H^1_f(F, M_\lambda)$, which is a finite dimensional vector space over E_λ for every prime λ of E, known as the **Bloch–Kato Selmer group**.

If we take $M = h^1(A)(1)$ with the canonical polarization from Poincaré duality, then we have L(s, M) = L(s + 1, A) and $H^1_f(F, M_\ell) = Sel_{\mathbb{Q}_\ell}(A)$.

Yifeng Liu (Yale University)

イロン イボン イヨン イヨン 三日

More precisely, $H^1_f(F, M_\lambda)$ is the subspace of $H^1(F, M_\lambda)$ consisting of elements α satisfying

イロト イヨト イヨト イヨト

More precisely, $H^1_f(F, M_\lambda)$ is the subspace of $H^1(F, M_\lambda)$ consisting of elements α satisfying

• $loc_v(\alpha) \in ker(H^1(F_v, M_\lambda) \to H^1(I_v, M_\lambda))$ for every prime v of F of different residue characteristic with λ ;

イロト イヨト イヨト イヨト

More precisely, $H^1_f(F, M_\lambda)$ is the subspace of $H^1(F, M_\lambda)$ consisting of elements α satisfying

- loc_ν(α) ∈ ker (H¹(F_ν, M_λ) → H¹(I_ν, M_λ)) for every prime ν of F of different residue characteristic with λ;
- loc_ν(α) ∈ ker (H¹(F_ν, M_λ) → H¹(F_ν, M_λ ⊗ B^{cris}_λ)) for every prime ν of F of same residue characteristic with λ.

More precisely, $H^1_f(F, M_\lambda)$ is the subspace of $H^1(F, M_\lambda)$ consisting of elements α satisfying

- $loc_v(\alpha) \in ker(H^1(F_v, M_\lambda) \to H^1(I_v, M_\lambda))$ for every prime v of F of different residue characteristic with λ ;
- loc_ν(α) ∈ ker (H¹(F_ν, M_λ) → H¹(F_ν, M_λ ⊗ B^{cris}_λ)) for every prime ν of F of same residue characteristic with λ.

Conjecture (Beilinson–Bloch, Bloch–Kato)

Let M be a polarized motive as above. Then we have

$$\operatorname{ord}_{s=0} L(s, M) = \dim_{E_{\lambda}} \operatorname{H}^{1}_{\mathrm{f}}(F, M_{\lambda}) - \dim_{E_{\lambda}} \operatorname{H}^{0}(F, M_{\lambda})$$

for every prime ℓ of E.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

More precisely, $H_f^1(F, M_\lambda)$ is the subspace of $H^1(F, M_\lambda)$ consisting of elements α satisfying

- $loc_{\nu}(\alpha) \in ker(H^{1}(F_{\nu}, M_{\lambda}) \to H^{1}(I_{\nu}, M_{\lambda}))$ for every prime ν of F of different residue characteristic with λ ;
- $loc_{\nu}(\alpha) \in ker(H^{1}(F_{\nu}, M_{\lambda}) \to H^{1}(F_{\nu}, M_{\lambda} \otimes \mathbb{B}_{\lambda}^{cris}))$ for every prime ν of F of same residue characteristic with λ .

Conjecture (Beilinson-Bloch, Bloch-Kato)

Let M be a polarized motive as above. Then we have

$$\operatorname{ord}_{s=0} L(s, M) = \dim_{E_{\lambda}} \operatorname{H}^{1}_{\mathrm{f}}(F, M_{\lambda}) - \dim_{E_{\lambda}} \operatorname{H}^{0}(F, M_{\lambda})$$

for every prime ℓ of E.

If we take $M = h^1(A)(1)$ with the canonical polarization (and $E = \mathbb{Q}$), then we recover the B-SD conjecture for A.

<ロ> <回> <回> <回> <三> <三</p>

Yifeng Liu (Yale University)

イロン イボン イヨン イヨン 三日

From now on, we assume that F is CM. Denote by F^+ the maximal totally real subfield contained in F, and $c \in Gal(F/F^+)$ the Galois involution.

<ロ> <四> <四> <三</td>

From now on, we assume that F is CM. Denote by F^+ the maximal totally real subfield contained in F, and $c \in Gal(F/F^+)$ the Galois involution. Let $N \ge 1$ be an integer. We say that a (complex) representation Π of $GL_N(\mathbb{A}_F)$

is **relevant** if:

イロト イポト イヨト イヨト

From now on, we assume that F is CM. Denote by F^+ the maximal totally real subfield contained in F, and $c \in Gal(F/F^+)$ the Galois involution. Let $N \ge 1$ be an integer. We say that a (complex) representation Π of $GL_N(\mathbb{A}_F)$

is **relevant** if:

• Π is admissible and irreducible,

イロト 不得下 イヨト イヨト

From now on, we assume that F is CM. Denote by F^+ the maximal totally real subfield contained in F, and $c \in Gal(F/F^+)$ the Galois involution.

Let $N \ge 1$ be an integer. We say that a (complex) representation Π of $GL_N(\mathbb{A}_F)$ is **relevant** if:

- Π is admissible and irreducible,
- Π is cuspidal automorphic,

イロト イポト イヨト イヨト

From now on, we assume that F is CM. Denote by F^+ the maximal totally real subfield contained in F, and $c \in Gal(F/F^+)$ the Galois involution.

Let $N \ge 1$ be an integer. We say that a (complex) representation Π of $GL_N(\mathbb{A}_F)$ is **relevant** if:

- Π is admissible and irreducible,
- Π is cuspidal automorphic,
- $\Pi \circ \mathbf{c} \simeq \Pi^{\vee}$,

イロト 不得下 イヨト イヨト

From now on, we assume that F is CM. Denote by F^+ the maximal totally real subfield contained in F, and $c \in Gal(F/F^+)$ the Galois involution. Let $N \ge 1$ be an integer. We say that a (complex) representation Π of $GL_N(\mathbb{A}_F)$ is **relevant** if:

• Π is admissible and irreducible,

- Π is cuspidal automorphic,
- $\Pi \circ c \simeq \Pi^{\vee}$,
- for every archimedean place v of F, Π_v , which is a representation of $GL_N(\mathbb{C})$, is isomorphic to the (irreducible) principal series

$$\mathrm{I}(\mathrm{arg}^{N-1},\mathrm{arg}^{N-3},\cdots,\mathrm{arg}^{3-N},\mathrm{arg}^{1-N}).$$

Here, arg: $\mathbb{C}^{\times} \to \mathbb{C}^{\times}$ is the argument character $z \mapsto \frac{z}{\sqrt{z\overline{z}}}$.

From now on, we assume that F is CM. Denote by F^+ the maximal totally real subfield contained in F, and $c \in Gal(F/F^+)$ the Galois involution. Let $N \ge 1$ be an integer. We say that a (complex) representation Π of $GL_N(\mathbb{A}_F)$ is **relevant** if:

- Π is admissible and irreducible,
- Π is cuspidal automorphic,
- $\Pi \circ c \simeq \Pi^{\vee}$,
- for every archimedean place v of F, Π_v , which is a representation of $GL_N(\mathbb{C})$, is isomorphic to the (irreducible) principal series

$$\mathrm{I}(\mathrm{arg}^{N-1},\mathrm{arg}^{N-3},\cdots,\mathrm{arg}^{3-N},\mathrm{arg}^{1-N}).$$

Here, arg: $\mathbb{C}^{\times} \to \mathbb{C}^{\times}$ is the argument character $z \mapsto \frac{z}{\sqrt{z\overline{z}}}$. For example, when N = 1, Π_{v} is the trivial character; when N = 2, Π_{v} is the base change of the discrete series of $GL_{2}(\mathbb{R})$ of weight 2.

Yifeng Liu (Yale University)

イロン イボン イヨン イヨン 三日
Let Π be a relevant representation of $GL_N(\mathbb{A}_F)$. It is known that Π is defined over a subfield E that is a number field.

ヘロト 人間ト 人間ト 人間ト

Let Π be a relevant representation of $GL_N(\mathbb{A}_F)$. It is known that Π is defined over a subfield E that is a number field. By a series of work of Harris–Taylor, Taylor–Yoshida, Shin, Caraiani, Chenevier–Harris, et al, one can construct a Galois representation

$$ho_{\Pi,\lambda}\colon\operatorname{\mathsf{Gal}}(\overline{F}/F) o\operatorname{\mathsf{GL}}_{N}(E_{\lambda})$$

for every prime λ of E satisfying

Let Π be a relevant representation of $GL_N(\mathbb{A}_F)$. It is known that Π is defined over a subfield E that is a number field. By a series of work of Harris–Taylor, Taylor–Yoshida, Shin, Caraiani, Chenevier–Harris, et al, one can construct a Galois representation

$$ho_{\Pi,\lambda}\colon\operatorname{\mathsf{Gal}}(\overline{F}/F)
ightarrow\operatorname{\mathsf{GL}}_{N}(E_{\lambda})$$

for every prime λ of E satisfying

• $\rho_{\Pi,\lambda}^{\vee} \simeq \rho_{\Pi,\lambda}^{c} (N-1)$,

Let Π be a relevant representation of $GL_N(\mathbb{A}_F)$. It is known that Π is defined over a subfield E that is a number field. By a series of work of Harris–Taylor, Taylor–Yoshida, Shin, Caraiani, Chenevier–Harris, et al, one can construct a Galois representation

$$ho_{\Pi,\lambda}\colon\operatorname{\mathsf{Gal}}(\overline{F}/F)
ightarrow\operatorname{\mathsf{GL}}_{N}(E_{\lambda})$$

for every prime λ of E satisfying

- $\rho_{\Pi,\lambda}^{\vee} \simeq \rho_{\Pi,\lambda}^{c} (N-1)$,
- for every finite place v of F, $\rho_{\Pi,\lambda}|_{D_v}$ corresponds to Π_v under local Langlands correspondence up to a twist compatible with the above.

イロト 不得 トイヨト イヨト 二日

Let Π be a relevant representation of $GL_N(\mathbb{A}_F)$. It is known that Π is defined over a subfield E that is a number field. By a series of work of Harris–Taylor, Taylor–Yoshida, Shin, Caraiani, Chenevier–Harris, et al, one can construct a Galois representation

$$ho_{\Pi,\lambda}$$
: $\mathsf{Gal}(\overline{F}/F) o \mathsf{GL}_{N}(E_{\lambda})$

for every prime λ of E satisfying

- $\rho_{\Pi,\lambda}^{\vee} \simeq \rho_{\Pi,\lambda}^{c}(N-1)$,
- for every finite place v of F, $\rho_{\Pi,\lambda}|_{D_v}$ corresponds to Π_v under local Langlands correspondence up to a twist compatible with the above.

We will regard

$$M_{\Pi} \coloneqq \{\rho_{\Pi,\lambda}\}_{\lambda}$$

as an automorphic motive over F, with coefficient E.

イロト 不得 トイヨト イヨト 二日

Yifeng Liu (Yale University)

イロン イボン イヨン イヨン 三日

Now we consider two consecutive integers n and n + 1 with $n \ge 1$.

Now we consider two consecutive integers n and n+1 with $n \ge 1$. Take

• a relevant representation Π_n of $GL_n(\mathbb{A}_F)$,

イロン イロン イヨン イヨン

Now we consider two consecutive integers n and n + 1 with $n \ge 1$. Take

- a relevant representation Π_n of $GL_n(\mathbb{A}_F)$,
- a relevant representation Π_{n+1} of $GL_{n+1}(\mathbb{A}_F)$,

< ロ > < 回 > < 回 > < 回 > < 回 >

Now we consider two consecutive integers n and n + 1 with $n \ge 1$. Take

- a relevant representation Π_n of $GL_n(\mathbb{A}_F)$,
- a relevant representation Π_{n+1} of $GL_{n+1}(\mathbb{A}_F)$,
- a number field $E \subseteq \mathbb{C}$ over which both Π_n and Π_{n+1} are defined.

Now we consider two consecutive integers n and n + 1 with $n \ge 1$. Take

- a relevant representation Π_n of $GL_n(\mathbb{A}_F)$,
- a relevant representation Π_{n+1} of $GL_{n+1}(\mathbb{A}_F)$,
- a number field $E \subseteq \mathbb{C}$ over which both Π_n and Π_{n+1} are defined.

We study the "Rankin-Selberg automorphic motive"

$$M:=M_{\Pi_n}\otimes_E M_{\Pi_{n+1}}(n).$$

Now we consider two consecutive integers n and n + 1 with $n \ge 1$. Take

- a relevant representation Π_n of $GL_n(\mathbb{A}_F)$,
- a relevant representation Π_{n+1} of $GL_{n+1}(\mathbb{A}_F)$,
- a number field $E \subseteq \mathbb{C}$ over which both Π_n and Π_{n+1} are defined.

We study the "Rankin-Selberg automorphic motive"

$$M:=M_{\Pi_n}\otimes_E M_{\Pi_{n+1}}(n).$$

It is a motive of rank n(n+1) over F with coefficient E, equipped with a polarization.

<ロ> (四) (四) (三) (三)

Now we consider two consecutive integers n and n + 1 with $n \ge 1$. Take

- a relevant representation Π_n of $GL_n(\mathbb{A}_F)$,
- a relevant representation Π_{n+1} of $GL_{n+1}(\mathbb{A}_F)$,
- a number field $E \subseteq \mathbb{C}$ over which both Π_n and Π_{n+1} are defined.

We study the "Rankin-Selberg automorphic motive"

$$M:=M_{\Pi_n}\otimes_E M_{\Pi_{n+1}}(n).$$

It is a motive of rank n(n+1) over F with coefficient E, equipped with a polarization.

By construction, we have

• $L(s, M) = L(s + \frac{1}{2}, \prod_n \times \prod_{n+1}),$

Now we consider two consecutive integers n and n + 1 with $n \ge 1$. Take

- a relevant representation Π_n of $GL_n(\mathbb{A}_F)$,
- a relevant representation Π_{n+1} of $GL_{n+1}(\mathbb{A}_F)$,
- a number field $E \subseteq \mathbb{C}$ over which both Π_n and Π_{n+1} are defined.

We study the "Rankin-Selberg automorphic motive"

$$M:=M_{\Pi_n}\otimes_E M_{\Pi_{n+1}}(n).$$

It is a motive of rank n(n+1) over F with coefficient E, equipped with a polarization.

By construction, we have

•
$$L(s, M) = L(s + \frac{1}{2}, \prod_n \times \prod_{n+1}),$$

• $M_{\lambda} = \rho_{\prod_{n},\lambda} \otimes_{E_{\lambda}} \rho_{\prod_{n+1},\lambda}(n).$

<ロ> (四) (四) (三) (三)

◆□> ◆圖> ◆注> ◆注> □注

Regarding the B-B-K conjecture for the Rankin–Selberg motive *M*, in a joint work (close to be done) with Yichao Tian (Strasbourg), Liang Xiao (Peking), Wei Zhang (MIT), and Xinwen Zhu (Caltech), we show the following theorem.

Regarding the B-B-K conjecture for the Rankin–Selberg motive M, in a joint work (close to be done) with Yichao Tian (Strasbourg), Liang Xiao (Peking), Wei Zhang (MIT), and Xinwen Zhu (Caltech), we show the following theorem.

Theorem (LTXZZ)

Let F/F^+ be a CM extension. Let Π_n and Π_{n+1} be relevant representations of $GL_n(\mathbb{A}_F)$ and $GL_{n+1}(\mathbb{A}_F)$, respectively. Assume $F^+ \neq \mathbb{Q}$ if n > 2.

イロト 不得下 イヨト イヨト

Regarding the B-B-K conjecture for the Rankin–Selberg motive M, in a joint work (close to be done) with Yichao Tian (Strasbourg), Liang Xiao (Peking), Wei Zhang (MIT), and Xinwen Zhu (Caltech), we show the following theorem.

Theorem (LTXZZ)

Let F/F^+ be a CM extension. Let Π_n and Π_{n+1} be relevant representations of $GL_n(\mathbb{A}_F)$ and $GL_{n+1}(\mathbb{A}_F)$, respectively. Assume $F^+ \neq \mathbb{Q}$ if n > 2. If $L(\frac{1}{2}, \Pi_n \times \Pi_{n+1}) \neq 0$, then we have

$$\mathrm{H}^{1}_{\mathrm{f}}(\mathsf{F},\rho_{\mathsf{\Pi}_{n},\lambda}\otimes_{\mathsf{E}_{\lambda}}\rho_{\mathsf{\Pi}_{n+1},\lambda}(n))=0$$

for every admissible prime λ of E.

イロト 不得 トイヨト イヨト 二日

Yifeng Liu (Yale University)

Remark

• For the Rankin–Selberg motive M and every prime λ of E, we have $\mathrm{H}^{0}(F, M_{\lambda}) = 0$.

ヘロン 人間 とくほと 人間と

Remark

For the Rankin–Selberg motive *M* and every prime λ of *E*, we have H⁰(*F*, *M*_λ) = 0.
 Moreover, we have H¹_f(*F_v*, *M_λ*) = 0 if *v* has different residue characteristic with λ, which is a consequence of the purity property. Thus, H¹_f(*F*, *M_λ*) is the subspace of H¹(*F*, *M_λ*) consisting of elements α satisfying

$$\operatorname{loc}_{\nu}(\alpha) \in \operatorname{ker}\left(\operatorname{H}^{1}(F_{\nu}, M_{\lambda}) \to \operatorname{H}^{1}(F_{\nu}, M_{\lambda} \otimes \mathbb{B}_{\lambda}^{\operatorname{cris}})\right)$$

for every prime v of F of same residue characteristic with λ .

Remark

• For the Rankin–Selberg motive M and every prime λ of E, we have $H^0(F, M_{\lambda}) = 0$.

Moreover, we have $\mathrm{H}^{1}_{\mathrm{f}}(F_{\nu}, M_{\lambda}) = 0$ if ν has different residue characteristic with λ , which is a consequence of the purity property. Thus, $\mathrm{H}^{1}_{\mathrm{f}}(F, M_{\lambda})$ is the subspace of $\mathrm{H}^{1}(F, M_{\lambda})$ consisting of elements α satisfying

 $\operatorname{loc}_{\mathsf{v}}(\alpha) \in \operatorname{\mathsf{ker}}\left(\operatorname{H}^{1}(\mathsf{F}_{\mathsf{v}},\mathsf{M}_{\lambda}) \to \operatorname{H}^{1}(\mathsf{F}_{\mathsf{v}},\mathsf{M}_{\lambda} \otimes \mathbb{B}_{\lambda}^{\operatorname{cris}})\right)$

for every prime v of F of same residue characteristic with λ .

• Heuristically, it is believed that for "generic" Π_n and Π_{n+1} , all but finitely prime λ of E should be admissible. However, due to the lack of knowledge on the Galois image of Rankin–Selberg automorphic motives, we do not even know the existence of a single admissible prime, except for the situation in the following theorem.

Yifeng Liu (Yale University)

◆□> ◆圖> ◆臣> ◆臣> ○臣

Theorem (LTXZZ)

Let F/F^+ be a CM extension and $n \ge 1$ an integer. Let A_1 and A_2 be two modular elliptic curves over F^+ geometrically without complex multiplication, and geometrically non-isogenous. Assume both $\operatorname{Sym}^{n-1} A_1$ and $\operatorname{Sym}^n A_2$ are modular. Assume $F^+ \ne \mathbb{Q}$ if n > 2.

Theorem (LTXZZ)

Let F/F^+ be a CM extension and $n \ge 1$ an integer. Let A_1 and A_2 be two modular elliptic curves over F^+ geometrically without complex multiplication, and geometrically non-isogenous. Assume both $\operatorname{Sym}^{n-1} A_1$ and $\operatorname{Sym}^n A_2$ are modular. Assume $F^+ \ne \mathbb{Q}$ if n > 2. If (the central critical value)

$$L(n, \operatorname{Sym}^{n-1} A_{1,F} \times \operatorname{Sym}^n A_{2,F}) \neq 0,$$

then we have

$$\mathrm{H}^1_\mathrm{f}(F, \operatorname{\mathsf{Sym}}^{n-1}\mathrm{V}_\ell(A_1)\otimes_{\mathbb{Q}_\ell}\operatorname{\mathsf{Sym}}^n\mathrm{V}_\ell(A_2)(1-n))=0$$

for all but finitely many rational prime ℓ .

Yifeng Liu (Yale University)

Yifeng Liu (Yale University)

Remark

About the modularity of symmetric powers, take a modular elliptic curve A over a number field \mathbb{K} without complex multiplication. Then

(ロ) (日) (日) (日) (日)

Remark

About the modularity of symmetric powers, take a modular elliptic curve A over a number field $\mathbb K$ without complex multiplication. Then

- Sym² A is modular (Gelbart–Jacquet, 1976),
- Sym³ A is modular (Kim–Shahidi, 2002),
- Sym⁴ A is modular (Kim, 2002),

Remark

About the modularity of symmetric powers, take a modular elliptic curve A over a number field $\mathbb K$ without complex multiplication. Then

- Sym² A is modular (Gelbart–Jacquet, 1976),
- Sym³ A is modular (Kim–Shahidi, 2002),
- Sym⁴ A is modular (Kim, 2002),
- Sym⁵ A and Sym⁶ A are modular if \mathbb{K} is totally real and linearly disjoint from $\mathbb{Q}(\zeta_5)$ over \mathbb{Q} (Clozel–Thorne, 2015),
- Sym⁷ A is modular if K is totally real and linearly disjoint from Q(ζ₃₅) over Q (Clozel–Thorne, 2015),
- Sym⁸ A is modular if K is totally real and linearly disjoint from Q(ζ₇) over Q (Clozel–Thorne, 2015).

・ロン ・四と ・ヨン ・ヨ

The step 0 of the proof would be the following result originally predicted by ${\sf Gan-Gross-Prasad}.$

イロン イロン イヨン イヨン

The step 0 of the proof would be the following result originally predicted by Gan–Gross–Prasad.

Let F/F^+ be a CM extension. Let Π_n and Π_{n+1} be relevant representations of $GL_n(\mathbb{A}_F)$ and $GL_{n+1}(\mathbb{A}_F)$, respectively, such that $L(\frac{1}{2}, \Pi_n \times \Pi_{n+1}) \neq 0$.

The step 0 of the proof would be the following result originally predicted by Gan–Gross–Prasad.

Let F/F^+ be a CM extension. Let Π_n and Π_{n+1} be relevant representations of $\operatorname{GL}_n(\mathbb{A}_F)$ and $\operatorname{GL}_{n+1}(\mathbb{A}_F)$, respectively, such that $L(\frac{1}{2}, \Pi_n \times \Pi_{n+1}) \neq 0$. Then there exist

• a totally positive definite hermitian space V_n over F of rank n,

ヘロト 人間ト 人目ト 人目ト

The step 0 of the proof would be the following result originally predicted by Gan–Gross–Prasad.

Let F/F^+ be a CM extension. Let Π_n and Π_{n+1} be relevant representations of $GL_n(\mathbb{A}_F)$ and $GL_{n+1}(\mathbb{A}_F)$, respectively, such that $L(\frac{1}{2}, \Pi_n \times \Pi_{n+1}) \neq 0$. Then there exist

• a totally positive definite hermitian space V_n over F of rank n, before continuing, we introduce $V_{n+1} \coloneqq V_n \oplus F.e$ with (e, e) = 1, and put $G_n \coloneqq U(V_n)$ and $G_{n+1} \coloneqq U(V_{n+1})$,

イロト 不得 トイヨト イヨト 二日

The step 0 of the proof would be the following result originally predicted by Gan-Gross-Prasad.

Let F/F^+ be a CM extension. Let Π_n and Π_{n+1} be relevant representations of $GL_n(\mathbb{A}_F)$ and $GL_{n+1}(\mathbb{A}_F)$, respectively, such that $L(\frac{1}{2}, \Pi_n \times \Pi_{n+1}) \neq 0$. Then there exist

- a totally positive definite hermitian space V_n over F of rank n, before continuing, we introduce $V_{n+1} \coloneqq V_n \oplus F.e$ with (e, e) = 1, and put $G_n \coloneqq U(V_n)$ and $G_{n+1} \coloneqq U(V_{n+1})$,
- an irreducible subrepresentation π_n of $G_n(\mathbb{A}_{F^+})$ contained in $C^{\infty}(G_n(F^+) \setminus G_n(\mathbb{A}_{F^+}^{\infty}))$ whose weak global base change is Π_n ,

イロト 不得 トイヨト イヨト 二日

The step 0 of the proof would be the following result originally predicted by Gan-Gross-Prasad.

Let F/F^+ be a CM extension. Let Π_n and Π_{n+1} be relevant representations of $GL_n(\mathbb{A}_F)$ and $GL_{n+1}(\mathbb{A}_F)$, respectively, such that $L(\frac{1}{2}, \Pi_n \times \Pi_{n+1}) \neq 0$. Then there exist

- a totally positive definite hermitian space V_n over F of rank n, before continuing, we introduce $V_{n+1} \coloneqq V_n \oplus F.e$ with (e, e) = 1, and put $G_n \coloneqq U(V_n)$ and $G_{n+1} \coloneqq U(V_{n+1})$,
- an irreducible subrepresentation π_n of $G_n(\mathbb{A}_{F^+})$ contained in $C^{\infty}(G_n(F^+) \setminus G_n(\mathbb{A}_{F^+}^{\infty}))$ whose weak global base change is Π_n ,
- an irreducible subrepresentation π_{n+1} of $G_{n+1}(\mathbb{A}_{F^+})$ contained in $C^{\infty}(G_{n+1}(F^+) \setminus G_{n+1}(\mathbb{A}_{F^+}^{\infty}))$ whose weak global base change is Π_{n+1} ,

イロト イロト イヨト イヨト 二日
The step 0 of the proof would be the following result originally predicted by Gan-Gross-Prasad.

Let F/F^+ be a CM extension. Let Π_n and Π_{n+1} be relevant representations of $GL_n(\mathbb{A}_F)$ and $GL_{n+1}(\mathbb{A}_F)$, respectively, such that $L(\frac{1}{2}, \Pi_n \times \Pi_{n+1}) \neq 0$. Then there exist

- a totally positive definite hermitian space V_n over F of rank n, before continuing, we introduce $V_{n+1} \coloneqq V_n \oplus F.e$ with (e, e) = 1, and put $G_n \coloneqq \mathrm{U}(V_n)$ and $G_{n+1} \coloneqq \mathrm{U}(V_{n+1})$,
- an irreducible subrepresentation π_n of $G_n(\mathbb{A}_{F^+})$ contained in $C^{\infty}(G_n(F^+) \setminus G_n(\mathbb{A}_{F^+}^{\infty}))$ whose weak global base change is Π_n ,
- an irreducible subrepresentation π_{n+1} of $G_{n+1}(\mathbb{A}_{F^+})$ contained in $C^{\infty}(G_{n+1}(F^+) \setminus G_{n+1}(\mathbb{A}_{F^+}^{\infty}))$ whose weak global base change is Π_{n+1} ,

such that the functional

$$\mathcal{P}(f_n, f_{n+1}) \coloneqq \int_{G_n(F^+) \setminus G_n(\mathbb{A}_{F^+}^\infty)} f_n(g) f_{n+1}(g) \mathrm{d}g$$

on $f_n \in \pi_n$ and $f_{n+1} \in \pi_{n+1}$ is nonzero. Here, we regard G_n as a subgroup of G_{n+1} in the natural way.

・ロン ・四と ・ヨン ・ヨ

The step 1 of the proof would be to create geometry that encodes the functional-theoretical input obtained from G-G-P.

イロン イロン イヨン イヨン

The step 1 of the proof would be to create geometry that encodes the functional-theoretical input obtained from G-G-P. We take $N \in \{n, n+1\}$, and the data (V_N, π_N) from the previous step. Fix an embedding $\iota: F \hookrightarrow \mathbb{C}$. Fix a sufficiently small open compact subgroup $K = K_S K^S$ of $G_N(\mathbb{A}_{F^+}^{\infty})$ such that K^S is hyperspecial maximal.

イロト イポト イヨト イヨト

The step 1 of the proof would be to create geometry that encodes the functional-theoretical input obtained from G-G-P. We take $N \in \{n, n + 1\}$, and the data (V_N, π_N) from the previous step. Fix an embedding $\iota: F \hookrightarrow \mathbb{C}$. Fix a sufficiently small open compact subgroup $K = K_S K^S$ of $G_N(\mathbb{A}_{F^+}^{\infty})$ such that K^S is hyperspecial maximal. Now we choose a prime \mathfrak{p} of F^+ not in S that is of degree 1 over \mathbb{Q} and inert in F.

Yifeng Liu (Yale University)

イロト イポト イヨト イヨト

The step 1 of the proof would be to create geometry that encodes the functional-theoretical input obtained from G-G-P.

We take $N \in \{n, n+1\}$, and the data (V_N, π_N) from the previous step. Fix an embedding $\iota: F \hookrightarrow \mathbb{C}$. Fix a sufficiently small open compact subgroup $K = K_S K^S$ of $G_N(\mathbb{A}_{F^+}^{\otimes})$ such that K^S is hyperspecial maximal.

Now we choose a prime \mathfrak{p} of F^+ not in S that is of degree 1 over \mathbb{Q} and inert in F. Let V'_N be the unique (up to isomorphism) hermitian space over F such that

- $V'_{N,v} \simeq V_{N,v}$ if v is not ι or \mathfrak{p} ,
- $V_{N,\iota}'$ has signature (N-1,1),
- $V'_{N,p}$ does not admit a self-dual lattice.

・ロン ・四 と ・ ヨ と ・ ヨ と

The step 1 of the proof would be to create geometry that encodes the functional-theoretical input obtained from G-G-P.

We take $N \in \{n, n+1\}$, and the data (V_N, π_N) from the previous step. Fix an embedding $\iota: F \hookrightarrow \mathbb{C}$. Fix a sufficiently small open compact subgroup $K = K_S K^S$ of $G_N(\mathbb{A}_{F^+}^{\infty})$ such that K^S is hyperspecial maximal.

Now we choose a prime \mathfrak{p} of F^+ not in S that is of degree 1 over \mathbb{Q} and inert in F. Let V'_N be the unique (up to isomorphism) hermitian space over F such that

- $V'_{N,\nu} \simeq V_{N,\nu}$ if ν is not ι or \mathfrak{p} ,
- $V_{N,\iota}'$ has signature (N-1,1),
- $V'_{N,p}$ does not admit a self-dual lattice.

Put $G'_{\mathcal{N}} := \mathrm{U}(\mathrm{V}'_{\mathcal{N}})$. We also obtain an open compact subgroup \mathcal{K}' of $G'_{\mathcal{N}}(\mathbb{A}_{F^+}^{\infty})$ from \mathcal{K} by changing (the hyperspecial subgroup) $\mathcal{K}_{\mathfrak{p}}$ to the stabilizer $\mathcal{K}'_{\mathfrak{p}}$ of a nearly self-dual lattice, which is a special maximal subgroup.

イロト イロト イヨト イヨト 二日

The step 1 of the proof would be to create geometry that encodes the functional-theoretical input obtained from G-G-P.

We take $N \in \{n, n+1\}$, and the data (V_N, π_N) from the previous step. Fix an embedding $\iota: F \hookrightarrow \mathbb{C}$. Fix a sufficiently small open compact subgroup $K = K_S K^S$ of $G_N(\mathbb{A}_{F^+}^{\infty})$ such that K^S is hyperspecial maximal.

Now we choose a prime \mathfrak{p} of F^+ not in S that is of degree 1 over \mathbb{Q} and inert in F. Let V'_N be the unique (up to isomorphism) hermitian space over F such that

- $V'_{N,\nu} \simeq V_{N,\nu}$ if ν is not ι or \mathfrak{p} ,
- $V'_{N,\iota}$ has signature (N-1,1),
- $V'_{N,p}$ does not admit a self-dual lattice.

Put $G'_{\mathcal{N}} := \mathrm{U}(\mathrm{V}'_{\mathcal{N}})$. We also obtain an open compact subgroup \mathcal{K}' of $G'_{\mathcal{N}}(\mathbb{A}_{F^+}^{\infty})$ from \mathcal{K} by changing (the hyperspecial subgroup) $\mathcal{K}_{\mathfrak{p}}$ to the stabilizer $\mathcal{K}'_{\mathfrak{p}}$ of a nearly self-dual lattice, which is a special maximal subgroup.

We obtain a natural integral model \mathcal{X} of the Shimura variety $\mathrm{Sh}(G'_N, K'_N)$ (with the reflex field F) over $O_{F_{\mathfrak{p}}} \simeq \mathbb{Z}_{p^2}$.

<ロ> <回> <回> <回> <三> <三</p>

・ロン ・四と ・ヨン ・ヨ

We show that ${\mathcal X}$ is semistable over ${\it O}_{{\it F}_{\frak v}},$ whose special fiber can be written as

$$\mathcal{X} \otimes_{O_{F_{\mathfrak{p}}}} \mathbb{F}_{p^2} = X \bigcup X'$$

in which

ヘロン 人間 とうほど 人口ン

We show that \mathcal{X} is semistable over O_{F_n} , whose special fiber can be written as

$$\mathcal{X} \otimes_{O_{F_{\mathfrak{p}}}} \mathbb{F}_{p^2} = X \bigcup X'$$

in which

• X is geometrically isomorphic to a \mathbb{P}^{N-1} -fibration over the set

$$G_N(F^+) \setminus G_N(\mathbb{A}_{F^+}^\infty)/K_N,$$

and is entirely contained in the so-called basic locus.

イロト イヨト イヨト イヨト

We show that \mathcal{X} is semistable over O_{F_n} , whose special fiber can be written as

$$\mathcal{X} \otimes_{O_{F_{\mathfrak{p}}}} \mathbb{F}_{p^2} = X \bigcup X'$$

in which

• X is geometrically isomorphic to a \mathbb{P}^{N-1} -fibration over the set

$$G_N(F^+)\setminus G_N(\mathbb{A}_{F^+}^\infty)/K_N,$$

and is entirely contained in the so-called basic locus.

 the intersection X ∩ X' in every fiber P^{N-1} is a Fermat hypersurface of degree p + 1.

イロト イヨト イヨト イヨト

We show that \mathcal{X} is semistable over O_{F_n} , whose special fiber can be written as

$$\mathcal{X} \otimes_{O_{F_{\mathfrak{p}}}} \mathbb{F}_{p^2} = X \bigcup X'$$

in which

• X is geometrically isomorphic to a \mathbb{P}^{N-1} -fibration over the set

$$G_N(F^+) \setminus G_N(\mathbb{A}_{F^+}^\infty) / K_N,$$

and is entirely contained in the so-called basic locus.

- the intersection X ∩ X' in every fiber P^{N-1} is a Fermat hypersurface of degree p + 1.
- X' is smooth; and if denote by Y' the normalization of the Zariski closure of the basic locus of X' \ X in X', then Y' is geometrically isomorphic to a "Deligne-Lusztig variety"-fibration over the set

$$G_N(F^+)\backslash G_N(\mathbb{A}_{F^+}^\infty)/K'_N.$$

But what is K'_N ?

We show that \mathcal{X} is semistable over O_{F_n} , whose special fiber can be written as

$$\mathcal{X} \otimes_{O_{F_{\mathfrak{p}}}} \mathbb{F}_{p^2} = X \bigcup X'$$

in which

• X is geometrically isomorphic to a \mathbb{P}^{N-1} -fibration over the set

$$G_N(F^+) \setminus G_N(\mathbb{A}_{F^+}^\infty)/K_N,$$

and is entirely contained in the so-called basic locus.

- the intersection X ∩ X' in every fiber P^{N-1} is a Fermat hypersurface of degree p + 1.
- X' is smooth; and if denote by Y' the normalization of the Zariski closure of the basic locus of X' \ X in X', then Y' is geometrically isomorphic to a "Deligne-Lusztig variety"-fibration over the set

$$G_N(F^+)\backslash G_N(\mathbb{A}_{F^+}^\infty)/K'_N.$$

But what is K'_N ? It is same as K_N away from p; but at p, it is the "other" special maximal subgroup of $G_N(F_p^+)$.

・ロン ・四と ・ヨン ・ヨ

Now we suppose N even. Take a prime λ of E with residue field κ , such that $p^2 - 1 \neq 0$ in κ .

ヘロン 人間 とくほと 人間と

Now we suppose N even. Take a prime λ of E with residue field κ , such that $p^2 - 1 \neq 0$ in κ .

The representation π_N determines a homomorphism $\mathbb{T}_N^{S,p} \to \kappa$, whose kernel we denote by \mathfrak{m} . Here, $\mathbb{T}_N^{S,p}$ is the (abstract) spherical Hecke algebra of G_N (or G'_N) away from S and p-adic places, which acts on \mathcal{X} via Hecke correspondences.

ヘロト 人間ト 人間ト 人間ト

Now we suppose N even. Take a prime λ of E with residue field κ , such that $p^2 - 1 \neq 0$ in κ .

The representation π_N determines a homomorphism $\mathbb{T}_N^{S,p} \to \kappa$, whose kernel we denote by \mathfrak{m} . Here, $\mathbb{T}_N^{S,p}$ is the (abstract) spherical Hecke algebra of G_N (or G'_N) away from S and p-adic places, which acts on \mathcal{X} via Hecke correspondences. We show the following level raising result:

(ロ) (四) (三) (三)

Now we suppose N even. Take a prime λ of E with residue field κ , such that $p^2 - 1 \neq 0$ in κ .

The representation π_N determines a homomorphism $\mathbb{T}_N^{S,p} \to \kappa$, whose kernel we denote by \mathfrak{m} . Here, $\mathbb{T}_N^{S,p}$ is the (abstract) spherical Hecke algebra of G_N (or G'_N) away from S and p-adic places, which acts on \mathcal{X} via Hecke correspondences. We show the following level raising result: Suppose

• the mod- λ Satake parameters of $\pi_{N,p}$ does not contain -1, but contains the pair $\{p, p^{-1}\}$ exactly once,

< 回入< un>< un></li

Now we suppose N even. Take a prime λ of E with residue field κ , such that $p^2 - 1 \neq 0$ in κ .

The representation π_N determines a homomorphism $\mathbb{T}_N^{S,p} \to \kappa$, whose kernel we denote by \mathfrak{m} . Here, $\mathbb{T}_N^{S,p}$ is the (abstract) spherical Hecke algebra of G_N (or G'_N) away from S and p-adic places, which acts on \mathcal{X} via Hecke correspondences. We show the following level raising result:

Suppose

• the mod- λ Satake parameters of $\pi_{N,p}$ does not contain -1, but contains the pair $\{p, p^{-1}\}$ exactly once,

•
$$\mathrm{H}^{i}_{\mathrm{\acute{e}t}}(\mathcal{X} \otimes_{\mathcal{O}_{F_{\mathfrak{p}}}} \overline{F_{\mathfrak{p}}}, \kappa)_{\mathfrak{m}} = 0$$
 for $i \neq N-1$,

イロト 不得下 イヨト イヨト

Now we suppose N even. Take a prime λ of E with residue field κ , such that $p^2 - 1 \neq 0$ in κ .

The representation π_N determines a homomorphism $\mathbb{T}_N^{S,p} \to \kappa$, whose kernel we denote by \mathfrak{m} . Here, $\mathbb{T}_N^{S,p}$ is the (abstract) spherical Hecke algebra of G_N (or G'_N) away from S and p-adic places, which acts on \mathcal{X} via Hecke correspondences. We show the following level raising result:

Suppose

• the mod- λ Satake parameters of $\pi_{N,p}$ does not contain -1, but contains the pair $\{p, p^{-1}\}$ exactly once,

•
$$\mathrm{H}^{i}_{\mathrm{\acute{e}t}}(\mathcal{X} \otimes_{\mathcal{O}_{F_{\mathfrak{p}}}} \overline{F_{\mathfrak{p}}}, \kappa)_{\mathfrak{m}} = 0$$
 for $i \neq N-1$,

• $F^+ \neq \mathbb{Q}$ if N > 2.

イロト 不得 トイヨト イヨト 二日

Now we suppose N even. Take a prime λ of E with residue field κ , such that $p^2 - 1 \neq 0$ in κ .

The representation π_N determines a homomorphism $\mathbb{T}_N^{S,p} \to \kappa$, whose kernel we denote by \mathfrak{m} . Here, $\mathbb{T}_N^{S,p}$ is the (abstract) spherical Hecke algebra of G_N (or G'_N) away from S and p-adic places, which acts on \mathcal{X} via Hecke correspondences. We show the following level raising result:

Suppose

• the mod- λ Satake parameters of $\pi_{N,p}$ does not contain -1, but contains the pair $\{p, p^{-1}\}$ exactly once,

•
$$\mathrm{H}^{i}_{\mathrm{\acute{e}t}}(\mathcal{X} \otimes_{\mathcal{O}_{F_{\mathfrak{p}}}} \overline{F_{\mathfrak{p}}}, \kappa)_{\mathfrak{m}} = 0$$
 for $i \neq N-1$,

• $F^+ \neq \mathbb{Q}$ if N > 2.

Then we have

$$\mathrm{H}^{\mathsf{N}-1}_{\mathrm{\acute{e}t}}(\mathcal{X}\otimes_{\mathcal{O}_{F_{\mathfrak{p}}}}\overline{F_{\mathfrak{p}}},\kappa)_{\mathfrak{m}}\neq 0.$$

Now we suppose N even. Take a prime λ of E with residue field κ , such that $p^2 - 1 \neq 0$ in κ .

The representation π_N determines a homomorphism $\mathbb{T}_N^{S,p} \to \kappa$, whose kernel we denote by \mathfrak{m} . Here, $\mathbb{T}_N^{S,p}$ is the (abstract) spherical Hecke algebra of G_N (or G'_N) away from S and p-adic places, which acts on \mathcal{X} via Hecke correspondences. We show the following level raising result:

Suppose

• the mod- λ Satake parameters of $\pi_{N,p}$ does not contain -1, but contains the pair $\{p, p^{-1}\}$ exactly once,

•
$$\mathrm{H}^{i}_{\mathrm{\acute{e}t}}(\mathcal{X} \otimes_{\mathcal{O}_{F_{\mathfrak{p}}}} \overline{F_{\mathfrak{p}}}, \kappa)_{\mathfrak{m}} = 0$$
 for $i \neq N-1$,

• $F^+ \neq \mathbb{Q}$ if N > 2.

Then we have

$$\mathrm{H}^{\mathsf{N}-1}_{\mathrm{\acute{e}t}}(\mathcal{X}\otimes_{\mathsf{O}_{\mathsf{F}_{\mathfrak{p}}}}\overline{\mathsf{F}_{\mathfrak{p}}},\kappa)_{\mathfrak{m}}\neq 0.$$

In other words, there exists an automorphic representation π'_N of $G'_N(\mathbb{A}_{F^+})$ appearing in the middle cohomology that is congruent to π_N modulo λ . Moreover, π'_N is not unramified at \mathfrak{p} .

ヘロン ヘアン ヘビン ヘビン 一日

Thank you!

・ロン ・四 と ・ ヨン ・ ヨン