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B-SD conjecture

Let F be a number field.
Let A be an elliptic curve over F . We have three invariants:
• the Mordell–Weil group A(F ), which is a finitely generated abelian group,
• the (complete) Hasse–Weil L-function L(s,A), which is absolutely convergent
for Re(s) > 3

2 ,
• the (Q`-)Selmer group

SelQ`(A) :=

(
lim←−

n
Sel`n (A)

)
⊗Z` Q`

for every rational prime `, which is a finite dimensional Q`-vector space.
Conjecturally, L(s,A) has an analytic continuation to the entire complex plane
and satisfies a functional equation with center s = 1. This is known in many cases
when F is totally real.
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B-SD conjecture

Conjecture (Birch–Swinnerton-Dyer)
We have

rankA(F ) = ords=1 L(s,A) = dimQ` SelQ`(E )

for every prime number `.

Theorem
Suppose F = Q.
• (Coates–Wiles, Gross–Zagier, Kolyvagin) If ords=1 L(s,A) ≤ 1, then the
above conjecture holds.

• (Rubin, Skinner–Urban, Skinner, W. Zhang, Burungale–Skinner–Tian) If
dimQ` SelQ`(A) ≤ 1 for some `, then the above conjecture holds.
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B-B-K conjecture

Again let F be a number field, with an algebraic closure F . Let E be another
number field serving as the coefficient field.
Let M be a motive over F with coefficient E , together with a polarization
M ×M → E (1).
It gives rise to a compatible system of Galois representations Mλ of F with
coefficient Eλ for every prime λ of E , together with a Galois equivariant pairing
Mλ ×Mλ → Eλ(1).
For such a motive M, we can define
• an L-function L(s,M), which is conjectured to have a meromorphic

continuation to the entire complex plain and satisfy certain functional
equation with center s = 0,

• a “Selmer group” H1
f (F ,Mλ), which is a finite dimensional vector space over

Eλ for every prime λ of E , known as the Bloch–Kato Selmer group.
If we take M = h1(A)(1) with the canonical polarization from Poincaré duality,
then we have L(s,M) = L(s + 1,A) and H1

f (F ,M`) = SelQ`(A).
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B-B-K conjecture

More precisely, H1
f (F ,Mλ) is the subspace of H1(F ,Mλ) consisting of elements α

satisfying
• locv (α) ∈ ker

(
H1(Fv ,Mλ)→ H1(Iv ,Mλ)

)
for every prime v of F of different

residue characteristic with λ;
• locv (α) ∈ ker

(
H1(Fv ,Mλ)→ H1(Fv ,Mλ ⊗ Bcris

λ )
)
for every prime v of F of

same residue characteristic with λ.

Conjecture (Beilinson–Bloch, Bloch–Kato)
Let M be a polarized motive as above. Then we have

ords=0 L(s,M) = dimEλ H1
f (F ,Mλ)− dimEλ H0(F ,Mλ)

for every prime ` of E .

If we take M = h1(A)(1) with the canonical polarization (and E = Q), then we
recover the B-SD conjecture for A.
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Automorphic motives

From now on, we assume that F is CM. Denote by F+ the maximal totally real
subfield contained in F , and c ∈ Gal(F/F+) the Galois involution.
Let N ≥ 1 be an integer. We say that a (complex) representation Π of GLN(AF )
is relevant if:
• Π is admissible and irreducible,
• Π is cuspidal automorphic,
• Π ◦ c ' Π∨,
• for every archimedean place v of F , Πv , which is a representation of GLN(C),

is isomorphic to the (irreducible) principal series

I(argN−1, argN−3, · · · , arg3−N , arg1−N).

Here, arg : C× → C× is the argument character z 7→ z√
zz
.

For example, when N = 1, Πv is the trivial character; when N = 2, Πv is the
base change of the discrete series of GL2(R) of weight 2.
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Automorphic motives

Let Π be a relevant representation of GLN(AF ). It is known that Π is defined over
a subfield E that is a number field.
By a series of work of Harris–Taylor, Taylor–Yoshida, Shin, Caraiani,
Chenevier–Harris, et al, one can construct a Galois representation

ρΠ,λ : Gal(F/F )→ GLN(Eλ)

for every prime λ of E satisfying
• ρ∨Π,λ ' ρc

Π,λ(N − 1),
• for every finite place v of F , ρΠ,λ|Dv corresponds to Πv under local Langlands
correspondence up to a twist compatible with the above.

We will regard
MΠ := {ρΠ,λ}λ

as an automorphic motive over F , with coefficient E .
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Automorphic motives

Now we consider two consecutive integers n and n + 1 with n ≥ 1.Take
• a relevant representation Πn of GLn(AF ),
• a relevant representation Πn+1 of GLn+1(AF ),
• a number field E ⊆ C over which both Πn and Πn+1 are defined.

We study the “Rankin–Selberg automorphic motive”

M := MΠn ⊗E MΠn+1(n).

It is a motive of rank n(n + 1) over F with coefficient E , equipped with a
polarization.
By construction, we have
• L(s,M) = L(s + 1

2 ,Πn × Πn+1),
• Mλ = ρΠn,λ ⊗Eλ ρΠn+1,λ(n).
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Main results

Regarding the B-B-K conjecture for the Rankin–Selberg motive M, in a joint work
(close to be done) with Yichao Tian (Strasbourg), Liang Xiao (Peking),
Wei Zhang (MIT), and Xinwen Zhu (Caltech), we show the following theorem.

Theorem (LTXZZ)
Let F/F+ be a CM extension. Let Πn and Πn+1 be relevant representations of
GLn(AF ) and GLn+1(AF ), respectively. Assume F+ 6= Q if n > 2.
If L( 12 ,Πn × Πn+1) 6= 0, then we have

H1
f (F , ρΠn,λ ⊗Eλ ρΠn+1,λ(n)) = 0

for every admissible prime λ of E .
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Main results

Remark
• For the Rankin–Selberg motive M and every prime λ of E , we have

H0(F ,Mλ) = 0.
Moreover, we have H1

f (Fv ,Mλ) = 0 if v has different residue characteristic
with λ, which is a consequence of the purity property. Thus, H1

f (F ,Mλ) is
the subspace of H1(F ,Mλ) consisting of elements α satisfying

locv (α) ∈ ker
(
H1(Fv ,Mλ)→ H1(Fv ,Mλ ⊗ Bcris

λ )
)

for every prime v of F of same residue characteristic with λ.
• Heuristically, it is believed that for “generic” Πn and Πn+1, all but finitely
prime λ of E should be admissible. However, due to the lack of knowledge on
the Galois image of Rankin–Selberg automorphic motives, we do not even
know the existence of a single admissible prime, except for the situation in
the following theorem.
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Main results

Theorem (LTXZZ)
Let F/F+ be a CM extension and n ≥ 1 an integer. Let A1 and A2 be two
modular elliptic curves over F+ geometrically without complex multiplication, and
geometrically non-isogenous. Assume both Symn−1 A1 and Symn A2 are modular.
Assume F+ 6= Q if n > 2.
If (the central critical value)

L(n,Symn−1 A1,F × Symn A2,F ) 6= 0,

then we have

H1
f (F ,Symn−1 V`(A1)⊗Q` Sym

n V`(A2)(1− n)) = 0

for all but finitely many rational prime `.
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Main results

Remark
About the modularity of symmetric powers, take a modular elliptic curve A over a
number field K without complex multiplication. Then
• Sym2 A is modular (Gelbart–Jacquet, 1976),
• Sym3 A is modular (Kim–Shahidi, 2002),
• Sym4 A is modular (Kim, 2002),
• Sym5 A and Sym6 A are modular if K is totally real and linearly disjoint from
Q(ζ5) over Q (Clozel–Thorne, 2015),

• Sym7 A is modular if K is totally real and linearly disjoint from Q(ζ35) over Q
(Clozel–Thorne, 2015),

• Sym8 A is modular if K is totally real and linearly disjoint from Q(ζ7) over Q
(Clozel–Thorne, 2015).
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Step 0

The step 0 of the proof would be the following result originally predicted by
Gan–Gross–Prasad.
Let F/F+ be a CM extension. Let Πn and Πn+1 be relevant representations of
GLn(AF ) and GLn+1(AF ), respectively, such that L( 12 ,Πn × Πn+1) 6= 0.
Then there exist
• a totally positive definite hermitian space Vn over F of rank n,
before continuing, we introduce Vn+1 := Vn ⊕ F .e with (e, e) = 1, and put
Gn := U(Vn) and Gn+1 := U(Vn+1),

• an irreducible subrepresentation πn of Gn(AF + ) contained in
C∞(Gn(F+)\Gn(A∞F + )) whose weak global base change is Πn,

• an irreducible subrepresentation πn+1 of Gn+1(AF + ) contained in
C∞(Gn+1(F+)\Gn+1(A∞F + )) whose weak global base change is Πn+1,

such that the functional

P(fn, fn+1) :=

∫
Gn(F +)\Gn(A∞

F+ )

fn(g)fn+1(g)dg

on fn ∈ πn and fn+1 ∈ πn+1 is nonzero. Here, we regard Gn as a subgroup of Gn+1
in the natural way.
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Step 1

The step 1 of the proof would be to create geometry that encodes the
functional-theoretical input obtained from G-G-P.
We take N ∈ {n, n + 1}, and the data (VN , πN) from the previous step. Fix an
embedding ι : F ↪→ C. Fix a sufficiently small open compact subgroup K = KSKS

of GN(A∞F + ) such that KS is hyperspecial maximal.
Now we choose a prime p of F+ not in S that is of degree 1 over Q and inert in F .
Let V ′N be the unique (up to isomorphism) hermitian space over F such that
• V ′N,v ' VN,v if v is not ι or p,
• V ′N,ι has signature (N − 1, 1),
• V ′N,p does not admit a self-dual lattice.

Put G ′N := U(V′N). We also obtain an open compact subgroup K ′ of G ′N(A∞F + )
from K by changing (the hyperspecial subgroup) Kp to the stabilizer K ′p of a
nearly self-dual lattice, which is a special maximal subgroup.
We obtain a natural integral model X of the Shimura variety Sh(G ′N ,K ′N) (with
the reflex field F ) over OFp

' Zp2 .
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Step 1

We show that X is semistable over OFp
, whose special fiber can be written as

X ⊗OFp
Fp2 = X

⋃
X ′

in which
• X is geometrically isomorphic to a PN−1-fibration over the set

GN(F+)\GN(A∞F + )/KN ,

and is entirely contained in the so-called basic locus.
• the intersection X

⋂
X ′ in every fiber PN−1 is a Fermat hypersurface of

degree p + 1.
• X ′ is smooth; and if denote by Y ′ the normalization of the Zariski closure of
the basic locus of X ′ \ X in X ′, then Y ′ is geometrically isomorphic to a
“Deligne–Lusztig variety”-fibration over the set

GN(F+)\GN(A∞F + )/K ′N .

But what is K ′N? It is same as KN away from p; but at p, it is the “other”
special maximal subgroup of GN(F+

p ).
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Step 2

Now we suppose N even. Take a prime λ of E with residue field κ, such that
p2 − 1 6= 0 in κ.
The representation πN determines a homomorphism TS,p

N → κ, whose kernel we
denote by m. Here, TS,p

N is the (abstract) spherical Hecke algebra of GN (or G ′N)
away from S and p-adic places, which acts on X via Hecke correspondences.
We show the following level raising result:
Suppose
• the mod-λ Satake parameters of πN,p does not contain −1, but contains the
pair {p, p−1} exactly once,

• Hi
ét(X ⊗OFp

Fp, κ)m = 0 for i 6= N − 1,
• F+ 6= Q if N > 2.

Then we have
HN−1

ét (X ⊗OFp
Fp, κ)m 6= 0.

In other words, there exists an automorphic representation π′N of G ′N(AF + )
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Thank you!
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