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Part I

Arithmetic GGP conjecture
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“Local-to-Global principle"

Let E be elliptic curve over Q. B-SD conjecture:∏
p<x

#E(Fp)

p
→∞ =⇒ #E(Q) =∞.

[comp. ∑
p<x

#“SymnE”(Fp)

pn/2 ∼

{
x/ log x , n = 0
o(x/ log x), n ≥ 1.

implies the Sato–Tate conjecture on the distribution of Frob
eigenvalues.]
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Higher dim case: Hasse–Weil L-functions and Chow
groups

Let X/Q be a smooth projective variety of odd dimension 2m − 1. For
good primes p,

ζX ,p(s) = exp

∑
k≥1

#X (Fpk )

k pks

 ,

Hasse–Weil zeta & L-functions

ζX (s) =
∏

p, good

ζX ,p(s)

=
2 dim X∏

i=0

L(s,H i(X ))(−1)i
.
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Higher dim case: Hasse–Weil L-functions and Chow
groups

Let
Ch∗(X )0 ⊂ Ch∗(X )Q

be the Chow group of homological trivial cycles and Chow group, resp..

Conjecture (B-SD, Beilinson, Bloch)

ords=centerL(s,H2m−1(X )) = dim Chm(X )0

This is may be viewed as a “Local-to-Global principle" for Ch(X )0.
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A modest goal motivated by the Gross–Zagier formula

For X whose L-functions are known to be analytic, we hope to show

“ords=centerL(s,Hmid(X )) = 1 =⇒ dim Chm(X )0 6= 0.”

For a Shimura datum
(
G,DG

)
, the cohomology of the Shimura variety

X = ShK (G,DG) is expected to be

H∗(X ) =
⊕
π

generic

πK ⊗ ρπ
⊕
{others},

The modest goal is to show a result of the following type

“ords=centerL(s, π) = 1 =⇒ dim Chm(X )0[π] 6= 0”.
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Special subvarieties

A special pair of Shimura data is a homomorphism(
H,DH

)
//
(
G,DG

)
such that

1 the pair (H,G) is spherical, and
2 the dimensions (as complex manifolds) satisfy

dimCDH =
dimCDG − 1

2
.

Example (Gross–Zagier pair)

Let K = Q[
√
−D] be an imaginary quadratic field. Let

H = RK/QGm ⊂ G = GL2,Q.

Then dimDG = 1, dimDH = 0.
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Some more examples (over R)

1 Gan–Gross–Prasad pairs

GR HR

unitary groups U(1,n − 2)× U(1,n − 1) U(1,n − 2)

orthogonal groups SO(2,n − 2)× SO(2,n − 1) SO(2,n − 2)

2 Symmetric pairs

GR HR

unitary groups U(1,2n − 1) U(1,n − 1)× U(0,n)

orthogonal groups SO(2,2n − 1) SO(2,n − 1)× SO(0,n)
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Arithmetic diagonal cycles

For the unitary GGP pair (H,G), we obtain the arithmetic diagonal
cycle

ShH // ShG ,

(for certain level sugroups KH,KG).
Arithmetic GGP conjecture: for generic π,

ords=1/2L(π, s) = 1 =⇒ [ShH ]π 6= 0 ∈ Ch(X )0.

n = 2, dim ShG = 1: Gross–Zagier, S. Zhang, Yuan–Zhang–Zhang.
Exceptional example: Liu’s special cycles (for GGP U(n)× U(n)).
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Part II

Main theorem
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Global intersection numbers

∃ a PEL-type variant of the GGP Shimura varieties, with nice
integral models defined by moduli space [Rapoport–Smithling–Z.
’17], to be recalled later.
Define through the arithmetic intersection theory

Int(f ) =
(

f ∗ [ShH], [ShH]
)

ShG
, f ∈H (G,KG) ,

where the action is through the Hecke correspondence.
For regular Hecke f , the global intersection localizes:

Int(f ) =
∑
p≤∞

Intp(f ).
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L-functions (via Jacquet–Rallis Relative trace formula)

Consider the Hasse-Weil L-functions, counted with suitable
weights

J(f , s) =
∑
π

L(π, s + 1/2)Jπ(f , s).

Its derivative also localizes (for regular f )

∂J(f ) : =
d
ds

∣∣∣
s=0

J(f , s)

=
∑

p, non-split

∂Jp(f ).

The p-th term takes the following form

∂Jp(f ) =
∑
γ

Orb(γ, f p)∂Orb(γ, fp).
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Main theorem

Theorem (Z. ’19)
If the prime p is unramified, then

Intp(f ) = ∂Jp(f ).

Remark
1 This was conjectured by [Z. ’12, Rapoport–Smithling–Z. 17’],

based on the relative trace formula approach to the arithmetic
GGP conjecture, and is a corollary to the “AFL conjecture" (to be
recalled later).

2 To fulfill the modest goal, we still have to prove similar statements
for every ramified p (including archimedean places).
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Part III

Some geometric ingredients
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An overview

Integral models of Shimura varieties (RSZ).
Two types of algebraic cycles
(a) Kudla–Rapoport divisors.
(b) (Fat Big) CM cycles (aka. Derived CM cycles).

Two types of associated invariants.
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The Hermitian symmetric domain for U(n − 1,1)

Hermitian symmetric domain for U(n − 1,1),

Dn−1 := {z ∈ Cn−1 : |z| < 1} ∼=
U(n − 1,1)

U(n − 1)× U(1)
.

We have an action

U(n − 1,1) y Dn−1.

Notice D1 is isomorphic to the upper half plane H.

∼ //
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The Shimura variety Mn for U(n − 1,1)

K = Q(
√
−d), an imaginary quadratic field.

V a hermitian space over K of signature (n − 1,1).
U(V ) the associated unitary group.
OK ⊆ K ring of integers.
Λ ⊆ V a self-dual hermitian lattice over OK .
U(Λ) ⊆ U(V )(R) = U(n − 1,1) a discrete subgroup.
Shimura variety

Mn := U(Λ)\Dn−1.

It has dimension n − 1 over C.
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The Shimura varietyMn over OK

LetMn be the moduli stack of tuples (A, ι, λ,A0, ι0, λ0):
A is an abelian scheme of dimension n.
ι : OK ↪→ End(A) is an action of OK on A satisfying the Kottwitz
condition of signature (n − 1,1),

det(T − ι(a)|LieA) = (T − a)n−1(T − a), a ∈ OK .

λ : A ∼−→ A∨ is a principal polarization of A whose Rosati involution
induces a 7→ a on ι(OK ).
(A0, ι0, λ0) is a triple analogous to (A, ι, λ), but of dimension 1 and
signature (1,0).
ThenMn is a Deligne–Mumford stack over OK , smooth away from
ramified characteristics of relative dimension n − 1.
Mn(C) is (a finite disjoint union of various) Mn(C).
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Global intersection revisited

Define the integral model of the arithmetic diagonal cycle:

∆: Mn−1 //Mn−1,n =Mn−1 ×SpecOK Mn.

and

Int(f ) =
(

f ∗ ∆̂Mn−1 , ∆̂Mn−1

)
Mn−1,n

.
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The Kudla–Rapoport divisor Z(m)

(KR hermitian lattice) For a geometric point
(A, ι, λ,A0, ι0, λ0) ∈Mn, the space of homomorphisms

V (A0,A) := HomOK (A0,A)

is a hermitian lattice over OK . For x , y ∈ V (A0,A), the pairing
(x , y) ∈ OK is given by

(A0
x−→ A λ−→ A∨

y∨−→ A∨0
λ−1

0−−→ A0) ∈ EndOK (A0) = OK .

Given m ∈ Z+, define the Kudla–Rapoport divisor

im : Zm //Mn

to be the moduli stack of tuples (A, ι, λ,A0, ι0, λ0, x), where
x ∈ V (A0,A) such that (x , x) = m.
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Modularity of generating series of special divisors

Theorem
The generating series

c0 +
∑
m≥1

Zm qm ∈ Ch1(Mn)Q[[q]],

where c0 is a suitable multiple of the first Chern class of the Hodge
bundle ω, is a modular form (of weight n and known level).

Remark
1 Replace Ch1(Mn) by H2(Mn): Kudla–Millson.
2 Gross–Kohnen–Zagier (n = 2), Borcherds in general (+Liu’s

thesis).
3 Later proofs by Yuan–Zhang–Zhang, Bruinier.

4 Replace Ch1(Mn)Q by Ĉh
1
(Mn)Q: a theorem of Bruinier, Howard,

Kudla, Rapoport, and Yang.
21



An analog

Replace the signature (n − 1,1) by (n,0):

Latn =

{hermitian lattices Λ
pos. def, self-dual,

rank = n

}

Replace Mn by the lattice model Latn and we obtain theta
functions as the generating series∑

Λ∈Latn

1
#Aut(Λ)

θΛ,

where
θΛ =

∑
m≥0

#{x ∈ Λ | (x , x) = m}qm.
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A digression: Siegel–Weil, and arithmetic S-W

Siegel–Weil: the generalized theta function∑
Λ∈Latn

1
#Aut(Λ)

∑
T∈Hermn

#{x ∈ Λn | (xi , xj) = Ti,j}qT

is equal to the central value of Siegel-Eisenstein series on U(n,n).
A parallel question is Kudla–Rapoport conjecture (“Intersection
number of KR divisors=Fourier coefficients of the central
derivative of Siegel-Eisenstein series"), also recently proved by
Li–Z. (for good places).
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(Fat Big) CM cycles on An

We consider the “fixed point of the Hecke correspondence
HeckeAn":

CMd
n

//

��

Hecked
An

��
An

∆ // An ×An.

To a geometric point (A, ϕ ∈ End◦(A)) ∈ CMd
n one can associate a

“characteristic polynomial"

char : CMd
n

// Q[T ]deg=2n,

and the map induces a disjoint union (of open and closed
substacks)

CMn =
∐

a∈Im(char)

CMn(a),

24
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Example: n = 3, a non-flat CM cycle
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Intersection theory (I)

∐
CMd

n (a) CMd
n

∼ //

��

Hecked
Mn

��
Mn

∆ //Mn ×Mn.

Consider the “derived intersection product"

LCMd
n =

∑
a∈Im(charK )

LCMd
n ,

as classes in

Ch1(CMd
n )Q =

⊕
a∈Im(charK )

Ch1(CMd
n (a))Q.
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Arithmetic intersection theory

Arakelov/Gillet–Soulé intersection pairing

(·, ·) : Ĉh
1
(Mn)× Z1,c(Mn) // RD,

where
RD := R/{Q span of log p,p|DK}.

From the modularity, it follows that the generating function

c0 +
∑
m≥1

(Ẑm,
LCMd

(a)) qm ∈ RD[[q]],

is a modular form.
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The analog revisited

The “CM cycle" CMd (a) on the lattice model Latn is

CMd (a) =


(Λ, ϕ), s.t.

Λ ∈ Latn, ϕ ∈ 1
d EndOK (Λ),

charK (ϕ) = a .


The generating series, for a fixed (irred.) a ∈ K [T ]deg=n∑

m≥0

∑
(Λ,ϕ)∈CMd (a)

1
#Aut(Λ, ϕ)

#{(Λ, ϕ, x ∈ Λ) | (x , x) = m}qm.

is a modular form.
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The induction process (above p - dD)

(
Zm=1,

LCMd
)
Mn+1

��

? // ...

(
Zm=1,

LCMd
)
Mn

��

? //
(
Zm,

LCMd
)
Mn

OO

· · · · · ·

OO

(
Zm,

LCMd
(a)
)
Mn

6 V

a irred.
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Intersection theory (II)

∐
∆d
Zm

(a,b) ∆d
Zm

∼ //

��

CMd
n

��
Zm

im //Mn.

A point in ∆d
Zm

is

(A,A0, ϕ ∈ End◦(A), x : A0 → A).

K-R hermitian form and char. poly. together define a map

inv : ∆d
Zm

// K [T ]deg=n × K n,

sending (A,A0, x , ϕ) to a = charK (ϕ),b = (bi)0≤i≤n−1 where

bi = (ϕix , x).
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Theorem
Let a ∈ K [T ]deg=n be irreducible, and b ∈ K n such that b0 6= 0.

∆d
Zm

(a,b) has support in the supersingular locus above a unique
(necessarily inert) place p of Q, and is a proper scheme.
Assume that p - dD. Then

deg L∆d
Zm

(a,b) = Orb
(

(a,b), f (p)
d

)
· Intp ((a,b)) ,

where Intp ((a,b)) is the intersection number on “local Shimura
variety" appearing in AFL (to be recalled below).
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Part IV

The Arithmetic Fundamental Lemma
conjecture
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Relative orbital integrals

Define a family of (weighted) orbital integrals:

Orb
(
γ,1gln(OF ), s

)
=

∫
GLn−1(F )

1gln(OF )(h−1γh)
∣∣ det(h)

∣∣s(−1)val(det(h)) dh.

This can be viewed as a generating series of lattice counting of
OF -lattices Λ[:{

Λ[ ⊂ F n−1
∣∣∣Λ = Λ[ ⊕OF · en is stable under γ.

}
The condition can be restated as (“local CM condition")

OF [γ] ⊂ End(Λ).
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Jacquet–Rallis FL

Theorem ( Yun–Gordan (large p), Beuzart–Plessis (all odd p))
Let γ ∈ gln(F ) match an element g ∈ G(F ), regular semisimple. Then

±Orb
(
γ,1gln(OF ), s = 0

)
= Orb(g,1Aut(Λ)).

Remark
1 (Xiao) J-R FL =⇒ Langlands–Shelstad FL for unitary groups

(Theorem of Laumon–Ngo).
2 (Xiao, in progress) J-R FL =⇒ weighted FL for unitary groups.
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Unitary Rapoport–Zink space

F ′/F : an unramified quadratic extension of p-adic fields.
Xn : n-dim’l Hermitian supersingular formal OF ′-modules of
signature (1,n − 1) (unique up to isogeny).
Nn : the unitary Rapoport–Zink formal moduli space over Spf(OF̆ )
(parameterizing “deformations" of Xn).
The group Aut0(Xn) is a unitary group in n-variable and acts on
Nn.
The Nn ’s are non-archimedean analogs of Hermitian symmetric
domains. They have a “skeleton" given by a union of
Deligne–Lusztig varieties for unitary groups over finite fields.
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Local intersection numbers

A natural closed embedding δ : Nn−1 → Nn, and its graph

∆: Nn−1 // Nn−1,n = Nn−1 ×SpfOF̆
Nn.

Denote by ∆Nn−1 the image of ∆.

The group G(F ) := Aut0(Xn−1)× Aut0(Xn) acts on Nn−1,n. For
(nice) g ∈ G(F ), we define the intersection number

Int(g) =
(
∆Nn−1 ,g ·∆Nn−1

)
Nn−1,n

: = χ
(
Nn−1,n,O∆Nn−1

⊗L Og·∆Nn−1

)
.
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The arithmetic fundamental lemma (AFL) conjecture

Then the local version of the global “arithmetic intersection conjecture"
is

Conjecture (Z. ’12)
Let γ ∈ gln(F ) match an element g ∈ G(F ), strongly regular
semisimple. Then

± d
ds

∣∣∣∣
s=0

Orb
(
γ,1gln(OF ), s

)
= −Int(g) · log q.
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The status

Theorem (Z. ’19)
The AFL conjecture holds when F = Qp and p > n.

Remark
1 The case n = 3, Z ’12 ( A simplified proof when p ≥ 5 is given by

Mihatsch.)
2 Rapoport–Terstiege–Z. ’13: p ≥ n

2 + 1, and minuscule elements
g ∈ G(F ). ( A simplified proof is given by Li –Zhu.)

3 He–Li–Zhu, 2018: minuscule case but no restriction on p.
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Thank you!

The arithmetic fundamental lemma for the diagonal
cycles

Wei Zhang

Massachusetts Institute of Technology

The first JNT Biennial, Cetraro, 2019
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