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Automorphic L-function L(s, π)

Let π be an automorphic form for GLd(AQ). Then π = ⊗pπp, and
we have the associated L-function

L(s, π) =
∏

p prime

Lp(s, π) =
∞∑
n=1

λπ(n)

ns

with

Lp(s, π) = L(s, πp) =
d∏

i=1

(1− αi (p)p−s)−1.

The local factor at infinity is given by

L(s, π∞) =
d∏

i=1

ΓR (s − µi )

where
ΓR(s) = π−s/2Γ

( s
2

)
.



I Converge absolutely for Re(s) = σ > σ0 and extend to a
meromorphic function on C.

I Functional equation

Λ(s, π) := qs/2π L(s, π∞)L(s, π) = ωπΛ(1− s, π̃)

for some qπ ∈ N, |ωπ| = 1 (Godement-Jacquet).

I Note: The centre is at s = 1/2.



Main Conjectures

Grand Riemann Hypothesis

All non-trivial zeros of L(s, π) are on the central line

1
2 + it

Generalised Lindelöf Hypothesis

Analytic conductor:

C (π, t) = qπ

d∏
i=1

(1 + |µi + it|) �


qπ level

td t

Λπ =
∏
µi spectral

GRH =⇒ For any ε > 0 one has

|L(12 + it, π)| ≤ c(ε)C (π, t)ε
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The Subconvexity Problem

Convexity bound

Functional equation + Phragmen-Lindelöf principle =⇒

L(12 + it, π)� C (π, t)
1
4
+ε.

The Subconvexity Problem

To establish a bound of the form (with δ > 0)

L(12 + it, π)� C (π, t)
1
4
−δ.

We can also formulate the problem w.r.t. each parameter
separately (level aspect qπ, t-aspect, depth aspect µi )
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The Subconvexity Problem

Convexity bound

Functional equation + Phragmen-Lindelöf principle =⇒

L(12 + it, π)� C (π, t)
1
4
+ε.

The Subconvexity Problem

To establish a bound of the form (with δ > 0)
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4
−δ

π .

We can also formulate the problem w.r.t. each parameters
separately (t-aspect, level aspect qπ, depth aspect µi )



Examples of subconvex bounds: Degree 1

L-function Subconvex bounds

ζ(s) ζ(1/2 + it)� t
1
4
− 1

12
+ε = t

1
6
+ε

Weyl-Hardy-Littlewood (1920)

ζ(1/2 + it)� t
1
6
− 1

84
+ε

(Bombieri-Iwaniec) Bourgain (2017)

L(s, χ) L(1/2, χ)� M
1
4
− 1

16
+ε

χ mod M Burgess (1962)

L(s, χ), χ2 = 1 L(1/2, χ)� M
1
4
− 1

12
+ε

Conrey-Iwaniec (2000)
(χ2 6= 1: Petrow-Young (preprint 2018))



Degree 2

L-function Subconvex bounds

L(s, f ) L(1/2 + it, f )� t
1
2
− 1

6
+ε = t

1
3
+ε

f modular Good (1980) Meurman
or Maass

L(s, f ) L(1/2, f )� q
1
4
−δ

f
Duke-Friedlander-Iwaniec (1994, 2001, 2002)
Blomer-Harcos-Michel (2007) δ = 1/1889

L(1/2, f )� Λ
1
6
+ε

π

Iwaniec (1992) (conditional), Ivic (2001)

L(s, f ⊗ χ) L(1/2, f ⊗ χ)� M
1
2
− 1

6
+ε

χ mod M DFI (1992), Blomer-Harcos (2008)



Degree 2× 2

L-function Subconvex bounds

L(s, f1 ⊗ f2) L(1/2, f1 ⊗ f2)�f2 k
1− 7

165
+ε

1

fi modular wt ki Sarnak (2001)

fi Maass/modular L(1/2, f1 ⊗ f2)�f2 k
1− 1

3
+ε

1

Lau-Liu-Ye (2006)

levels qi L(1/2, f1 ⊗ f2)�f2 q
1
2
−δ

1

Kowalski-Michel-Vanderkam (2002) δ = 1/80
Michel (2004), Harcos-Michel (2006)

(q1, q2) = 1 L(1/2, f1 ⊗ f2)� (q1q2)
1
2
−δ

Holowinsky-M. (2013), Raju (preprint 2018)



Degree 3

L(s,Sym2f ) L(1/2 + it,Sym2f )� t
3
4
− 1

16
+ε

f modular/Maass X. Li (2011)

π Hecke-Maass L(1/2 + it, π)� t
11
16
+ε

for SL3(Z) M. (2015)
Aggarwal (preprint 2019) 3/4− 3/40 + ε

χ mod M L(1/2, π ⊗ χ)�π M
3
4
−δ

M. (2015, arxiv 2016)
Holowinsky-Nelson (2018) δ = 1/36

generalization Kowalski-Lin-Michel-Sawin (preprint 2019)

generic L(1/2, π)� Λ
1
4
−δ

π

spec. par. Blomer-Buttcane (2019)



Higher degree

L-function Subconvex bounds

L(s, f1 ⊗ f2 ⊗ f3) L(1/2, f1 ⊗ f2 ⊗ f3)�f1,f2 t
2− 1

3
+ε

3

fi Maass forms Bernstein-Reznikov (2005)
spectral para. ti

f3 of level p L(1/2, f1 ⊗ f2 ⊗ f3)�f1,f2 p
1− 1

13
+ε

Venkatesh (2010) Woodbury (thesis 2011)
Hu (2017)

g modular/Maass L(1/2, Sym2f ⊗ g)�f k
3
2
− 1

8
+ε

wt./spec. par. k X. Li (2011)



General results

I Diaconu-Garrett (2010): π GL(2) automorphic form over a
number field K of degree d ,

L(1/2 + it, π)�π t
d
2
−δ

I Michel-Venkatesh (2010): πi GL(2) automorphic forms

L(1/2, π1 ⊗ π2)�π1 C (π1 ⊗ π2)
1
4
−δ

I Soundararajan (2010), Soundararajan-Thorner (2019) π
GL(d) automorphic form

L(1/2, π)� C (π)1/4

(logC (π))δ

I Bernstein-Reznikov (2005), Venkatesh (2010)



New result

Theorem
Let f be a SL2(Z) modular/Maass form, and π be a SL3(Z) Maass
form, then

L(12 + it, π ⊗ f )� t
3
2
− 1

42
+ε.

(As usual we will take t > 2.)

I The proof is based on separation of oscillation via circle
method

I It is not sensitive to f or π being cuspidal or not. Hence as a
corollary we obtain:

L(12 + it, χ)�χ t
1
4
− 1

252
+ε

L(12 + it, f )�f t
1
2
− 1

126
+ε.

L(12 + it, π)�π t
3
4
− 1

84
+ε.



Related results

Theorem (Sharma arxiv 2019)

Let f be a SL2(Z) modular/Maass form, and π be a SL3(Z) Maass
form, and χ modp then

L(12 , π ⊗ f ⊗ χ)� p
3
2
− 1

32
+ε.

I As before taking Eisenstein series in place of f or π or both,
we get subconvex bounds for L(1/2, π⊗ χ), L(1/2, f ⊗ χ) and
L(1/2, χ)

Theorem (Kumar upcoming)

Let f be a SL2(Z) modular/Maass form with weight/spectral
parameter k, and π be a SL3(Z) Maass form, then

L(12 , π ⊗ f )� k
3
2
−δ.

I This extends the result of X. Li to non self-dual.



Related results 2

Theorem (Kumar-Mallesham-Singh upcoming)

Let f be a SL2(Z) modular/Maass form, and π be a SL3(Z) Maass
form with spectral parameters in generic position. Suppose∑

L<`≤2L
|λπ(1, `)|2 � L1/2+η

with η > 0. Then

L(12 , π ⊗ f )� Λ
1
4
−δ

π .

I Not clear how to get rid off the irritating condition!

I Without the condition the result would give a generalization
of the work of Blomer-Buttcane (2019).



Sketch of proof

I Approximate functional equation:

L(s, π ⊗ f ) =
∞∑∑

n,r=1

λπ(n, r)λf (n)

(nr2)s
.

AFE implies that

L(12 + it, π ⊗ f )� tε sup
N�t3+ε

|S(N)|√
N

+ t−2019

with

S(N) =
∞∑∑

n,r=1

λπ(n, r)λf (n)(nr2)itV

(
nr2

N

)
.

I Trivial estimation of S(N) yields convexity.



Sketch of proof

I We will establish non-trivial cancellation in

S(N) =
∑
n∼N

λπ(n, 1)λf (n)nit

for N = t3.

I We write

S(N) =
∑∑
n,m∼N

λπ(n, 1)λf (m)mitδ(n,m)

=
1

K

∫
W
( v

K

)∑∑
n,m∼N

λπ(n, 1)nivλf (m)mit−ivδ(n,m)

I δ-method: We use a Fourier expansion of δ

δ(n,m) =
1

Q

∑
q�Q

1

q

∑?

a mod q

e

(
a(n −m)

q

)
h

(
q

Q
,
n −m

qQ

)
where h is a reasonably nice function.



Sketch of proof

I We pick
Q =

√
N/K .

I Roughly speaking we have

S(N) =
1

KQ2

∫
v∼K

∑
q∼Q

∑?

a mod q

∑
n∼N

λπ(n, 1)nive

(
an

q

)

×
∑
m∼N

λf (m)mit−ive

(
−am

q

)
I Trivial estimation at this point yields S(N)� N2.



Sketch of proof

I Next we apply Voronoi summation formulae.

I GL(3) Voronoi transfers∑
n∼N

λπ(n, 1)nive

(
an

q

)
7→

∑
n∼K3/2N1/2

λπ(1, n)S(−ā, n; q)

∫
(. . . ),

and gives a saving of N1/4/K 3/4.

I GL(2) Voronoi transfers∑
m∼N

λf (m)mit−ive

(
−am

q

)
7→

∑
m∼t2/K

λf (m)e

(
ām

q

) ∫
(. . . ),

and gives a saving of (NK )1/2/t.



Sketch of proof

I Next we see that the character sum∑?

a mod q

S(−ā, n; q)e

(
ām

q

)
≈ qe

(
−m̄n

q

)
,

and we save
√
Q.

I We also save
√
K in the integral over v .

I It remains to save t (plus extra) in the sum∑
q∼Q

∑
n∼K3/2N1/2

λπ(1, n)
∑

m∼t2/K

λf (m) e

(
−m̄n

q

)
I



Sketch of proof

I Now we apply Cauchy inequality, and our job reduces to
saving t2 (plus extra) in

∑
n∼K3/2N1/2

∣∣∣∣∣∣
∑
q∼Q

∑
m∼t2/K

λf (m) e

(
−m̄n

q

)
I

∣∣∣∣∣∣
2

I Open absolute square and apply Poisson summation formula.
In the diagonal (zero frequency) we save Qt2/K which is
sufficient if K < t.

I In the off-diagonal we save K 3/2N1/2/K 1/2 which is sufficient
if K > t1/2.

I Notice the structural advantage. If one had a generic
character sum in place of e(−m̄n/q) then one would save
K 3/2N1/2/QK 1/2 which would be sufficient if K > t4/3!



Limit of the method

I Suppose P(x1, . . . , xn) ∈ Z[x1, . . . , xn] irreducible of degree d .
Consider the counting problem

N(B) = #{(x1, . . . , xn) ∈ Zn ∩ [−B,B]n : P(x1, . . . , xn) = 0}

I δ-method (circle method w/o minor arc) can give asymptotic
for N(B) (for n sufficiently large) for d ≤ 3. But fails for
d ≥ 4.

I However δ-method can be modified to count points on degree
d = 4 varieties arising as complete intersection of two
quadrics, or d = 6 varieties given by a cubic and a quadratic.

I To go beyond degree d = 3 one needs non-trivial analysis of
minor arc. Is higher rank δ method (trace formula) the right
way to introduce minor arcs in the automorphic setting?



Thank You!


