Bounds for $G L(3) \times G L(2)$ Rankin-Selberg L-functions

Ritabrata Munshi
Indian Statistical Institute

First JNT Biennial Conference, 23 July 2019

Automorphic L-function $L(s, \pi)$
Let π be an automorphic form for $G L_{d}\left(\mathbb{A}_{\mathbb{Q}}\right)$. Then $\pi=\otimes_{p} \pi_{p}$, and we have the associated L-function

$$
L(s, \pi)=\prod_{p \text { prime }} L_{p}(s, \pi)=\sum_{n=1}^{\infty} \frac{\lambda_{\pi}(n)}{n^{s}}
$$

with

$$
L_{p}(s, \pi)=L\left(s, \pi_{p}\right)=\prod_{i=1}^{d}\left(1-\alpha_{i}(p) p^{-s}\right)^{-1}
$$

The local factor at infinity is given by

$$
L\left(s, \pi_{\infty}\right)=\prod_{i=1}^{d} \Gamma_{\mathbb{R}}\left(s-\mu_{i}\right)
$$

where

$$
\Gamma_{\mathbb{R}}(s)=\pi^{-s / 2} \Gamma\left(\frac{s}{2}\right)
$$

- Converge absolutely for $\operatorname{Re}(s)=\sigma>\sigma_{0}$ and extend to a meromorphic function on \mathbb{C}.
- Functional equation

$$
\Lambda(s, \pi):=q_{\pi}^{s / 2} L\left(s, \pi_{\infty}\right) L(s, \pi)=\omega_{\pi} \Lambda(1-s, \tilde{\pi})
$$

for some $q_{\pi} \in \mathbb{N},\left|\omega_{\pi}\right|=1$ (Godement-Jacquet).

- Note: The centre is at $s=1 / 2$.

Main Conjectures

Grand Riemann Hypothesis
All non-trivial zeros of $L(s, \pi)$ are on the central line

$$
\frac{1}{2}+i t
$$

Generalised Lindelöf Hypothesis
Analytic conductor:

$$
C(\pi, t)=q_{\pi} \prod_{i=1}^{d}\left(1+\left|\mu_{i}+i t\right|\right) \asymp \begin{cases}q_{\pi} & \text { level } \\ t^{d} & t \\ \Lambda_{\pi}=\prod \mu_{i} & \text { spectral }\end{cases}
$$

GRH \Longrightarrow For any $\varepsilon>0$ one has

$$
\left|L\left(\frac{1}{2}+i t, \pi\right)\right| \leq c(\varepsilon) C(\pi, t)^{\varepsilon}
$$

Main Conjectures

Grand Riemann Hypothesis
All non-trivial zeros of $L(s, \pi)$ are on the central line

$$
\frac{1}{2}+i t
$$

Generalised Lindelöf Hypothesis
Analytic conductor:

$$
C(\pi, t)=q_{\pi} \prod_{i=1}^{d}\left(1+\left|\mu_{i}+i t\right|\right) \asymp \begin{cases}q_{\pi} & \text { level } \\ t^{d} & t \\ \Lambda_{\pi}=\prod \mu_{i} & \text { spectral }\end{cases}
$$

GRH \Longrightarrow For any $\varepsilon>0$ one has

$$
L\left(\frac{1}{2}+i t, \pi\right) \ll C(\pi, t)^{\varepsilon}
$$

The Subconvexity Problem

Convexity bound
Functional equation + Phragmen-Lindelöf principle \Longrightarrow

$$
L\left(\frac{1}{2}+i t, \pi\right) \ll C(\pi, t)^{\frac{1}{4}+\varepsilon} .
$$

The Subconvexity Problem
To establish a bound of the form (with $\delta>0$)

$$
L\left(\frac{1}{2}+i t, \pi\right) \ll C(\pi, t)^{\frac{1}{4}-\delta} .
$$

We can also formulate the problem w.r.t. each parameter separately (level aspect q_{π}, t-aspect, depth aspect μ_{i})

The Subconvexity Problem

Convexity bound
Functional equation + Phragmen-Lindelöf principle \Longrightarrow

$$
L\left(\frac{1}{2}+i t, \pi\right) \ll C(\pi, t)^{\frac{1}{4}+\varepsilon} .
$$

The Subconvexity Problem
To establish a bound of the form (with $\delta>0$)

$$
L\left(\frac{1}{2}+i t, \pi\right) \ll q_{\pi}^{\frac{1}{4}-\delta}
$$

We can also formulate the problem w.r.t. each parameter separately (t-aspect, level aspect q_{π}, depth aspect μ_{i})

The Subconvexity Problem

Convexity bound
Functional equation + Phragmen-Lindelöf principle \Longrightarrow

$$
L\left(\frac{1}{2}+i t, \pi\right) \ll C(\pi, t)^{\frac{1}{4}+\varepsilon} .
$$

The Subconvexity Problem
To establish a bound of the form (with $\delta>0$)

$$
L\left(\frac{1}{2}+i t, \pi\right) \ll t^{\frac{d}{4}-\delta} .
$$

We can also formulate the problem w.r.t. each parameter separately (t-aspect, level aspect q_{π}, depth aspect μ_{i})

The Subconvexity Problem

Convexity bound
Functional equation + Phragmen-Lindelöf principle \Longrightarrow

$$
L\left(\frac{1}{2}+i t, \pi\right) \ll C(\pi, t)^{\frac{1}{4}+\varepsilon} .
$$

The Subconvexity Problem
To establish a bound of the form (with $\delta>0$)

$$
L\left(\frac{1}{2}+i t, \pi\right) \ll \Lambda_{\pi}^{\frac{1}{4}-\delta} .
$$

We can also formulate the problem w.r.t. each parameters separately (t-aspect, level aspect q_{π}, depth aspect μ_{i})

Examples of subconvex bounds: Degree 1

L-function	Subconvex bounds
$\zeta(s)$	$\zeta(1 / 2+i t) \ll t^{\frac{1}{4}-\frac{1}{12}+\varepsilon}=t^{\frac{1}{6}+\varepsilon}$
	Weyl-Hardy-Littlewood (1920)
	$\begin{aligned} & \zeta(1 / 2+i t) \ll t^{\frac{1}{6}-\frac{1}{84}+\varepsilon} \\ & \text { (Bombieri-Iwaniec) Bourgain (2017) } \end{aligned}$
$L(s, \chi)$	$L(1 / 2, \chi) \ll M^{\frac{1}{4}-\frac{1}{16}+\varepsilon}$
$\chi \bmod M$	Burgess (1962)
$L(s, \chi), \chi^{2}=1$	$L(1 / 2, \chi) \ll M^{\frac{1}{4}-\frac{1}{12}+\varepsilon}$
	Conrey-Iwaniec (2000)
	$\left(\chi^{2} \neq 1\right.$: Petrow-Young (preprint 2018))

Degree 2

Degree 2×2

L-function	Subconvex bounds
$L\left(s, f_{1} \otimes f_{2}\right)$	
f_{i} modular wt k_{i}	$L\left(1 / 2, f_{1} \otimes f_{2}\right) \ll f_{2} k_{1}^{1-\frac{1}{165}+\varepsilon}$ Sarnak (2001)
f_{i} Maass/modular	$L\left(1 / 2, f_{1} \otimes f_{2}\right) \ll f_{2} k_{1}^{1-\frac{1}{3}+\varepsilon}$ Lau-Liu-Ye (2006)
levels q_{i}	$L\left(1 / 2, f_{1} \otimes f_{2}\right) \ll f_{2} q_{1}^{\frac{1}{2}-\delta}$ Kowalski-Michel-Vanderkam (2002) $\delta=1 / 80$ Michel (2004), Harcos-Michel (2006)
$\left(q_{1}, q_{2}\right)=1$	$L\left(1 / 2, f_{1} \otimes f_{2}\right) \ll\left(q_{1} q_{2}\right)$ Holowinsky-M. (2013), Raju (preprint 2018)

Degree 3

$L\left(s, \operatorname{Sym}^{2} f\right)$
f modular/Maass
π Hecke-Maass
for $S L_{3}(\mathbb{Z})$
$\chi \bmod M$
generalization
generic
spec. par.
$L\left(1 / 2+i t, \operatorname{Sym}^{2} f\right) \ll t^{\frac{3}{4}-\frac{1}{16}+\varepsilon}$
X. Li (2011)
$L(1 / 2+i t, \pi) \ll t^{\frac{11}{16}+\varepsilon}$
M. (2015)

Aggarwal (preprint 2019) 3/4-3/40 $+\varepsilon$
$L(1 / 2, \pi \otimes \chi) \ll_{\pi} M^{\frac{3}{4}-\delta}$
M. (2015, arxiv 2016)

Holowinsky-Nelson (2018) $\delta=1 / 36$
Kowalski-Lin-Michel-Sawin (preprint 2019)
$L(1 / 2, \pi) \ll \Lambda_{\pi}^{\frac{1}{4}-\delta}$
Blomer-Buttcane (2019)

Higher degree

L-function	Subconvex bounds
$L\left(s, f_{1} \otimes f_{2} \otimes f_{3}\right)$	$L\left(1 / 2, f_{1} \otimes f_{2} \otimes f_{3}\right) \ll f_{1}, f_{2} t_{3}^{2-\frac{1}{3}+\varepsilon}$
f_{i} Maass forms spectral para. t_{i}	Bernstein-Reznikov (2005)
f_{3} of level p	$\begin{aligned} & L\left(1 / 2, f_{1} \otimes f_{2} \otimes f_{3}\right) \ll f_{1}, f_{2} p^{1-\frac{1}{13}+\varepsilon} \\ & \text { Venkatesh (2010) Woodbury (thesis 2011) } \\ & \text { Hu (2017) } \end{aligned}$
g modular/Maass wt./spec. par. k	$\begin{aligned} & L\left(1 / 2, \operatorname{Sym}^{2} f \otimes g\right) \ll_{f} k^{\frac{3}{2}-\frac{1}{8}+\varepsilon} \\ & \text { X. } \operatorname{Li}(2011) \end{aligned}$

General results

- Diaconu-Garrett (2010): $\pi G L(2)$ automorphic form over a number field K of degree d,

$$
L(1 / 2+i t, \pi) \ll_{\pi} t^{\frac{d}{2}-\delta}
$$

- Michel-Venkatesh (2010): $\pi_{i} G L(2)$ automorphic forms

$$
L\left(1 / 2, \pi_{1} \otimes \pi_{2}\right) \ll_{\pi_{1}} C\left(\pi_{1} \otimes \pi_{2}\right)^{\frac{1}{4}-\delta}
$$

- Soundararajan (2010), Soundararajan-Thorner (2019) π $G L(d)$ automorphic form

$$
L(1 / 2, \pi) \ll \frac{C(\pi)^{1 / 4}}{(\log C(\pi))^{\delta}}
$$

- Bernstein-Reznikov (2005), Venkatesh (2010)

New result

Theorem
Let f be a $S L_{2}(\mathbb{Z})$ modular/Maass form, and π be a $S L_{3}(\mathbb{Z})$ Maass form, then

$$
L\left(\frac{1}{2}+i t, \pi \otimes f\right) \ll t^{\frac{3}{2}-\frac{1}{42}+\varepsilon} .
$$

(As usual we will take $t>2$.)

- The proof is based on separation of oscillation via circle method
- It is not sensitive to f or π being cuspidal or not. Hence as a corollary we obtain:

$$
\begin{aligned}
& L\left(\frac{1}{2}+i t, \chi\right) \ll_{\chi} t^{\frac{1}{4}-\frac{1}{252}+\varepsilon} \\
& L\left(\frac{1}{2}+i t, f\right) \ll_{f} t^{\frac{1}{2}-\frac{1}{126}+\varepsilon} . \\
& L\left(\frac{1}{2}+i t, \pi\right) \ll_{\pi} t^{\frac{3}{4}-\frac{1}{84}+\varepsilon} .
\end{aligned}
$$

Related results

Theorem (Sharma arxiv 2019)

Let f be a $S L_{2}(\mathbb{Z})$ modular/Maass form, and π be a $S L_{3}(\mathbb{Z})$ Maass form, and $\chi \bmod p$ then

$$
L\left(\frac{1}{2}, \pi \otimes f \otimes \chi\right) \ll p^{\frac{3}{2}-\frac{1}{32}+\varepsilon}
$$

- As before taking Eisenstein series in place of f or π or both, we get subconvex bounds for $L(1 / 2, \pi \otimes \chi), L(1 / 2, f \otimes \chi)$ and $L(1 / 2, \chi)$
Theorem (Kumar upcoming)
Let f be a $S L_{2}(\mathbb{Z})$ modular/Maass form with weight/spectral parameter k, and π be a $S L_{3}(\mathbb{Z})$ Maass form, then

$$
L\left(\frac{1}{2}, \pi \otimes f\right) \ll k^{\frac{3}{2}-\delta} .
$$

- This extends the result of X. Li to non self-dual.

Related results 2

Theorem (Kumar-Mallesham-Singh upcoming)
Let f be a $S L_{2}(\mathbb{Z})$ modular/Maass form, and π be a $S L_{3}(\mathbb{Z})$ Maass form with spectral parameters in generic position. Suppose

$$
\sum_{L<\ell \leq 2 L}\left|\lambda_{\pi}(1, \ell)\right|^{2} \gg L^{1 / 2+\eta}
$$

with $\eta>0$. Then

$$
L\left(\frac{1}{2}, \pi \otimes f\right) \ll \Lambda_{\pi}^{\frac{1}{4}-\delta} .
$$

- Not clear how to get rid off the irritating condition!
- Without the condition the result would give a generalization of the work of Blomer-Buttcane (2019).

Sketch of proof

- Approximate functional equation:

$$
L(s, \pi \otimes f)=\sum_{n, r=1}^{\infty} \sum_{\left(n r^{2}\right)^{s}}^{\lambda_{\pi}(n, r) \lambda_{f}(n)} \underset{(n)}{ }
$$

AFE implies that

$$
L\left(\frac{1}{2}+i t, \pi \otimes f\right) \ll t^{\varepsilon} \sup _{N \ll t^{3+\varepsilon}} \frac{|S(N)|}{\sqrt{N}}+t^{-2019}
$$

with

$$
S(N)=\sum_{n, r=1}^{\infty} \sum_{\pi} \lambda_{\pi}(n, r) \lambda_{f}(n)\left(n r^{2}\right)^{i t} V\left(\frac{n r^{2}}{N}\right) .
$$

- Trivial estimation of $S(N)$ yields convexity.

Sketch of proof

- We will establish non-trivial cancellation in

$$
S(N)=\sum_{n \sim N} \lambda_{\pi}(n, 1) \lambda_{f}(n) n^{i t}
$$

for $N=t^{3}$.

- We write

$$
\begin{aligned}
S(N) & =\sum_{n, m \sim N} \sum_{\pi}(n, 1) \lambda_{f}(m) m^{i t} \delta(n, m) \\
& =\frac{1}{K} \int W\left(\frac{v}{K}\right) \sum_{n, m \sim N} \sum_{\pi}(n, 1) n^{i v} \lambda_{f}(m) m^{i t-i v} \delta(n, m)
\end{aligned}
$$

- δ-method: We use a Fourier expansion of δ

$$
\delta(n, m)=\frac{1}{Q} \sum_{q \ll Q} \frac{1}{q} \sum_{a \bmod q}^{\star} e\left(\frac{a(n-m)}{q}\right) h\left(\frac{q}{Q}, \frac{n-m}{q Q}\right)
$$

where h is a reasonably nice function.

Sketch of proof

- We pick

$$
Q=\sqrt{N / K}
$$

- Roughly speaking we have

$$
\begin{aligned}
S(N)=\frac{1}{K Q^{2}} \int_{v \sim K} \sum_{q \sim Q a} & \sum_{\bmod q}^{\star} \sum_{n \sim N} \lambda_{\pi}(n, 1) n^{i v} e\left(\frac{a n}{q}\right) \\
& \times \sum_{m \sim N} \lambda_{f}(m) m^{i t-i v} e\left(-\frac{a m}{q}\right)
\end{aligned}
$$

- Trivial estimation at this point yields $S(N) \ll N^{2}$.

Sketch of proof

- Next we apply Voronoi summation formulae.
- GL(3) Voronoi transfers

$$
\sum_{n \sim N} \lambda_{\pi}(n, 1) n^{i v} e\left(\frac{a n}{q}\right) \mapsto \sum_{n \sim K^{3 / 2} N^{1 / 2}} \lambda_{\pi}(1, n) S(-\bar{a}, n ; q) \int(\ldots),
$$

and gives a saving of $N^{1 / 4} / K^{3 / 4}$.

- GL(2) Voronoi transfers

$$
\sum_{m \sim N} \lambda_{f}(m) m^{i t-i v} e\left(-\frac{a m}{q}\right) \mapsto \sum_{m \sim t^{2} / K} \lambda_{f}(m) e\left(\frac{\bar{a} m}{q}\right) \int(\ldots),
$$

and gives a saving of $(N K)^{1 / 2} / t$.

Sketch of proof

- Next we see that the character sum

$$
\sum_{a \bmod q}^{\star} S(-\bar{a}, n ; q) e\left(\frac{\bar{a} m}{q}\right) \approx q e\left(-\frac{\bar{m} n}{q}\right)
$$

and we save \sqrt{Q}.

- We also save \sqrt{K} in the integral over v.
- It remains to save t (plus extra) in the sum

$$
\sum_{q \sim Q} \sum_{n \sim K^{3 / 2} N^{1 / 2}} \lambda_{\pi}(1, n) \sum_{m \sim t^{2} / K} \lambda_{f}(m) e\left(-\frac{\bar{m} n}{q}\right) \mathcal{I}
$$

Sketch of proof

- Now we apply Cauchy inequality, and our job reduces to saving t^{2} (plus extra) in

$$
\sum_{n \sim K^{3 / 2} N^{1 / 2}}\left|\sum_{q \sim Q} \sum_{m \sim t^{2} / K} \lambda_{f}(m) e\left(-\frac{\bar{m} n}{q}\right) \mathcal{I}\right|^{2}
$$

- Open absolute square and apply Poisson summation formula. In the diagonal (zero frequency) we save $Q t^{2} / K$ which is sufficient if $K<t$.
- In the off-diagonal we save $K^{3 / 2} N^{1 / 2} / K^{1 / 2}$ which is sufficient if $K>t^{1 / 2}$.
- Notice the structural advantage. If one had a generic character sum in place of $e(-\bar{m} n / q)$ then one would save $K^{3 / 2} N^{1 / 2} / Q K^{1 / 2}$ which would be sufficient if $K>t^{4 / 3}$!

Limit of the method

- Suppose $P\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ irreducible of degree d. Consider the counting problem

$$
N(B)=\#\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n} \cap[-B, B]^{n}: P\left(x_{1}, \ldots, x_{n}\right)=0\right\}
$$

- δ-method (circle method w/o minor arc) can give asymptotic for $N(B)$ (for n sufficiently large) for $d \leq 3$. But fails for $d \geq 4$.
- However δ-method can be modified to count points on degree $d=4$ varieties arising as complete intersection of two quadrics, or $d=6$ varieties given by a cubic and a quadratic.
- To go beyond degree $d=3$ one needs non-trivial analysis of minor arc. Is higher rank δ method (trace formula) the right way to introduce minor arcs in the automorphic setting?

Thank You!

