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Automorphic L-function L(s, )

Let 7 be an automorphic form for GLy(Ag). Then 7 = ®,mp, and
we have the associated L-function

I Lm=32
n=1

p prime

with
d

Lo(s.7) = L(s,7p) = [[(1 — ai(p)p~)

i=1

The local factor at infinity is given by

57Too HFR(S_NI

where

Mr(s) = n/2T (%) :



» Converge absolutely for Re(s) = ¢ > 0g and extend to a
meromorphic function on C.

» Functional equation
A(s, ) := q5/%L(s, Too)L(5, ) = w1 — s, 7)

for some gr € N, |w,| =1 (Godement-Jacquet).
» Note: The centre is at s = 1/2.



Main Conjectures

Grand Riemann Hypothesis
All non-trivial zeros of L(s, ) are on the central line

3+t

Generalised Lindelof Hypothesis
Analytic conductor:

d qxr level
C(m,t) = G [J(1+ |y + i) = 4 ¢ t
i=1 Ax =T npi spectral

GRH = For any € > 0 one has

1L + it m)| < c()C(r, t)F
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The Subconvexity Problem

Convexity bound
Functional equation + Phragmen-Lindelof principle —

L(L +it,7) < C(m, t)ate.

The Subconvexity Problem
To establish a bound of the form (with § > 0)

-0

N

L(3 +it,m) < C(m,t)

We can also formulate the problem w.r.t. each parameter
separately (level aspect g, t-aspect, depth aspect ;)
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Examples of subconvex bounds: Degree 1

[-function Subconvex bounds

¢(s) C(1/2+ it) < ti1te = tote
Weyl-Hardy-Littlewood (1920)

C(1/2+it) <« to et
(Bombieri-lwaniec) Bourgain (2017)

L(s. X) L(1/2,x) < Mi—i5te
x mod M Burgess (1962)

L(s.x), X2 =1 | L(1/2,x) < M3~ 1+
Conrey-lwaniec (2000)
(x? # 1: Petrow-Young (preprint 2018))




Degree 2

L-function | Subconvex bounds
L(s, f) L(1/2+ it,f) < t2—61e = t3te
f modular | Good (1980) Meurman
or Maass
1
L(s, ) L(1/2,f) < qf
Duke-Friedlander-lwaniec (1994, 2001, 2002)
Blomer-Harcos-Michel (2007) 6 = 1/1889
1.
L(1/2,f) < NS
lwaniec (1992) (conditional), lvic (2001)
L(s.f@x) | L(1/2,f® ) < M2-5+¢
x mod M | DFI (1992), Blomer-Harcos (2008)



Degree 2 x 2

[-function

Subconvex bounds

L(s, i ® h)
f; modular wt k;

fi Maass/modular

levels g;

(Q17q2) =1

1—5+4e
L(1/2, A ® h) K5 ky 1
Sarnak (2001)

_1
L1/2, A ®h) <p k °
Lau-Liu-Ye (2006)

15
L(1/2,f ® h) <4, G2
Kowalski-Michel-Vanderkam (2002) § = 1/80
Michel (2004), Harcos-Michel (2006)

L(1/2,h @ B) < (q1q2)2°
Holowinsky-M. (2013), Raju (preprint 2018)



Degree 3

L(s, Sym?f)
f modular/Maass

7 Hecke-Maass
for SL3(Z)

x mod M

generalization

generic
spec. par.

L(1/2 + it, Sym?f) < ti~16+<
X. Li (2011)

L(1/2 + it, ) < tis+e
M. (2015)
Aggarwal (preprint 2019) 3/4 —3/40+ ¢

L(1/2,7 ® X) <x M3 ™0

M. (2015, arxiv 2016)

Holowinsky-Nelson (2018) 6 = 1/36
Kowalski-Lin-Michel-Sawin (preprint 2019)

1
L(1/2,7) < A} ’
Blomer-Buttcane (2019)



Higher degree

L-function

Subconvex bounds

L(s,hi®hHheh)
f; Maass forms
spectral para. t;

f3 of level p

g modular/Maass
wt./spec. par. k

21
L1/ A0haf) <npty

Bernstein-Reznikov (2005)

L(1/2H®ho ) <qpp 57
Venkatesh (2010) Woodbury (thesis 2011)
Hu (2017)

L(1/2,Sym?f @ g) <¢ k2~ 5+¢
X. Li (2011)



General results

» Diaconu-Garrett (2010): © GL(2) automorphic form over a
number field K of degree d,

L(1/2 + it, 1) < t270
» Michel-Venkatesh (2010): m; GL(2) automorphic forms
L(1/2,m1 @ m2) <y C(m @ 12)5~°

» Soundararajan (2010), Soundararajan-Thorner (2019) 7
GL(d) automorphic form

C(7T)1/4
(log C(7))°

» Bernstein-Reznikov (2005), Venkatesh (2010)

L(1/2,7) <



New result

Theorem
Let f be a SLy(Z) modular/Maass form, and 7 be a SL3(Z) Maass
form, then

L +it,m o f) < t2-amte,

(As usual we will take t > 2.)

» The proof is based on separation of oscillation via circle
method

» It is not sensitive to f or m being cuspidal or not. Hence as a
corollary we obtain:

L3 +it, ) < ta~m2te
L(L +it, f) <f t27 7%,

. 3_ 1
L(3+it,m) <5 ta &t



Related results

Theorem (Sharma arxiv 2019)

Let f be a SLy(Z) modular/Maass form, and 7 be a SL3(Z) Maass
form, and x modp then

LG m@foy) < pinte,

> As before taking Eisenstein series in place of f or 7 or both,
we get subconvex bounds for L(1/2, 7 ® x), L(1/2,f ® x) and

L(1/2,x)
Theorem (Kumar upcoming)

Let f be a SL»(Z) modular/Maass form with weight/spectral
parameter k, and 7 be a SL3(Z) Maass form, then

L ref) <k,

» This extends the result of X. Li to non self-dual.



Related results 2

Theorem (Kumar-Mallesham-Singh upcoming)

Let f be a SLo(Z) modular/Maass form, and 7 be a SL3(Z) Maass
form with spectral parameters in generic position. Suppose

S (1P > 125
L<e<2L

with n > 0. Then
1
L(3,7®f) <A} ’

» Not clear how to get rid off the irritating condition!

» Without the condition the result would give a generalization
of the work of Blomer-Buttcane (2019).



Sketch of proof

» Approximate functional equation:

L(s,m @ f) = ZZ ”n:jf

n,r=1
AFE implies that

, SN[, 201
L(i+it,m®f) < t° sup ’7—|—t 019
2 N« t3t+e \/N

with

= ZOOZ (1, P)Ar(n)(nr?)*V ('ﬁ) :

n,r=1

» Trivial estimation of S(N) yields convexity.



Sketch of proof

» We will establish non-trivial cancellation in

= > Ar(n, 1)Ae(n)n"

n~N
for N = t3.
» We write
=D > Ax(n DA(m)m*5(n, m)
n,m~N
/ ZZ)\ (n, 1)n™ Xe(m)m™="V5(n, m)
n,m~N

» J-method: We use a Fourier expansion of §

REPIEDM < )>”<gz’nq_0m>

gk a mod q

where h is a reasonably nice function.



Sketch of proof

» We pick

Q=+N/K.
> Roughly speaking we have

S(N) = Kéﬂ /VNK 3 3T Y Ao 1)nte (‘Z’)

g~Qamod g n~N

m~N

» Trivial estimation at this point yields S(N) < N2,



Sketch of proof

» Next we apply Voronoi summation formulae.
» GL(3) Voronoi transfers

g/\w(n, e ("q”) — nNK;NI/Q Ar(1,n)S(—3, n; q) /(. ),

and gives a saving of N%/4/K3/4.
» GL(2) Voronoi transfers

5 Mtmmte (<20 s 3 astme (2 [

m~N m~t2 /K

and gives a saving of (NK)Y/?/t.



Sketch of proof

» Next we see that the character sum

Z* S(—a,n;q)e <§cr]n> ~ ge (_rzn> |

amod q

and we save v/ Q.
» We also save v K in the integral over v.

» It remains to save t (plus extra) in the sum

S Y e ¥ )\f(m)e<—ﬁ;n>I

q~Q n~K3/2N1/2 m~t2/K



Sketch of proof

» Now we apply Cauchy inequality, and our job reduces to
saving t? (plus extra) in

2

> X X wme(-T) 1

n~K3/2N1/2 qNQ m~t2/K

» Open absolute square and apply Poisson summation formula.
In the diagonal (zero frequency) we save Qt?/K which is
sufficient if K < t.

> In the off-diagonal we save K3/2N/2/K1/2 which is sufficient
if K> tl/2,

» Notice the structural advantage. If one had a generic

character sum in place of e(—mn/q) then one would save
K3/2N'/2 /QK/2 which would be sufficient if K > t4/31



Limit of the method

» Suppose P(x1,...,Xn) € Z[x1,...,Xn] irreducible of degree d.
Consider the counting problem

N(B) =#{(x1,...,xn) € Z"N[-B,B]" : P(x1,...,%,) =0}

» J-method (circle method w/o minor arc) can give asymptotic
for N(B) (for n sufficiently large) for d < 3. But fails for
d >4

» However d-method can be modified to count points on degree
d = 4 varieties arising as complete intersection of two
quadrics, or d = 6 varieties given by a cubic and a quadratic.

> To go beyond degree d = 3 one needs non-trivial analysis of
minor arc. Is higher rank § method (trace formula) the right
way to introduce minor arcs in the automorphic setting?
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