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K - Number field of degree n
ClK - Class group of K
DK - Absolute value of the Discriminant of K

Class Number Formula:

wK ¨ D
1
2
K ¨ Ress“1ζK psq “ 2r1 ¨ p2πqr2 ¨ RegK ¨ |ClK |

Corollary (Brauer-Siegel)

|ClK | ď D
1
2`onp1q
K

The exponent of 1
2 is tight.
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Question: How big is ClK rms for fixed m?

Applications to counting number fields, integral points on Elliptic
Curves, lower bounds for Galois orbits(André-Oort), modular
forms,. . .
Heuristic: ClK is a ‘random’ finite Abelian group, so should be
‘close’ to a cyclic group.

Conjecture (Zhang, Brumer-Silverman)
Fix n “ rK : Qs and m ą 1. Then

|ClK rms| “ Dop1q
K

Trivial ‘convexity bound’: |ClK rms| ď D
1
2`op1q
K

Subconvexity: |ClK rms| ď D
1
2´δm,n`op1q
K
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Previous Work:

Subconvexity: |ClK rms| ď D
1
2´δm,n`op1q
K

δ2k ,2 “
1
2 (Gauss)

δ3,2 “
1
6 (Pierce, Helfgott-Venkatesh, Ellenberg Venkatesh).

δ3,3 “ δ3,4 ą 0 (Ellenberg-Venkatesh)
δ2,n “

1
2n (Bhargava-Shankar-Taniguchi-Thorne-T-Zhao)

δm,n “
1

2mpn´1q Conditional on GRH (Ellenberg-Venkatesh).

Theorem (Shankar-T)
Assume the Refined BSD Conjecture. Then δ5,2 “

1
16 .

Further Assuming GRH, δ5,2 “ δ3,2 “
1
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Heuristic Method: Embedding into Global Motives

WARNING: I KNOW NOTHING ABOUT MOTIVES!

Step 1: Reframe ClK rns as the Selmer group of a finite
GQ-module, ‘separating it from K ’.
On the one hand, we have finite GQ-modules A, and we want
to bound SelpAq.
On the other hand, we have motives M, and these have ‘Class
groups’ ClpMq, which satisfy a Class Number Formula, giving
analytic control over |ClpMq|.
Occasionally, we may ‘embed’ A ãÑ M, giving an ‘embedding’
SelpAq ãÑ ClpMq, yielding a ‘trivial’ upper bound.
The game is to find the best M for a given A. In other words,
perhaps D

1
2
K is not the best possible trivial bound for |ClK rms|
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Finite Selmer Groups
A - Finite GQ module.

SelpAq �
�

//

��

H1pGQ,Aq

��
ś

v H1pGFv ,AIv q �
�

//
ś

v H1pGQv ,Aq

DA :“ DL where GL is the kernel of the action of GQ on A.
Analytic convention: We will write ą,ă,« to mean up to factors
of Dop1q

A .
For exact 0 Ñ A Ñ B Ñ C Ñ 0, we have

maxp|SelpAq|, |SelpCq|q ĺ |SelpBq| ĺ |SelpAq| ¨ |SelpCq|.

(Poitou-Tate) For AD :“ HompA,Gmq,

|SelpAq| « |SelpADq|
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Example: Algebraic Tori

T - Algebraic Torus over Q, dimension d .
X pT q - cocharacter Group of T over Q.
ρT : GQ ýX pT q, of Artin conductor fT .
ClT :“ T pQqzT pAf q{T pẐq.

(Shyr, Ono, T, Ullmo-Yafaev) |ClT | ¨ RegT “ f
1
2`od p1q

T .

Analytic Warning: we will write « to mean equal up to factors of
f op1q
T .

Let φ : T Ñ S be an Isogeny, Mφ : CokerpX pφq : X pT q Ñ X pSqq.

For Clpφq : ClT Ñ ClS , |SelpMφq| « |KerClpφq| « |CokerpClpφqq|.
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Example: 3-torsion of cubic fields

.

K - S3 cubic field
L - quadratic resolvent field of K ( L “ pK norqA3).

TK :“ ResK{QGm

ρK ,n :“ ρTK b Z{nZ.
ClK r3s « SelpρK ,3q.
Now, we have an exact sequence of GQ modules
0 Ñ ρL,3 Ñ ρK ,3 Ñ F3 Ñ 0.
Since |SelpF3q| « |ClQr3s| « 1, we see that

Transfer Principle for 3-torsion in cubic fields (Gerth)

|ClK r3s| « |ClLr3s|
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Example: 2-torsion of quartic fields

K - S4 or A4 quartic field
L - cubic resolvent field of K ( L “ pK norqD4).
ClK r2s « SelpρK ,2q.
ρK ,2 and ρL,2 are extensions of the same 2-dimensional
irreducible component by trivial modules, so

Transfer Principle for 2-torsion in quartic fields (T)

|ClK r2s| « |ClLr2s|



More refined comparisons

One can get precise comparisons of torsion ‘up to the ramified
primes’.

Theorem (Gras,Gerth)
Let L be a cubic field, and K its quadratic resolvent. If LK{K is
unramified, then

rk2ClL “ rk2ClK ` 1.

Conjecture (Lemmermeyer)
Let K be an A4 quartic field, and L its cubic resolvent. Then

0 ď rk2ClK ´ rk2ClL ď 2.

(Klys, 2018) ´10 ď rk2ClK ´ rk2ClL ď 12.
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Elliptic Curves

E : y2 “ x3 ` Ax ` B - Elliptic curve over Q
HE :“ maxpA3,B2q
r - rank of E pQq
ΩE - minimal period of E .

Refined BSD Conjecture

LprqpE , 1q
r ! “

#XpE{Qq
#E pQq2tor

¨ RegE ¨ ΩE ¨
ź

p|N
cp

We think of XpE{Qq as the ‘Class Group’ of the motive given by
E , and the Refined BSD Conjecture as the ‘Class number Formula’.
Note: ΩE “ H

1
12`op1q
E ,

Optimistic Conjecture(Refined BSD+GRH+Bounds on Ranks)

#XpE{Qq ¨ RegE “ H
1
12`op1q
E
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Elliptic curves: Comparing Selmer Groups

SelnpE q �
�

//

��

H1pGQ,E rnsq

��
ś

v κv :
ś

v E r5spQv q b Z{nZ �
�

//
ś

v H1pGQv ,E rnsq

For all v at which E has good reduction and E rns is unramified,
the image of κv consists exactly of the unramified classes, i.e. the
image of H1pGFv ,E rnsq.

It follows that |SelnpE q| « |SelpE rnsq|.



Elliptic curves: Comparing Selmer Groups

SelnpE q �
�

//

��

H1pGQ,E rnsq

��
ś

v κv :
ś

v E r5spQv q b Z{nZ �
�

//
ś

v H1pGQv ,E rnsq

For all v at which E has good reduction and E rns is unramified,
the image of κv consists exactly of the unramified classes, i.e. the
image of H1pGFv ,E rnsq.

It follows that |SelnpE q| « |SelpE rnsq|.
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Proof of 5-Torsion Bound

Assume E r5s “ Z{5Z‘ µ5. This is the only part of the proof
which uses 5 and not a higher prime.

ED : y2 “ x3 ` AD3X ` BD2.
EDr5s “ χD,5 ‘ χD,5p1q, where χD,5 : GQ ýZ{5Z - quadratic
character associated to Qp

?
Dq.

SelpEDr5sq “ SelpχD,5q ‘ SelpχD,5p1qq.
Since χD,5, χD,5p1q are Cartier Dual,
|SelpχD,5qp1q| « |SelpχD,5| « |ClQp?Dqr5s|.

Key Relation

|SelpEDr5sq| “ |ClQp?Dqr5s|
2.
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Proof: Analytic Details

0 Ñ EDpQq b F5 Ñ Sel5pEDq ÑXpED{Qqr5s Ñ 0

So

|XpED{Qq| ě |Sel5pEDq| ¨ 5rED`2
ą |SelpEDr5sq| ¨ 5rED`2

Sel2pEDq ! ωpDq ñ rEd ! ωpDq “ oplnpDqq
RegE ě |D|op1q since EDpQq bQ has dimension oplnpDqq, and
Neron-Tate height is bounded below.
LprE qpED ,1q

rE ! ! D 1
2´

1
8`op1q - Subconvexity estimate+Cauchy

integral formula (Harcos)
HED „ |D|6

Refined
BSDñ |ClQp?Dqr5s|

2 « |SelpEDr5sq| ď |D|
1
2`

1
2´

1
8`op1q
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Primes p ą 5

There is no E{Q with E rps “ Z{pZ‘ µp. Note that having a
p-torsion point is not enough!

We win with BSD+subconvexity if we can find Abelian
Variety over Q with full level p-structure.
For motives M, have Bloch Kato + (Equivariant) Tamagawa
number conjecture. Highly conjectural, not so clear (to me!)
how to systematically find embeddings SelpAq ãÑ H1pMq.
Concretely, for X{Q smooth projective, M “ H ipX qpjq. Want

H ipXQ,F`pjqq “ pZ{pZq
a ‘ pµpq

b.

Do these exist?
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Thank you!


