Bounding Selmer Groups of Finite Galois Modules

Jacob Tsimerman

University of Toronto

July 25, 2019

Joint work with Arul Shankar

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

- K Number field of degree n
- $\operatorname{Cl}_{\mathcal{K}}$ Class group of \mathcal{K}
- D_K Absolute value of the Discriminant of K

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- *K* Number field of degree *n*
- Cl_{K} Class group of K
- D_K Absolute value of the Discriminant of K

Class Number Formula:

$$w_{\mathcal{K}} \cdot D_{\mathcal{K}}^{\frac{1}{2}} \cdot \operatorname{Res}_{s=1} \zeta_{\mathcal{K}}(s) = 2^{r_1} \cdot (2\pi)^{r_2} \cdot \operatorname{Reg}_{\mathcal{K}} \cdot |\operatorname{Cl}_{\mathcal{K}}|$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- K Number field of degree n
- Cl_{K} Class group of K
- D_K Absolute value of the Discriminant of K

Class Number Formula:

$$w_{\mathcal{K}} \cdot D_{\mathcal{K}}^{\frac{1}{2}} \cdot \operatorname{Res}_{s=1} \zeta_{\mathcal{K}}(s) = 2^{r_1} \cdot (2\pi)^{r_2} \cdot \operatorname{Reg}_{\mathcal{K}} \cdot |\operatorname{Cl}_{\mathcal{K}}|$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Corollary (Brauer-Siegel)

 $|\mathrm{Cl}_{K}| \leqslant D_{K}^{\frac{1}{2}+o_{n}(1)}$

The exponent of $\frac{1}{2}$ is tight.

Applications to counting number fields, integral points on Elliptic Curves, lower bounds for Galois orbits(André-Oort), modular forms,...

Applications to counting number fields, integral points on Elliptic Curves, lower bounds for Galois orbits(André-Oort), modular forms,...

Heuristic: $Cl_{\mathcal{K}}$ is a 'random' finite Abelian group, so should be 'close' to a cyclic group.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Applications to counting number fields, integral points on Elliptic Curves, lower bounds for Galois orbits(André-Oort), modular forms,...

Heuristic: $Cl_{\mathcal{K}}$ is a 'random' finite Abelian group, so should be 'close' to a cyclic group.

Conjecture (Zhang, Brumer-Silverman) $Fix \ n = [K : \mathbb{Q}] \text{ and } m > 1.$ Then $|Cl_{\mathcal{K}}[m]| = D_{\mathcal{K}}^{o(1)}$

Applications to counting number fields, integral points on Elliptic Curves, lower bounds for Galois orbits(André-Oort), modular forms,...

Heuristic: $Cl_{\mathcal{K}}$ is a 'random' finite Abelian group, so should be 'close' to a cyclic group.

Conjecture (Zhang, Brumer-Silverman)

Fix $n = [K : \mathbb{Q}]$ and m > 1. Then

 $|\mathrm{Cl}_{\mathcal{K}}[m]| = D_{\mathcal{K}}^{o(1)}$

Trivial 'convexity bound': $|\operatorname{Cl}_{K}[m]| \leq D_{K}^{\frac{1}{2}+o(1)}$

Applications to counting number fields, integral points on Elliptic Curves, lower bounds for Galois orbits(André-Oort), modular forms,...

Heuristic: $Cl_{\mathcal{K}}$ is a 'random' finite Abelian group, so should be 'close' to a cyclic group.

Conjecture (Zhang, Brumer-Silverman)

Fix $n = [K : \mathbb{Q}]$ and m > 1. Then

 $|\mathrm{Cl}_{\mathcal{K}}[m]| = D_{\mathcal{K}}^{o(1)}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Trivial 'convexity bound': $|\operatorname{Cl}_{K}[m]| \leqslant D_{K}^{\frac{1}{2}+o(1)}$

Subconvexity: $|\operatorname{Cl}_{K}[m]| \leq D_{K}^{\frac{1}{2}-\delta_{m,n}+o(1)}$

Subconvexity: $|\operatorname{Cl}_{\mathcal{K}}[m]| \leq D_{\mathcal{K}}^{\frac{1}{2}-\delta_{m,n}+o(1)}$

- $\delta_{2^k,2} = \frac{1}{2}$ (Gauss)
- $\delta_{3,2} = \frac{1}{6}$ (Pierce, Helfgott-Venkatesh, Ellenberg Venkatesh).
- $\delta_{3,3} = \delta_{3,4} > 0$ (Ellenberg-Venkatesh)
- $\delta_{2,n} = \frac{1}{2n}$ (Bhargava-Shankar-Taniguchi-Thorne-T-Zhao)
- $\delta_{m,n} = \frac{1}{2m(n-1)}$ Conditional on GRH (Ellenberg-Venkatesh).

Subconvexity: $|Cl_K[m]| \leq D_K^{\frac{1}{2} - \delta_{m,n} + o(1)}$

- $\delta_{2^k,2} = \frac{1}{2}$ (Gauss)
- $\delta_{3,2} = \frac{1}{6}$ (Pierce, Helfgott-Venkatesh, Ellenberg Venkatesh).
- $\delta_{3,3} = \delta_{3,4} > 0$ (Ellenberg-Venkatesh)
- $\delta_{2,n} = \frac{1}{2n}$ (Bhargava-Shankar-Taniguchi-Thorne-T-Zhao)
- $\delta_{m,n} = \frac{1}{2m(n-1)}$ Conditional on GRH (Ellenberg-Venkatesh).

Theorem (Shankar-T)

Assume the Refined BSD Conjecture. Then $\delta_{5,2} = \frac{1}{16}$. Further Assuming GRH, $\delta_{5,2} = \delta_{3,2} = \frac{1}{4}$.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Heuristic Method: Embedding into Global Motives

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Heuristic Method: Embedding into Global Motives

WARNING: I KNOW NOTHING ABOUT MOTIVES!

Step 1: Reframe Cl_K[n] as the Selmer group of a finite G₀-module, 'separating it from K'.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Step 1: Reframe Cl_K[n] as the Selmer group of a finite G_Q-module, 'separating it from K'.
- On the one hand, we have finite $\mathrm{G}_{\mathbb{Q}}\text{-modules}\ A$, and we want to bound $\mathrm{Sel}(A).$

- Step 1: Reframe Cl_K[n] as the Selmer group of a finite G_Q-module, 'separating it from K'.
- On the one hand, we have finite $G_{\mathbb{Q}}$ -modules A, and we want to bound Sel(A).
- On the other hand, we have motives *M*, and these have 'Class groups' Cl(*M*), which satisfy a *Class Number Formula*, giving analytic control over |Cl(M)|.

- Step 1: Reframe Cl_K[n] as the Selmer group of a finite G_Q-module, 'separating it from K'.
- On the one hand, we have finite $G_{\mathbb{Q}}$ -modules A, and we want to bound Sel(A).
- On the other hand, we have motives *M*, and these have 'Class groups' Cl(*M*), which satisfy a *Class Number Formula*, giving analytic control over |Cl(M)|.
- Occasionally, we may 'embed' A → M, giving an 'embedding' Sel(A) → Cl(M), yielding a 'trivial' upper bound.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Step 1: Reframe Cl_K[n] as the Selmer group of a finite G_Q-module, 'separating it from K'.
- On the one hand, we have finite $G_{\mathbb{Q}}$ -modules A, and we want to bound Sel(A).
- On the other hand, we have motives *M*, and these have 'Class groups' Cl(*M*), which satisfy a *Class Number Formula*, giving analytic control over |Cl(M)|.
- Occasionally, we may 'embed' A → M, giving an 'embedding' Sel(A) → Cl(M), yielding a 'trivial' upper bound.
- The game is to find the best M for a given A. In other words, perhaps $D_K^{\frac{1}{2}}$ is not the best possible trivial bound for $|Cl_K[m]|$

Finite Selmer Groups

A - Finite $\mathrm{G}_{\mathbb{Q}}$ module.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Finite Selmer Groups

A - Finite $\mathrm{G}_{\mathbb{Q}}$ module.

 $D_A := D_L$ where G_L is the kernel of the action of $G_{\mathbb{Q}}$ on A. Analytic convention: We will write $>, <, \approx$ to mean up to factors of $D_A^{o(1)}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Finite Selmer Groups

A - Finite $G_{\mathbb{Q}}$ module.

 $D_A := D_L$ where G_L is the kernel of the action of $G_{\mathbb{Q}}$ on A. Analytic convention: We will write >, <, \approx to mean up to factors of $D_A^{o(1)}$.

• For exact $0 \to A \to B \to C \to 0$, we have

 $\max(|\mathrm{Sel}(A)|, |\mathrm{Sel}(C)|) \le |\mathrm{Sel}(B)| \le |\mathrm{Sel}(A)| \cdot |\mathrm{Sel}(C)|.$

• (Poitou-Tate) For $A^D := \operatorname{Hom}(A, \mathbb{G}_m)$,

 $|\operatorname{Sel}(A)| \approx |\operatorname{Sel}(A^D)|$

- *T* Algebraic Torus over \mathbb{Q} , dimension *d*.
- X(T) cocharacter Group of T over $\overline{\mathbb{Q}}$.
- $\rho_T : G_{\mathbb{Q}} \subset X(T)$, of Artin conductor f_T .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• $\operatorname{Cl}_{\mathcal{T}} := T(\mathbb{Q}) \setminus T(\mathbb{A}_f) / T(\hat{\mathbb{Z}}).$

- *T* Algebraic Torus over \mathbb{Q} , dimension *d*.
- X(T) cocharacter Group of T over $\overline{\mathbb{Q}}$.
- $\rho_T : G_{\mathbb{Q}} \subset X(T)$, of Artin conductor f_T .
- $\operatorname{Cl}_{\mathcal{T}} := T(\mathbb{Q}) \setminus T(\mathbb{A}_f) / T(\hat{\mathbb{Z}}).$
- (Shyr, Ono, T, Ullmo-Yafaev) $|\operatorname{Cl}_{\mathcal{T}}| \cdot \operatorname{Reg}_{\mathcal{T}} = f_{\mathcal{T}}^{\frac{1}{2} + o_d(1)}$.

- *T* Algebraic Torus over \mathbb{Q} , dimension *d*.
- X(T) cocharacter Group of T over $\overline{\mathbb{Q}}$.
- $\rho_T : G_{\mathbb{Q}} \subset X(T)$, of Artin conductor f_T .
- $\operatorname{Cl}_{\mathcal{T}} := \mathcal{T}(\mathbb{Q}) \setminus \mathcal{T}(\mathbb{A}_f) / \mathcal{T}(\hat{\mathbb{Z}}).$
- (Shyr, Ono, T, Ullmo-Yafaev) $|\operatorname{Cl}_{\mathcal{T}}| \cdot \operatorname{Reg}_{\mathcal{T}} = f_{\mathcal{T}}^{\frac{1}{2} + o_d(1)}$.

Analytic Warning: we will write \approx to mean equal up to factors of $f_T^{o(1)}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- *T* Algebraic Torus over \mathbb{Q} , dimension *d*.
- X(T) cocharacter Group of T over $\overline{\mathbb{Q}}$.
- $\rho_T : G_{\mathbb{Q}} \subset X(T)$, of Artin conductor f_T .
- $\operatorname{Cl}_{\mathcal{T}} := \mathcal{T}(\mathbb{Q}) \setminus \mathcal{T}(\mathbb{A}_f) / \mathcal{T}(\hat{\mathbb{Z}}).$
- (Shyr, Ono, T, Ullmo-Yafaev) $|\operatorname{Cl}_{\mathcal{T}}| \cdot \operatorname{Reg}_{\mathcal{T}} = f_{\mathcal{T}}^{\frac{1}{2} + o_d(1)}$.

Analytic Warning: we will write \approx to mean equal up to factors of $f_T^{o(1)}$.

Let $\phi : T \to S$ be an Isogeny, $M_{\phi} : \operatorname{Coker}(X(\phi) : X(T) \to X(S))$.

- *T* Algebraic Torus over \mathbb{Q} , dimension *d*.
- X(T) cocharacter Group of T over $\overline{\mathbb{Q}}$.
- $\rho_T : G_{\mathbb{Q}} \subset X(T)$, of Artin conductor f_T .
- $\operatorname{Cl}_{\mathcal{T}} := \mathcal{T}(\mathbb{Q}) \setminus \mathcal{T}(\mathbb{A}_f) / \mathcal{T}(\hat{\mathbb{Z}}).$
- (Shyr, Ono, T, Ullmo-Yafaev) $|\operatorname{Cl}_{\mathcal{T}}| \cdot \operatorname{Reg}_{\mathcal{T}} = f_{\mathcal{T}}^{\frac{1}{2} + o_d(1)}$.

Analytic Warning: we will write \approx to mean equal up to factors of $f_T^{o(1)}$.

Let $\phi : T \to S$ be an Isogeny, $M_{\phi} : \operatorname{Coker}(X(\phi) : X(T) \to X(S))$.

For $\operatorname{Cl}(\phi) : \operatorname{Cl}_{\mathcal{T}} \to \operatorname{Cl}_{\mathcal{S}}$, $|\operatorname{Sel}(M_{\phi})| \approx |\operatorname{Ker}\operatorname{Cl}(\phi)| \approx |\operatorname{Coker}(\operatorname{Cl}(\phi))|$.

- *T* Algebraic Torus over \mathbb{Q} , dimension *d*.
- X(T) cocharacter Group of T over $\overline{\mathbb{Q}}$.
- $\rho_T : G_{\mathbb{Q}} \subset X(T)$, of Artin conductor f_T .
- $\operatorname{Cl}_{\mathcal{T}} := \mathcal{T}(\mathbb{Q}) \setminus \mathcal{T}(\mathbb{A}_f) / \mathcal{T}(\hat{\mathbb{Z}}).$
- (Shyr, Ono, T, Ullmo-Yafaev) $|\operatorname{Cl}_{\mathcal{T}}| \cdot \operatorname{Reg}_{\mathcal{T}} = f_{\mathcal{T}}^{\frac{1}{2} + o_d(1)}$.

Analytic Warning: we will write \approx to mean equal up to factors of $f_T^{o(1)}$.

Let $\phi : T \to S$ be an Isogeny, $M_{\phi} : \operatorname{Coker}(X(\phi) : X(T) \to X(S))$.

For $\operatorname{Cl}(\phi) : \operatorname{Cl}_{\mathcal{T}} \to \operatorname{Cl}_{\mathcal{S}}$, $|\operatorname{Sel}(M_{\phi})| \approx |\operatorname{Ker}\operatorname{Cl}(\phi)| \approx |\operatorname{Coker}(\operatorname{Cl}(\phi))|$.

- $K S_3$ cubic field
- L quadratic resolvent field of K ($L = (K^{nor})^{A_3}$).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- $K S_3$ cubic field
- L quadratic resolvent field of K ($L = (K^{nor})^{A_3}$).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- $T_K := \operatorname{Res}_{K/\mathbb{Q}} G_m$
- $\rho_{K,n} := \rho_{T_K} \otimes \mathbb{Z}/n\mathbb{Z}.$
- $\operatorname{Cl}_{\mathcal{K}}[3] \approx \operatorname{Sel}(\rho_{\mathcal{K},3}).$

- $K S_3$ cubic field
- L quadratic resolvent field of K ($L = (K^{nor})^{A_3}$).
- $T_K := \operatorname{Res}_{K/\mathbb{Q}} G_m$
- $\rho_{K,n} := \rho_{T_K} \otimes \mathbb{Z}/n\mathbb{Z}.$
- $\operatorname{Cl}_{\mathcal{K}}[3] \approx \operatorname{Sel}(\rho_{\mathcal{K},3}).$
- Now, we have an exact sequence of $G_{\mathbb{Q}}$ modules $0 \to \rho_{L,3} \to \rho_{K,3} \to \mathbb{F}_3 \to 0.$

- $K S_3$ cubic field
- L quadratic resolvent field of K ($L = (K^{nor})^{A_3}$).
- $T_K := \operatorname{Res}_{K/\mathbb{Q}} G_m$
- $\rho_{K,n} := \rho_{T_K} \otimes \mathbb{Z}/n\mathbb{Z}.$
- $\operatorname{Cl}_{\mathcal{K}}[3] \approx \operatorname{Sel}(\rho_{\mathcal{K},3}).$
- Now, we have an exact sequence of $G_{\mathbb{Q}}$ modules $0 \to \rho_{L,3} \to \rho_{K,3} \to \mathbb{F}_3 \to 0.$
- Since $|{\rm Sel}(\mathbb{F}_3)|\approx |{\rm Cl}_{\mathbb{Q}}[3]|\approx 1,$ we see that

Transfer Principle for 3-torsion in cubic fields (Gerth)

 $|\operatorname{Cl}_{\mathcal{K}}[3]| \approx |\operatorname{Cl}_{\mathcal{L}}[3]|$

Example: 2-torsion of quartic fields

- $K S_4$ or A_4 quartic field
- L cubic resolvent field of K ($L = (K^{nor})^{D_4}$).
- $\operatorname{Cl}_{\kappa}[2] \approx \operatorname{Sel}(\rho_{\kappa,2}).$
- $\rho_{K,2}$ and $\rho_{L,2}$ are extensions of the same 2-dimensional irreducible component by trivial modules, so

Transfer Principle for 2-torsion in quartic fields (T)

 $|\mathrm{Cl}_{\mathcal{K}}[2]| \approx |\mathrm{Cl}_{\mathcal{L}}[2]|$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Theorem (Gras, Gerth)

Let L be a cubic field, and K its quadratic resolvent. If ${\sf LK}/{\sf K}$ is unramified, then

 $\mathrm{rk}_{2}\mathrm{Cl}_{L}=\mathrm{rk}_{2}\mathrm{Cl}_{K}+1.$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem (Gras, Gerth)

Let L be a cubic field, and K its quadratic resolvent. If LK/K is unramified, then

 $\mathrm{rk}_{2}\mathrm{Cl}_{L}=\mathrm{rk}_{2}\mathrm{Cl}_{K}+1.$

Conjecture (Lemmermeyer)

Let K be an A_4 quartic field, and L its cubic resolvent. Then

 $0 \leqslant \mathrm{rk}_2\mathrm{Cl}_{\mathcal{K}} - \mathrm{rk}_2\mathrm{Cl}_{\mathcal{L}} \leqslant 2.$

Theorem (Gras,Gerth)

Let L be a cubic field, and K its quadratic resolvent. If LK/K is unramified, then

 $\mathrm{rk}_{2}\mathrm{Cl}_{L}=\mathrm{rk}_{2}\mathrm{Cl}_{K}+1.$

Conjecture (Lemmermeyer)

Let K be an A_4 quartic field, and L its cubic resolvent. Then

 $0 \leqslant \mathrm{rk}_2\mathrm{Cl}_{\mathcal{K}} - \mathrm{rk}_2\mathrm{Cl}_{\mathcal{L}} \leqslant 2.$

(Klys, 2018) $-10 \leq \mathrm{rk}_2 \mathrm{Cl}_{\mathcal{K}} - \mathrm{rk}_2 \mathrm{Cl}_{\mathcal{L}} \leq 12.$

•
$$E: y^2 = x^3 + Ax + B$$
 - Elliptic curve over \mathbb{Q}

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- $H_E := \max(A^3, B^2)$
- r rank of $E(\mathbb{Q})$
- Ω_E minimal period of E.

•
$$E: y^2 = x^3 + Ax + B$$
 - Elliptic curve over \mathbb{Q}

- $H_E := \max(A^3, B^2)$
- r rank of $E(\mathbb{Q})$
- Ω_E minimal period of E.

Refined BSD Conjecture

$$\frac{L^{(r)}(E,1)}{r!} = \frac{\# \mathrm{III}(E/\mathbb{Q})}{\# E(\mathbb{Q})_{tor}^2} \cdot \mathrm{Reg}_E \cdot \Omega_E \cdot \prod_{p|N} c_p$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

•
$$E: y^2 = x^3 + Ax + B$$
 - Elliptic curve over \mathbb{Q}

- $H_E := \max(A^3, B^2)$
- r rank of $E(\mathbb{Q})$
- Ω_E minimal period of E.

Refined BSD Conjecture

$$\frac{L^{(r)}(E,1)}{r!} = \frac{\# \mathrm{III}(E/\mathbb{Q})}{\# E(\mathbb{Q})_{tor}^2} \cdot \mathrm{Reg}_E \cdot \Omega_E \cdot \prod_{p|N} c_p$$

We think of $\operatorname{III}(E/\mathbb{Q})$ as the 'Class Group' of the motive given by E, and the Refined BSD Conjecture as the 'Class number Formula'.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

•
$$E: y^2 = x^3 + Ax + B$$
 - Elliptic curve over \mathbb{Q}

- $H_E := \max(A^3, B^2)$
- r rank of $E(\mathbb{Q})$
- Ω_E minimal period of E.

Refined BSD Conjecture

$$\frac{L^{(r)}(E,1)}{r!} = \frac{\# \mathrm{III}(E/\mathbb{Q})}{\# E(\mathbb{Q})_{tor}^2} \cdot \mathrm{Reg}_E \cdot \Omega_E \cdot \prod_{p \mid N} c_p$$

We think of $\operatorname{III}(E/\mathbb{Q})$ as the 'Class Group' of the motive given by E, and the Refined BSD Conjecture as the 'Class number Formula'. Note: $\Omega_E = H_E^{\frac{1}{12} + o(1)}$,

Optimistic Conjecture(Refined BSD+GRH+Bounds on Ranks)

$$\# \mathrm{III}(E/\mathbb{Q}) \cdot \mathrm{Reg}_E = H_E^{\frac{1}{12} + o(1)}$$

Elliptic curves: Comparing Selmer Groups

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Elliptic curves: Comparing Selmer Groups

For all v at which E has good reduction and E[n] is unramified, the image of κ_v consists exactly of the unramified classes, i.e. the image of $H^1(G_{\mathbb{F}_v}, E[n])$.

Elliptic curves: Comparing Selmer Groups

For all v at which E has good reduction and E[n] is unramified, the image of κ_v consists exactly of the unramified classes, i.e. the image of $H^1(G_{\mathbb{F}_v}, E[n])$.

It follows that $|\operatorname{Sel}_n(E)| \approx |\operatorname{Sel}(E[n])|$.

 Assume E[5] = Z/5Z ⊕ μ₅. This is the only part of the proof which uses 5 and not a higher prime.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

 Assume E[5] = Z/5Z ⊕ μ₅. This is the only part of the proof which uses 5 and not a higher prime.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• $E_D: y^2 = x^3 + AD^3X + BD^2$.

- Assume E[5] = Z/5Z ⊕ μ₅. This is the only part of the proof which uses 5 and not a higher prime.
- $E_D: y^2 = x^3 + AD^3X + BD^2$.
- *E_D*[5] = *χ*_{D,5} ⊕ *χ*_{D,5}(1), where *χ*_{D,5} : G_Q ⊂ ℤ/5ℤ quadratic character associated to ℚ(√D).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Assume E[5] = Z/5Z ⊕ μ₅. This is the only part of the proof which uses 5 and not a higher prime.
- $E_D: y^2 = x^3 + AD^3X + BD^2$.
- *E_D*[5] = *χ_{D,5}* ⊕ *χ_{D,5}*(1), where *χ_{D,5}* : G_Q ⊂ ℤ/5ℤ quadratic character associated to ℚ(√D).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• $\operatorname{Sel}(E_D[5]) = \operatorname{Sel}(\chi_{D,5}) \oplus \operatorname{Sel}(\chi_{D,5}(1)).$

- Assume E[5] = Z/5Z ⊕ μ₅. This is the only part of the proof which uses 5 and not a higher prime.
- $E_D: y^2 = x^3 + AD^3X + BD^2$.
- *E_D*[5] = *χ_{D,5}* ⊕ *χ_{D,5}*(1), where *χ_{D,5}* : G_Q ⊂ ℤ/5ℤ quadratic character associated to ℚ(√D).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- $\operatorname{Sel}(E_D[5]) = \operatorname{Sel}(\chi_{D,5}) \oplus \operatorname{Sel}(\chi_{D,5}(1)).$
- Since $\chi_{D,5}, \chi_{D,5}(1)$ are Cartier Dual, $|\operatorname{Sel}(\chi_{D,5})(1)| \approx |\operatorname{Sel}(\chi_{D,5}| \approx |\operatorname{Cl}_{\mathbb{Q}(\sqrt{D})}[5]|.$

- Assume E[5] = Z/5Z ⊕ μ₅. This is the only part of the proof which uses 5 and not a higher prime.
- $E_D: y^2 = x^3 + AD^3X + BD^2$.
- *E_D*[5] = *χ_{D,5}* ⊕ *χ_{D,5}*(1), where *χ_{D,5}* : G_Q ⊂ ℤ/5ℤ quadratic character associated to ℚ(√D).
- $\operatorname{Sel}(E_D[5]) = \operatorname{Sel}(\chi_{D,5}) \oplus \operatorname{Sel}(\chi_{D,5}(1)).$
- Since $\chi_{D,5}, \chi_{D,5}(1)$ are Cartier Dual, $|\operatorname{Sel}(\chi_{D,5})(1)| \approx |\operatorname{Sel}(\chi_{D,5}| \approx |\operatorname{Cl}_{\mathbb{Q}(\sqrt{D})}[5]|.$

Key Relation

$$|\operatorname{Sel}(E_D[5])| = |\operatorname{Cl}_{\mathbb{Q}(\sqrt{D})}[5]|^2.$$

• $0 \to E_D(\mathbb{Q}) \otimes \mathbb{F}_5 \to \operatorname{Sel}_5(E_D) \to \operatorname{III}(E_D/\mathbb{Q})[5] \to 0$

Proof: Analytic Details

• $0 \to E_D(\mathbb{Q}) \otimes \mathbb{F}_5 \to \operatorname{Sel}_5(E_D) \to \operatorname{III}(E_D/\mathbb{Q})[5] \to 0$ So

 $|\mathrm{III}(E_D/\mathbb{Q})| \geq |\mathrm{Sel}_5(E_D)| \cdot 5^{r_{E_D}+2} > |\mathrm{Sel}(E_D[5])| \cdot 5^{r_{E_D}+2}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Proof: Analytic Details

•
$$0 \to E_D(\mathbb{Q}) \otimes \mathbb{F}_5 \to \operatorname{Sel}_5(E_D) \to \operatorname{III}(E_D/\mathbb{Q})[5] \to 0$$

So

 $|\mathrm{III}(E_D/\mathbb{Q})| \geq |\mathrm{Sel}_5(E_D)| \cdot 5^{r_{E_D}+2} > |\mathrm{Sel}(E_D[5])| \cdot 5^{r_{E_D}+2}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• $\operatorname{Sel}_2(E_D) \ll \omega(D) \Rightarrow r_{E_d} \ll \omega(D) = o(\ln(D))$

•
$$0 \to E_D(\mathbb{Q}) \otimes \mathbb{F}_5 \to \operatorname{Sel}_5(E_D) \to \operatorname{III}(E_D/\mathbb{Q})[5] \to 0$$

So

 $|\mathrm{III}(E_D/\mathbb{Q})| \geq |\mathrm{Sel}_5(E_D)| \cdot 5^{r_{E_D}+2} > |\mathrm{Sel}(E_D[5])| \cdot 5^{r_{E_D}+2}$

- $\operatorname{Sel}_2(E_D) \ll \omega(D) \Rightarrow r_{E_d} \ll \omega(D) = o(\ln(D))$
- Reg_E ≥ |D|^{o(1)} since E_D(Q) ⊗ Q has dimension o(ln(D)), and Neron-Tate height is bounded below.

•
$$0 \to E_D(\mathbb{Q}) \otimes \mathbb{F}_5 \to \operatorname{Sel}_5(E_D) \to \operatorname{III}(E_D/\mathbb{Q})[5] \to 0$$

So

 $|\mathrm{III}(E_D/\mathbb{Q})| \geq |\mathrm{Sel}_5(E_D)| \cdot 5^{r_{E_D}+2} > |\mathrm{Sel}(E_D[5])| \cdot 5^{r_{E_D}+2}$

•
$$\operatorname{Sel}_2(E_D) \ll \omega(D) \Rightarrow r_{E_d} \ll \omega(D) = o(\ln(D))$$

 Reg_E ≥ |D|^{o(1)} since E_D(Q) ⊗ Q has dimension o(ln(D)), and Neron-Tate height is bounded below.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• $\frac{L^{(r_E)}(E_D,1)}{r_E!} \ll D^{\frac{1}{2}-\frac{1}{8}+o(1)}$ - Subconvexity estimate+Cauchy integral formula (Harcos)

•
$$0 \to E_D(\mathbb{Q}) \otimes \mathbb{F}_5 \to \operatorname{Sel}_5(E_D) \to \operatorname{III}(E_D/\mathbb{Q})[5] \to 0$$

So

 $|\mathrm{III}(E_D/\mathbb{Q})| \geq |\mathrm{Sel}_5(E_D)| \cdot 5^{r_{E_D}+2} > |\mathrm{Sel}(E_D[5])| \cdot 5^{r_{E_D}+2}$

•
$$\operatorname{Sel}_2(E_D) \ll \omega(D) \Rightarrow r_{E_d} \ll \omega(D) = o(\ln(D))$$

 Reg_E ≥ |D|^{o(1)} since E_D(Q) ⊗ Q has dimension o(ln(D)), and Neron-Tate height is bounded below.

- $\frac{L^{(r_E)}(E_D,1)}{r_E!} \ll D^{\frac{1}{2}-\frac{1}{8}+o(1)}$ Subconvexity estimate+Cauchy integral formula (Harcos)
- $H_{E_D} \sim |D|^6$

•
$$0 \to E_D(\mathbb{Q}) \otimes \mathbb{F}_5 \to \operatorname{Sel}_5(E_D) \to \operatorname{III}(E_D/\mathbb{Q})[5] \to 0$$

So

 $|\mathrm{III}(E_D/\mathbb{Q})| \geqslant |\mathrm{Sel}_5(E_D)| \cdot 5^{r_{E_D}+2} > |\mathrm{Sel}(E_D[5])| \cdot 5^{r_{E_D}+2}$

•
$$\operatorname{Sel}_2(E_D) \ll \omega(D) \Rightarrow r_{E_d} \ll \omega(D) = o(\ln(D))$$

- Reg_E ≥ |D|^{o(1)} since E_D(Q) ⊗ Q has dimension o(ln(D)), and Neron-Tate height is bounded below.
- $\frac{L^{(r_E)}(E_D,1)}{r_E!} \ll D^{\frac{1}{2}-\frac{1}{8}+o(1)}$ Subconvexity estimate+Cauchy integral formula (Harcos)
- $H_{E_D} \sim |D|^6$
- Refined

 $\mathsf{BSD} \Rightarrow |\mathrm{Cl}_{\mathbb{Q}(\sqrt{D})}[5]|^2 \approx |\mathrm{Sel}(E_D[5])| \leq |D|^{\frac{1}{2} + \frac{1}{2} - \frac{1}{8} + o(1)}$

• There is no E/\mathbb{Q} with $E[p] = \mathbb{Z}/p\mathbb{Z} \oplus \mu_p$. Note that having a *p*-torsion point is not enough!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• There is no E/\mathbb{Q} with $E[p] = \mathbb{Z}/p\mathbb{Z} \oplus \mu_p$. Note that having a *p*-torsion point is not enough!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• We win with BSD+subconvexity if we can find Abelian Variety over \mathbb{Q} with full level *p*-structure.

Primes p > 5

- There is no E/Q with E[p] = Z/pZ ⊕ µ_p. Note that having a p-torsion point is not enough!
- We win with BSD+subconvexity if we can find Abelian Variety over \mathbb{Q} with full level *p*-structure.
- For motives *M*, have Bloch Kato + (Equivariant) Tamagawa number conjecture. Highly conjectural, not so clear (to me!) how to systematically find embeddings Sel(*A*) → H¹(*M*).

Primes p > 5

- There is no E/\mathbb{Q} with $E[p] = \mathbb{Z}/p\mathbb{Z} \oplus \mu_p$. Note that having a *p*-torsion point is not enough!
- We win with BSD+subconvexity if we can find Abelian Variety over \mathbb{Q} with full level *p*-structure.
- For motives *M*, have Bloch Kato + (Equivariant) Tamagawa number conjecture. Highly conjectural, not so clear (to me!) how to systematically find embeddings Sel(*A*) → H¹(*M*).
- Concretely, for X/\mathbb{Q} smooth projective, $M = H^i(X)(j)$. Want

$$H^{i}(X_{\overline{\mathbb{Q}}}, \mathbb{F}_{\ell}(j)) = (\mathbb{Z}/p\mathbb{Z})^{a} \oplus (\mu_{p})^{b}.$$

Do these exist?

Thank you!

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @