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Corollary (Brauer-Siegel)

1
|ClK| < D/2<+on(1)

The exponent of % is tight.
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@ oy = % (Gauss)

@ 32 = % (Pierce, Helfgott-Venkatesh, Ellenberg Venkatesh).
@ 033 = 034 > 0 (Ellenberg-Venkatesh)

° Jop= % (Bhargava-Shankar-Taniguchi-Thorne-T-Zhao)

® Smn = zmpe—yy Conditional on GRH (Ellenberg-Venkatesh).

Theorem (Shankar-T)

Assume the Refined BSD Conjecture. Then 052 = %6.
Further Assuming GRH, 052 = 032 = %.
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WARNING: | KNOW NOTHING ABOUT MOTIVES!
@ Step 1: Reframe Clk[n] as the Selmer group of a finite
Gg-module, ‘separating it from K.

@ On the one hand, we have finite Gg-modules A, and we want
to bound Sel(A).

@ On the other hand, we have motives M, and these have ‘Class
groups' Cl(M), which satisfy a Class Number Formula, giving
analytic control over |C1(M)].

@ Occasionally, we may ‘embed’ A — M, giving an ‘embedding’
Sel(A) — CI(M), yielding a ‘trivial’ upper bound.
@ The game is to find the best M for a given A. In other words,
1
perhaps Dj is not the best possible trivial bound for |Cly[ml]|
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Finite Selmer Groups

A - Finite Gg module.
Sel(A)—————— H(Gg, A)
HV Hl(G]Fv’ AIV)C—> HV Hl(GQv’ A)

Da := D; where G, is the kernel of the action of Gg on A.
Analytic convention: We will write >, <, ~ to mean up to factors
of DZ(I).
@ Forexact0 > A— B — C — 0, we have
max(|Sel(A)],|Sel(C)|) < [Sel(B)| < [Sel(A)| - [Sel(C)|.
o (Poitou-Tate) For AP := Hom(A, Gp,),

Sel(A)| ~ [Sel(AD)|
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Example: 3-torsion of cubic fields

K - S3 cubic field

L - quadratic resolvent field of K ( L = (K°")"3).
Tk = Resk/oGm

PK.n = PT ® ZL/nZ.

Clk[3] ~ Sel(pk 3)-

Now, we have an exact sequence of Gg modules
0—pr3— pk3—F3—0.

@ Since [Sel(F3)| ~ |Clg[3]| & 1, we see that

Transfer Principle for 3-torsion in cubic fields (Gerth)
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Example: 2-torsion of quartic fields

K - 54 or A4 quartic field

L - cubic resolvent field of K ( L = (K™°")D4).

CIK[2] X Sel(pK’Q).

pk,2 and p; 5 are extensions of the same 2-dimensional
irreducible component by trivial modules, so

Transfer Principle for 2-torsion in quartic fields (T)

|Clk[2]] ~ [C1.[2]]




More refined comparisons

One can get precise comparisons of torsion ‘up to the ramified
primes’.



More refined comparisons

One can get precise comparisons of torsion ‘up to the ramified
primes’.

Theorem (Gras,Gerth)

Let L be a cubic field, and K its quadratic resolvent. If LK/K is
unramified, then
rkoCl; = rkoClk + 1.




More refined comparisons

One can get precise comparisons of torsion ‘up to the ramified
primes’.

Theorem (Gras,Gerth)

Let L be a cubic field, and K its quadratic resolvent. If LK/K is
unramified, then
rkoCl; = rkoClk + 1.

Conjecture (Lemmermeyer)

Let K be an A4 quartic field, and L its cubic resolvent. Then

0 < rkyClk — rkoClp < 2.




More refined comparisons

One can get precise comparisons of torsion ‘up to the ramified
primes’.

Theorem (Gras,Gerth)

Let L be a cubic field, and K its quadratic resolvent. If LK/K is
unramified, then
rkoCl; = rkoClk + 1.

Conjecture (Lemmermeyer)

Let K be an A4 quartic field, and L its cubic resolvent. Then

0 < rkyClk — rkoClp < 2.

(Klys, 2018) —10 < rkpCly — rkoCly < 12.
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Elliptic Curves

E : y?> = x3 + Ax + B - Elliptic curve over Q
HE := max(A3, B?)

r - rank of E(Q)

QF - minimal period of E.

Refined BSD Conjecture

LO(E,1) _ #I(E/Q)
r! #E(Q)tor

-Regg - Qf - H Cp
pIN

We think of IITI(E/Q) as the ‘Class Group' of the motive given by
E, and the Refined BSD Conjecture as the ‘Class number Formula'.

Note: Qp = HE ™),

Optimistic Conjecture(Refined BSD+GRH+-Bounds on Ranks)
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Sel,(E)¢ Hl(G@, E[n])

| |

[T, sv : I, EBIQV) ® Z/nZ—— T, H(Gq,, E[n])

For all v at which E has good reduction and E[n] is unramified,
the image of k, consists exactly of the unramified classes, i.e. the
image of H'(Gg,, E[n]).

It follows that |Sel,(E)| ~ [Sel(E[n])|.
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Proof of 5-Torsion Bound

Assume E[5] = Z/57 @ ps. This is the only part of the proof
which uses 5 and not a higher prime.

Ep:y? = x3 + AD3X + BD?,
Ep[5] = xp5® xp,5(1), where xp s : Gg C Z/5Z - quadratic
character associated to Q(v/D).

Sel(Ep[5]) = Sel(xp,5) ® Sel(xp5(1)).
Since xps, Xp,5(1) are Cartier Dual,

Sel(xp,5)(1)| ~ [Sel(xps| ~ |Cly/p) 5]l

Key Relation

Sel(Ep[5])] = |Clyyp 511>
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Proof: Analytic Details

o 0— ED(Q) ®F5 - Sel5(ED) - HI(ED/Q)[S] —0
So

[III(Ep/Q)| > |Sels(Ep)| - 5%0*2 > [Sel(Ep[5])] - 5502

e Selo(Ep) « w(D) = rg, <« w(D) = o(In(D))

o Regg = |D|°M) since Ep(Q) ® Q has dimension o(In(D)), and
Neron-Tate height is bounded below.

° w « D2~ 5+°(M) _ Subconvexity estimate-+Cauchy
integral formula (Harcos)

o Hg, ~ |DI°

@ Refined L
BSD= |CIQ(@)[5]|2 ~ [Sel(Epl[5])| < |D|2*z~stoM)
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@ There is no E/Q with E[p| = Z/pZ @ j1p. Note that having a
p-torsion point is not enough!

o We win with BSD+subconvexity if we can find Abelian
Variety over Q with full level p-structure.

e For motives M, have Bloch Kato + (Equivariant) Tamagawa
number conjecture. Highly conjectural, not so clear (to mel!)
how to systematically find embeddings Sel(A) — H(M).

e Concretely, for X/Q smooth projective, M = H'(X)(j). Want

H (X5, Fel)) = (Z/PL)* @ (p)°.

Do these exist?



Thank you!



