Rational points on the cursed curve

Jennifer Balakrishnan
joint work with
Netan Dogra, Jan Steffen Müller,
Jan Tuitman, Jan Vonk

Boston University
JNT Biennial, Cetraro
July 24, 2019

Some motivation: a question about triangles

We say a rational triangle is one with sides of rational lengths.
Question
Does there exist a rational right triangle and a rational isosceles triangle which have the same perimeter and the same area?

Some motivation: a question about triangles

We say a rational triangle is one with sides of rational lengths.
Question
Does there exist a rational right triangle and a rational isosceles triangle which have the same perimeter and the same area?

This feels like a very classical question...perhaps studied by the ancient Greeks?

Some motivation: a question about triangles

This was the result of work by Y. Hirakawa and H. Matsumura (2019):

Journal of Number Theory 194 (2019) 297-302

A unique pair of triangles
Yoshinosuke Hirakawa, Hideki Matsumura *
Department of Science and Technology, Keio University, 14-1, Hiyoshi S-chome, Kouhoku-ku, Yokohama-shi, Kanagawa-ken, Japan

The techniques used in their investigation are closely related to the tools used for studying the cursed curve.

A question about triangles

Assume that there exists such a pair of triangles (rational right triangle, rational isosceles triangle). By rescaling both of the given triangles, we may assume their lengths are

$$
\left(k\left(1+t^{2}\right), k\left(1-t^{2}\right), 2 k t\right) \quad \text { and } \quad\left(\left(1+u^{2}\right),\left(1+u^{2}\right), 4 u\right),
$$

respectively, for some rational numbers $0<t, u<1, k>0$.

A question about triangles

Given side lengths of

$$
\left(k\left(1+t^{2}\right), k\left(1-t^{2}\right), 2 k t\right) \quad \text { and } \quad\left(\left(1+u^{2}\right),\left(1+u^{2}\right), 4 u\right),
$$

by comparing perimeters and areas, we have

$$
k+k t=1+2 u+u^{2} \quad \text { and } \quad k^{2} t\left(1-t^{2}\right)=2 u\left(1-u^{2}\right) .
$$

By a change of coordinates, this is equivalent to studying rational points on the genus 2 curve given by

$$
X: y^{2}=\left(3 x^{3}+2 x^{2}-6 x+4\right)^{2}-8 x^{6}
$$

A question about triangles

So we consider the rational points on

$$
X: y^{2}=\left(3 x^{3}+2 x^{2}-6 x+4\right)^{2}-8 x^{6} .
$$

The Chabauty-Coleman bound tells us that

$$
|X(\mathbf{Q})| \leqslant 10
$$

A question about triangles

So we consider the rational points on

$$
X: y^{2}=\left(3 x^{3}+2 x^{2}-6 x+4\right)^{2}-8 x^{6}
$$

The Chabauty-Coleman bound tells us that

$$
|X(\mathbf{Q})| \leqslant 10
$$

We find the points

$$
(0, \pm 4),(1, \pm 1),(2, \pm 8),\left(12 / 11, \pm 868 / 11^{3}\right), \infty^{ \pm}
$$

in $X(\mathbf{Q})$. We've found 10 points!

A question about triangles

So we consider the rational points on

$$
X: y^{2}=\left(3 x^{3}+2 x^{2}-6 x+4\right)^{2}-8 x^{6} .
$$

The Chabauty-Coleman bound tells us that

$$
|X(\mathbf{Q})| \leqslant 10
$$

We find the points

$$
(0, \pm 4),(1, \pm 1),(2, \pm 8),\left(12 / 11, \pm 868 / 11^{3}\right), \infty^{ \pm}
$$

in $X(\mathbf{Q})$. We've found 10 points!
So we have provably determined $X(\mathbf{Q})$.

A question about triangles

So we consider the rational points on

$$
X: y^{2}=\left(3 x^{3}+2 x^{2}-6 x+4\right)^{2}-8 x^{6}
$$

The Chabauty-Coleman bound tells us that

$$
|X(\mathbf{Q})| \leqslant 10
$$

We find the points

$$
(0, \pm 4),(1, \pm 1),(2, \pm 8),\left(12 / 11, \pm 868 / 11^{3}\right), \infty^{ \pm}
$$

in $X(\mathbf{Q})$. We've found 10 points!
So we have provably determined $X(\mathbf{Q})$.
And $\left(12 / 11,868 / 11^{3}\right)$ gives rise to a pair of triangles.

A question about triangles: answer

Theorem (Hirakawa-Matsumura, 2018)

Up to similitude, there exists a unique pair of a rational right triangle and a rational isosceles triangle which have the same perimeter and the same area. The unique pair consists of the right triangle with sides of lengths $(377,135,352)$ and the isosceles triangle with sides of lengths $(366,366,132)$.

Chabauty-Coleman

What allows us to compute $X(\mathbf{Q})$ in the previous example?

Chabauty-Coleman

What allows us to compute $X(\mathbf{Q})$ in the previous example?

- Used the Chabauty-Coleman bound that, for this curve, implied $|X(\mathbf{Q})| \leqslant 10$:

Chabauty-Coleman

What allows us to compute $X(\mathbf{Q})$ in the previous example?

- Used the Chabauty-Coleman bound that, for this curve, implied $|X(\mathbf{Q})| \leqslant 10$:
- Crucial hypothesis: satisfying an inequality between the genus of the curve X and the rank of the Mordell-Weil group of its Jacobian $J(\mathbf{Q})$

Chabauty-Coleman

What allows us to compute $X(\mathbf{Q})$ in the previous example?

- Used the Chabauty-Coleman bound that, for this curve, implied $|X(\mathbf{Q})| \leqslant 10$:
- Crucial hypothesis: satisfying an inequality between the genus of the curve X and the rank of the Mordell-Weil group of its Jacobian $J(\mathbf{Q})$
- Theorem: work of Chabauty and Coleman

Chabauty-Coleman

What allows us to compute $X(\mathbf{Q})$ in the previous example?

- Used the Chabauty-Coleman bound that, for this curve, implied $|X(\mathbf{Q})| \leqslant 10$:
- Crucial hypothesis: satisfying an inequality between the genus of the curve X and the rank of the Mordell-Weil group of its Jacobian $J(\mathbf{Q})$
- Theorem: work of Chabauty and Coleman
- ...and a bit of luck!

Challenges in studying rational points on curves

Theorem (Faltings, 1983)
Let X be a smooth projective curve over \mathbf{Q} of genus at least 2. The set $X(\mathbf{Q})$ is finite.

Challenges in studying rational points on curves

Theorem (Faltings, 1983)
Let X be a smooth projective curve over \mathbf{Q} of genus at least 2. The set $X(\mathbf{Q})$ is finite.
How do we find $X(\mathbf{Q})$?

- Faltings' proof is not constructive.
- There is another proof of finiteness due to Vojta, but it also is not constructive.
- Recent work of Lawrence-Venkatesh gives another proof of finiteness.
- Method of Chabauty-Coleman can explicitly compute $X(\mathbf{Q})$ in some cases.

Challenges in studying rational points on curves

Theorem (Faltings, 1983)
Let X be a smooth projective curve over \mathbf{Q} of genus at least 2. The set $X(\mathbf{Q})$ is finite.
How do we find $X(\mathbf{Q})$?

- Faltings' proof is not constructive.
- There is another proof of finiteness due to Vojta, but it also is not constructive.
- Recent work of Lawrence-Venkatesh gives another proof of finiteness.
- Method of Chabauty-Coleman can explicitly compute $X(\mathbf{Q})$ in some cases.

Motivating problem (Explicit Faltings): Given a curve X / \mathbf{Q} with $g \geqslant 2$, compute $X(\mathbf{Q})$.

Example: Can we compute $X(\mathbf{Q})$?

Consider X:
$-x^{3} y+2 x^{2} y^{2}-x y^{3}-x^{3} z+x^{2} y z+x y^{2} z-2 x y z^{2}+2 y^{2} z^{2}+x z^{3}-3 y z^{3}=0$.

Example: Can we compute $X(\mathbf{Q})$?

Consider X:

$$
-x^{3} y+2 x^{2} y^{2}-x y^{3}-x^{3} z+x^{2} y z+x y^{2} z-2 x y z^{2}+2 y^{2} z^{2}+x z^{3}-3 y z^{3}=0
$$

This is a model for the "split Cartan" modular curve $X_{s}(13)$.

Example: Can we compute $X(\mathbf{Q})$?

Consider X:

$$
-x^{3} y+2 x^{2} y^{2}-x y^{3}-x^{3} z+x^{2} y z+x y^{2} z-2 x y z^{2}+2 y^{2} z^{2}+x z^{3}-3 y z^{3}=0
$$

This is a model for the "split Cartan" modular curve $X_{s}(13)$.
The set $X(\mathbf{Q})$ contains 7 rational points (Galbraith):

$$
\begin{gathered}
(0: 1: 0),(0: 0: 1),(-1: 0: 1) \\
(1: 0: 0),(1: 1: 0),(0: 3: 2),(1: 0: 1)
\end{gathered}
$$

Example: Can we compute $X(\mathbf{Q})$?

Consider X:

$$
-x^{3} y+2 x^{2} y^{2}-x y^{3}-x^{3} z+x^{2} y z+x y^{2} z-2 x y z^{2}+2 y^{2} z^{2}+x z^{3}-3 y z^{3}=0
$$

This is a model for the "split Cartan" modular curve $X_{s}(13)$.
The set $X(\mathbf{Q})$ contains 7 rational points (Galbraith):

$$
\begin{gathered}
(0: 1: 0),(0: 0: 1),(-1: 0: 1) \\
(1: 0: 0),(1: 1: 0),(0: 3: 2),(1: 0: 1)
\end{gathered}
$$

Question: Is this set of points above precisely $X(\mathbf{Q})$?

Working with higher genus curves

- For curves X / \mathbf{Q} of genus at least $2, X(\mathbf{Q})$ is just a set, so to study rational points, it helps to associate to X other objects that have more structure.
- Fix a basepoint $b \in X(\mathbf{Q})$. Embed X into its Jacobian J via the Abel-Jacobi map $\imath: X \hookrightarrow J$, sending $P \mapsto[(P)-(b)]$. The Mordell-Weil theorem tells us that $J(\mathbf{Q}) \cong \mathbf{Z}^{r} \oplus T$.
- The rank r is an important (but hard to compute) invariant.

A genus 2 curve and its Kummer surface
Sachi Hashimoto

Strategy for computing rational points on curves

Upshot: for certain curves X of genus at least 2, by associating other geometric objects to X, we can explicitly compute a slightly larger (but importantly, finite) set of points containing $X(\mathbf{Q})$, and then (hopefully) use this set to determine $X(\mathbf{Q})$.

- This story starts with the Chabauty-Coleman method.
- We will use a generalization of this (nonabelian Chabauty, a program initiated by Kim) to understand rational points on the cursed curve.

Chabauty's theorem

Theorem (Chabauty, '41)
Let X be a curve of genus $g \geqslant 2$ over \mathbf{Q}. Suppose the Mordell-Weil rank r of $J(\mathbf{Q})$ is less than g. Then $X(\mathbf{Q})$ is finite.

- Coleman (1985) made Chabauty's theorem effective by re-interpreting this result in terms of p-adic line integrals of regular 1-forms.
- In fact, by counting the number of zeros of such an integral, Coleman gave the bound

$$
\# X(\mathbf{Q}) \leqslant \# X\left(\mathbf{F}_{p}\right)+2 g-2 .
$$

The method of Chabauty-Coleman

Let $p>2$ be a prime of good reduction for X. The map $H^{0}\left(J_{\mathbf{Q}_{p}}, \Omega^{1}\right) \longrightarrow H^{0}\left(X_{\mathbf{Q}_{p}}, \Omega^{1}\right)$ induced by t is an isomorphism of \mathbf{Q}_{p}-vector spaces. Suppose ω_{J} restricts to ω.

The method of Chabauty-Coleman

Let $p>2$ be a prime of good reduction for X. The map $H^{0}\left(J_{\mathbf{Q}_{p}}, \Omega^{1}\right) \longrightarrow H^{0}\left(X_{\mathbf{Q}_{p}}, \Omega^{1}\right)$ induced by t is an isomorphism of \mathbf{Q}_{p}-vector spaces. Suppose ω_{J} restricts to ω.
Then for $Q, Q^{\prime} \in X\left(\mathbf{Q}_{p}\right)$, define

$$
\int_{Q}^{Q^{\prime}} \omega:=\int_{0}^{\left[Q^{\prime}-Q\right]} \omega_{J} .
$$

The method of Chabauty-Coleman

Let $p>2$ be a prime of good reduction for X. The map $H^{0}\left(J_{\mathbf{Q}_{p}}, \Omega^{1}\right) \longrightarrow H^{0}\left(X_{\mathbf{Q}_{p}}, \Omega^{1}\right)$ induced by t is an isomorphism of \mathbf{Q}_{p}-vector spaces. Suppose ω_{J} restricts to ω.
Then for $Q, Q^{\prime} \in X\left(\mathbf{Q}_{p}\right)$, define

$$
\int_{Q}^{Q^{\prime}} \omega:=\int_{0}^{\left[Q^{\prime}-Q\right]} \omega_{J} .
$$

If $r<g$, there exists $\omega \in H^{0}\left(X_{\mathbf{Q}_{p}}, \Omega^{1}\right)$ such that

$$
\int_{b}^{P} \omega=0
$$

for all $P \in X(\mathbf{Q})$. Thus by studying the zeros of $\int \omega$, we can find a finite set of p-adic points containing the rational points of X.

Recap of the method (+bonus observations)

Given a curve X / \mathbf{Q} of genus $g \geqslant 2$, embed it inside its Jacobian J and consider the rank r of $J(\mathbf{Q})$.

- If $r<g$, we can use the Chabauty-Coleman method to compute a regular 1 -form whose p-adic (Coleman) integral vanishes on rational points.
- By studying the zeros of this integral, Coleman gave the bound

$$
\# X(\mathbf{Q}) \leqslant \# X\left(\mathbf{F}_{p}\right)+2 g-2
$$

- This bound can be sharp in practice, as in the triangle example:
- There $g=2, r=1$; taking $p=5$ gave $\# X\left(\mathbf{F}_{p}\right)=8$ and thus $\# X(\mathbf{Q}) \leqslant 10$.
- Regardless, the Coleman integral cuts out a finite set of p-adic points; this set contains $X(\mathbf{Q})$ as a subset.
- Even when the bound is not sharp, we can often combine Chabauty-Coleman data at multiple primes (Mordell-Weil sieve) to extract $X(\mathbf{Q})$.

Computing rational points via Chabauty-Coleman

We have

$$
X(\mathbf{Q}) \subset X\left(\mathbf{Q}_{p}\right)_{1}:=\left\{z \in X\left(\mathbf{Q}_{p}\right): \int_{b}^{z} \omega=0\right\}
$$

for a p-adic line integral $\int_{b}^{*} \omega$, with $\omega \in H^{0}\left(X_{\mathbf{Q}_{p}}, \Omega^{1}\right)$.
We would like to compute an annihilating differential ω and then calculate the finite set of p-adic points $X\left(\mathbf{Q}_{p}\right)_{1}$.

Example: Chabauty-Coleman with $g=2, r=1$

Suppose we have a genus 2 curve X / Q with $r k J(\mathbf{Q})=1$ and $X(\mathbf{Q}) \neq \emptyset$. Fix a basepoint $b \in X(\mathbf{Q})$.

- We know $H^{0}\left(X_{\mathbf{Q}_{p}}, \Omega^{1}\right)=\left\langle\omega_{0}, \omega_{1}\right\rangle$.
- Since $r=1<2=g$, we can compute $X\left(\mathbf{Q}_{p}\right)_{1}$ as the zero set of a p-adic integral.
- If we know one more point $P \in X(\mathbf{Q})$, we can compute the constants $A, B \in \mathbf{Q}_{p}$:

$$
\int_{b}^{P} \omega_{0}=A, \quad \int_{b}^{P} \omega_{1}=B
$$

then solve the equation

$$
f(z):=\int_{b}^{z}\left(B \omega_{0}-A \omega_{1}\right)=0
$$

for $z \in X\left(\mathbf{Q}_{p}\right)$.

- The set of such z is finite, and $X(\mathbf{Q})$ is contained in this set.

p-adic integration

Coleman integrals are p-adic line integrals.

p-adic line integration is difficult - how do we construct the correct path?

- We can construct local ("tiny") integrals easily, but extending them to the entire space is challenging.
- Coleman's solution: analytic continuation along Frobenius, giving rise to a theory of p-adic line integration satisfying the usual nice properties: linearity, additivity, change of variables, fundamental theorem of calculus.

For which curves X do we want to compute $X(\mathbf{Q})$?

There are a number of fundamental questions in number theory that come from moduli problems, in particular, understanding rational points on modular curves, e.g.:
Theorem (Mazur, 1977)
If E / \mathbf{Q} is an elliptic curve, and $P \in E(\mathbf{Q})$ has finite order N, then $N \in\{1, \ldots, 10,12\}$.

Idea: Find the rational points on the modular curve $X_{1}(N)$.

- Non-cuspidal points in $X_{1}(N)(\mathbf{Q})$ correspond to elliptic curves E / \mathbf{Q} with a point $P \in E(\mathbf{Q})$ of order N.
- So Mazur's theorem is equivalent to the assertion that $X_{1}(N)(\mathbf{Q})$ consists only of cusps if $N=11$ or $N \geqslant 13$.

Residual Galois representations

Let E / \mathbf{Q} be an elliptic curve, ℓ a prime number.

- $G_{\mathbf{Q}}:=\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$ acts on the ℓ-torsion points $E[\ell]$.
- Fixing a basis of $E[\ell] \cong(\mathbf{Z} / \ell \mathbf{Z})^{2}$, get a Galois representation

$$
\bar{\rho}_{E, \ell}: G_{\mathbf{Q}} \rightarrow \operatorname{Aut}(E[\ell]) \cong \mathbf{G L}_{2}\left(\mathbf{F}_{\ell}\right)
$$

Residual Galois representations

Let E / \mathbf{Q} be an elliptic curve, ℓ a prime number.

- $G_{\mathbf{Q}}:=\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$ acts on the ℓ-torsion points $E[\ell]$.
- Fixing a basis of $E[\ell] \cong(\mathbf{Z} / \ell \mathbf{Z})^{2}$, get a Galois representation

$$
\bar{\rho}_{E, \ell}: G_{\mathbf{Q}} \rightarrow \operatorname{Aut}(E[\ell]) \cong \mathbf{G L}_{2}\left(\mathbf{F}_{\ell}\right)
$$

Theorem (Serre, 1972)
If E does not have complex multiplication, then $\bar{\rho}_{E, \ell}$ is surjective for $\ell \gg 0$.

Residual Galois representations

Let E / \mathbf{Q} be an elliptic curve, ℓ a prime number.

- $G_{\mathbf{Q}}:=\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$ acts on the ℓ-torsion points $E[\ell]$.
- Fixing a basis of $E[\ell] \cong(\mathbf{Z} / \ell \mathbf{Z})^{2}$, get a Galois representation

$$
\bar{\rho}_{E, \ell}: G_{\mathbf{Q}} \rightarrow \operatorname{Aut}(E[\ell]) \cong \mathbf{G L}_{2}\left(\mathbf{F}_{\ell}\right)
$$

Theorem (Serre, 1972)
If E does not have complex multiplication, then $\bar{\rho}_{E, \ell}$ is surjective for $\ell \gg 0$.
Serre's uniformity problem: Does there exist an absolute constant ℓ_{0} such that $\bar{\rho}_{E, \ell}$ is surjective for every non-CM elliptic curve E / \mathbf{Q} and every prime $\ell>\ell_{0}$?

Folklore: $\ell_{0}=37$ should work.

Serre's Uniformity Problem

Idea: To show that $\bar{\rho}_{E, \ell}$ is surjective, show that $\operatorname{im}\left(\bar{\rho}_{E, \ell}\right)$ is not contained in a maximal subgroup of $\mathbf{G L}_{2}\left(\mathbf{F}_{\ell}\right)$. These are

1. Borel subgroups
2. Exceptional subgroups
3. Normalizers of split Cartan subgroups
4. Normalizers of non-split Cartan subgroups

Idea: For a maximal $G \subset \mathrm{GL}_{2}\left(\mathbf{F}_{\ell}\right)$, there is a modular curve X_{G} / \mathbf{Q} such that non-cuspidal points in $X_{G}(\mathbf{Q})$ correspond to elliptic curves E / \mathbf{Q} with $\operatorname{im}\left(\bar{\rho}_{E, \ell}\right) \subset G$.

Serre's Uniformity Problem

Idea: To show that $\bar{\rho}_{E, \ell}$ is surjective, show that $\operatorname{im}\left(\bar{\rho}_{E, \ell}\right)$ is not contained in a maximal subgroup of $\mathbf{G L}_{2}\left(\mathbf{F}_{\ell}\right)$. These are

1. Borel subgroups \checkmark (Mazur)
2. Exceptional subgroups
3. Normalizers of split Cartan subgroups
4. Normalizers of non-split Cartan subgroups

Idea: For a maximal $G \subset \mathbf{G L}_{2}\left(\mathbf{F}_{\ell}\right)$, there is a modular curve X_{G} / \mathbf{Q} such that non-cuspidal points in $X_{G}(\mathbf{Q})$ correspond to elliptic curves E / \mathbf{Q} with $\operatorname{im}\left(\bar{\rho}_{E, \ell}\right) \subset G$.

Serre's Uniformity Problem

Idea: To show that $\bar{\rho}_{E, \ell}$ is surjective, show that $\operatorname{im}\left(\bar{\rho}_{E, \ell}\right)$ is not contained in a maximal subgroup of $\mathbf{G L}_{2}\left(\mathbf{F}_{\ell}\right)$. These are

1. Borel subgroups \checkmark (Mazur)
2. Exceptional subgroups $\sqrt{ }$ (Serre)
3. Normalizers of split Cartan subgroups
4. Normalizers of non-split Cartan subgroups

Idea: For a maximal $G \subset \mathrm{GL}_{2}\left(\mathbf{F}_{\ell}\right)$, there is a modular curve X_{G} / \mathbf{Q} such that non-cuspidal points in $X_{G}(\mathbf{Q})$ correspond to elliptic curves E / \mathbf{Q} with $\operatorname{im}\left(\bar{\rho}_{E, \ell}\right) \subset G$.

Serre's Uniformity Problem

Idea: To show that $\bar{\rho}_{E, \ell}$ is surjective, show that $\operatorname{im}\left(\bar{\rho}_{E, \ell}\right)$ is not contained in a maximal subgroup of $\mathbf{G L}_{2}\left(\mathbf{F}_{\ell}\right)$. These are

1. Borel subgroups $\boldsymbol{\checkmark}$ (Mazur)
2. Exceptional subgroups $\sqrt{ }$ (Serre)
3. Normalizers of split Cartan subgroups \checkmark (Bilu-Parent-Rebolledo)
4. Normalizers of non-split Cartan subgroups

Idea: For a maximal $G \subset \mathrm{GL}_{2}\left(\mathbf{F}_{\ell}\right)$, there is a modular curve X_{G} / \mathbf{Q} such that non-cuspidal points in $X_{G}(\mathbf{Q})$ correspond to elliptic curves E / \mathbf{Q} with $\operatorname{im}\left(\bar{\rho}_{E, \ell}\right) \subset G$.

Serre's Uniformity Problem

Idea: To show that $\bar{\rho}_{E, \ell}$ is surjective, show that $\operatorname{im}\left(\bar{\rho}_{E, \ell}\right)$ is not contained in a maximal subgroup of $\mathbf{G L}_{2}\left(\mathbf{F}_{\ell}\right)$. These are

1. Borel subgroups $\boldsymbol{\checkmark}$ (Mazur)
2. Exceptional subgroups $\sqrt{ }$ (Serre)
3. Normalizers of split Cartan subgroups \checkmark (Bilu-Parent-Rebolledo)
4. Normalizers of non-split Cartan subgroups X

Idea: For a maximal $G \subset \mathrm{GL}_{2}\left(\mathbf{F}_{\ell}\right)$, there is a modular curve X_{G} / \mathbf{Q} such that non-cuspidal points in $X_{G}(\mathbf{Q})$ correspond to elliptic curves E / \mathbf{Q} with $\operatorname{im}\left(\bar{\rho}_{E, \ell}\right) \subset G$.

The cursed modular curve

All normalizers of split Cartan $G \subset \mathbf{G L}_{2}\left(\mathbf{F}_{\ell}\right)$ are conjugate, so all corresponding $X_{G}=X(\ell) / G$ are isomorphic. Denote $X_{s}(\ell)=X_{G}$.

Theorem (Bilu-Parent 2011, Bilu-Parent-Rebolledo 2013)
We have $X_{\mathrm{s}}(\ell)(\mathbf{Q})=\{$ cusps, CM-points $\}$ for $\ell \geqslant 11, \ell \neq 13$.

The cursed modular curve

All normalizers of split Cartan $G \subset \mathbf{G L}_{2}\left(\mathbf{F}_{\ell}\right)$ are conjugate, so all corresponding $X_{G}=X(\ell) / G$ are isomorphic. Denote $X_{s}(\ell)=X_{G}$.

Theorem (Bilu-Parent 2011, Bilu-Parent-Rebolledo 2013)
We have $X_{s}(\ell)(\mathbf{Q})=\{$ cusps, CM-points $\}$ for $\ell \geqslant 11, \ell \neq 13$.
What goes wrong at $\ell=13$? Bilu-Parent-Rebolledo refer to $\ell=13$ as the "cursed" level; crucial to their method is Mazur's method for integrality of non-cuspidal rational points, using the following:

$$
\operatorname{Jac}\left(X_{\mathrm{s}}(\ell)\right) \sim \operatorname{Jac}\left(X_{0}^{+}\left(\ell^{2}\right)\right) \sim J_{0}(\ell) \times \operatorname{Jac}\left(X_{\mathrm{ns}}(\ell)\right)
$$

Curses of the cursed curve

We have

$$
\operatorname{Jac}\left(X_{\mathrm{s}}(\ell)\right) \sim \operatorname{Jac}\left(X_{0}^{+}\left(\ell^{2}\right)\right) \sim J_{0}(\ell) \times \operatorname{Jac}\left(X_{\mathrm{ns}}(\ell)\right)
$$

- Mazur's method applies whenever $J_{0}(\ell) \neq 0$, which is the case for $\ell=11$ and $\ell \geqslant 17$.

Curses of the cursed curve

We have

$$
\operatorname{Jac}\left(X_{\mathrm{s}}(\ell)\right) \sim \operatorname{Jac}\left(X_{0}^{+}\left(\ell^{2}\right)\right) \sim J_{0}(\ell) \times \operatorname{Jac}\left(X_{\mathrm{ns}}(\ell)\right)
$$

- Mazur's method applies whenever $J_{0}(\ell) \neq 0$, which is the case for $\ell=11$ and $\ell \geqslant 17$.
- But for $\ell=13$, we have $J_{0}(13)=0$.

Curses of the cursed curve

We have

$$
\operatorname{Jac}\left(X_{\mathrm{s}}(\ell)\right) \sim \operatorname{Jac}\left(X_{0}^{+}\left(\ell^{2}\right)\right) \sim J_{0}(\ell) \times \operatorname{Jac}\left(X_{\mathrm{ns}}(\ell)\right)
$$

- Mazur's method applies whenever $J_{0}(\ell) \neq 0$, which is the case for $\ell=11$ and $\ell \geqslant 17$.
- But for $\ell=13$, we have $J_{0}(13)=0$.
- Curse \#1: We thus have $\operatorname{Jac}\left(X_{\mathrm{s}}(13)\right) \sim \operatorname{Jac}\left(X_{\mathrm{ns}}(13)\right)$ and $\operatorname{Jac}\left(X_{\mathrm{s}}(13)\right)$ is absolutely simple.

Curses of the cursed curve, continued

Curse \#2: Baran found an explicit smooth plane quartic model and showed

$$
X_{\mathrm{s}}(13) \simeq_{\mathrm{Q}} X_{\mathrm{ns}}(13)
$$

its non-split analogue. (No modular explanation for this!)

Curses of the cursed curve, continued

Curse \#2: Baran found an explicit smooth plane quartic model and showed

$$
X_{\mathrm{s}}(13) \simeq_{\mathrm{Q}} X_{\mathrm{ns}}(13),
$$

its non-split analogue. (No modular explanation for this!)
Baran's model for $X_{s}(13)$:
$X: x^{3} y+x^{3} z-2 x^{2} y^{2}-x^{2} y z+x y^{3}-x y^{2} z+2 x y z^{2}-x z^{3}-2 y^{2} z^{2}+3 y z^{3}=0$.

Visualizations of the cursed curve JB and Sachi Hashimoto

Curses of the cursed curve, continued

Curse \#2: Baran found an explicit smooth plane quartic model and showed

$$
X_{\mathrm{s}}(13) \simeq_{\mathrm{Q}} X_{\mathrm{ns}}(13),
$$

its non-split analogue. (No modular explanation for this!)
Baran's model for $X_{s}(13)$:
$X: x^{3} y+x^{3} z-2 x^{2} y^{2}-x^{2} y z+x y^{3}-x y^{2} z+2 x y z^{2}-x z^{3}-2 y^{2} z^{2}+3 y z^{3}=0$.

Visualizations of the cursed curve JB and Sachi Hashimoto

Question: Can we use Chabauty-Coleman to compute $X(\mathbf{Q})$?

Curses of the cursed curve, continued

Curse \#2: Baran found an explicit smooth plane quartic model and showed

$$
X_{\mathrm{s}}(13) \simeq_{\mathrm{Q}} X_{\mathrm{ns}}(13),
$$

its non-split analogue. (No modular explanation for this!)
Baran's model for $X_{s}(13)$:
$X: x^{3} y+x^{3} z-2 x^{2} y^{2}-x^{2} y z+x y^{3}-x y^{2} z+2 x y z^{2}-x z^{3}-2 y^{2} z^{2}+3 y z^{3}=0$.

Visualizations of the cursed curve JB and Sachi Hashimoto

Question: Can we use Chabauty-Coleman to compute $X(\mathbf{Q})$?
Curse \#3: $r=\operatorname{rk} J(\mathbf{Q}) \geqslant 3=g .:$

Beyond Chabauty-Coleman

Do we have any hope of doing something like
Chabauty-Coleman when $r \geqslant g$?

- Conjecturally, yes, via Kim's nonabelian Chabauty program.
- Instead of using the Jacobian of X and abelian integrals, use nonabelian geometric objects associated to X, which carry iterated Coleman integrals.
- These iterated integrals cut out Selmer varieties, which give a sequence of sets
$X(\mathbf{Q}) \subset \cdots \subset X\left(\mathbf{Q}_{p}\right)_{n} \subset X\left(\mathbf{Q}_{p}\right)_{n-1} \subset \cdots \subset X\left(\mathbf{Q}_{p}\right)_{2} \subset X\left(\mathbf{Q}_{p}\right)_{1}$
where the depth n set $X\left(\mathbf{Q}_{p}\right)_{n}$ is given by equations in terms of n-fold iterated Coleman integrals

$$
\int_{b}^{P} \omega_{n} \cdots \omega_{1}
$$

- Note that $X\left(\mathbf{Q}_{p}\right)_{1}$ is the classical Chabauty-Coleman set.

Nonabelian Chabauty

Conjecture (Kim, '12)

For $n \gg 0$, the set $X\left(\mathbf{Q}_{p}\right)_{n}$ is finite.

Nonabelian Chabauty

Conjecture (Kim, '12)
For $n \gg 0$, the set $X\left(\mathbf{Q}_{p}\right)_{n}$ is finite.

This is implied by the Bloch-Kato conjectures.

Nonabelian Chabauty

Conjecture (Kim, '12)
For $n \gg 0$, the set $X\left(\mathbf{Q}_{p}\right)_{n}$ is finite.
This is implied by the Bloch-Kato conjectures.
Questions:

- When can $X\left(\mathbf{Q}_{p}\right)_{n}$ be shown to be finite?
- For which classes of curves can nonabelian Chabauty be used to prove Faltings' theorem?

Finiteness of $X\left(\mathbf{Q}_{p}\right)_{n}$

Theorem (Coates-Kim '10)
For X / \mathbf{Q} with $C M$ Jacobian, for $n \gg 0$, the set $X\left(\mathbf{Q}_{p}\right)_{n}$ is finite.
Theorem (Ellenberg-Hast '17)
Can extend the above to give a new proof of Faltings' theorem for curves X / \mathbf{Q} that are solvable Galois covers of \mathbf{P}^{1}.

Theorem (B.-Dogra '16)
For X / \mathbf{Q} with $g \geqslant 2$ and

$$
r<g+\operatorname{rk} N S\left(J_{\mathbf{Q}}\right)-1,
$$

the set $X\left(\mathbf{Q}_{p}\right)_{2}$ is finite.

Finiteness of $X\left(\mathbf{Q}_{p}\right)_{n}$

Theorem (Coates-Kim '10)
For X / \mathbf{Q} with $C M$ Jacobian, for $n \gg 0$, the set $X\left(\mathbf{Q}_{p}\right)_{n}$ is finite.
Theorem (Ellenberg-Hast '17)
Can extend the above to give a new proof of Faltings' theorem for curves X / \mathbf{Q} that are solvable Galois covers of \mathbf{P}^{1}.

Theorem (B.-Dogra '16)
For X / \mathbf{Q} with $g \geqslant 2$ and

$$
r<g+\operatorname{rk} N S\left(J_{\mathbf{Q}}\right)-1,
$$

the set $X\left(\mathbf{Q}_{p}\right)_{2}$ is finite.
So when can we explicitly compute $X\left(\mathbf{Q}_{p}\right)_{2}$? We call this quadratic Chabauty.

Quadratic Chabauty: Q-points and p-adic heights

Want to use "quadratic Chabauty" to compute $X\left(\mathbf{Q}_{p}\right)_{2}$, a finite set of p-adic points that contains all rational points on X for certain curves that have $r=g$

- We know that $X\left(\mathbf{Q}_{p}\right)_{2}$ is finite when $r=g$ and $\operatorname{rk} N S(J)>1$. The difficulty is in making this effective.
- The functions cutting out p-adic points can be expressed in terms of p-adic heights pairings; the key is to move from linear relations (as in Chabauty-Coleman) to bilinear relations.
- These p-adic heights have a natural interpretation in terms of p-adic differential equations, with relevant constants computed in terms of known rational points.

Dictionary between classical and quadratic Chabauty

technique	classical Chabauty	quadratic Chabauty
hypotheses	$r<g$	$r=g$ and rk $N S\left(J_{\mathbf{Q}}\right) \geqslant 2$
geometry	Jacobian	Selmer variety
p-adic analysis	line integrals	iterated path integrals
algebra	linear algebra	bilinear algebra (heights)

From classical Chabauty to quadratic Chabauty

Recap: we can think of classical Chabauty as using linear relations among $\int_{b}^{x} \omega$ for $\omega \in H^{0}\left(X_{\mathbf{Q}_{p}}, \Omega^{1}\right)$, when $r<g$, i.e., understanding

$$
\begin{aligned}
X(\mathbf{Q}) \rightarrow X\left(\mathbf{Q}_{p}\right) & \xrightarrow{A J_{b}} H^{0}\left(X_{\mathbf{Q}_{p}}, \Omega^{1}\right)^{*} \\
x & \mapsto\left(\omega \mapsto \int_{b}^{x} \omega\right) .
\end{aligned}
$$

The simplest generalization of Chabauty-Coleman comes from considering bilinear relations on $H^{0}\left(X_{\mathbf{Q}_{p}}, \Omega^{1}\right)^{*}$ when $r=g$. This motivates the notion of a quadratic Chabauty function.

Quadratic Chabauty function

Definition

A quadratic Chabauty function θ is a function $\theta: X\left(\mathbf{Q}_{p}\right) \rightarrow \mathbf{Q}_{p}$ such that:

1. On each residue disk, the map
$\left(A J_{b}, \theta\right): X\left(\mathbf{Q}_{p}\right) \rightarrow H^{0}\left(X_{\mathbf{Q}_{p}}, \Omega^{1}\right)^{*} \times \mathbf{Q}_{p}$ is given by a power series.
2. There exist

- an endomorphism E of $H^{0}\left(X_{\mathbf{Q}_{p}}, \Omega^{1}\right)^{*}$,
- a functional $c \in H^{0}\left(X_{\mathbf{Q}_{p}}, \Omega^{1}\right)^{*}$, and
- a bilinear form

$$
B: H^{0}\left(X_{\mathbf{Q}_{p}}, \Omega^{1}\right)^{*} \otimes H^{0}\left(X_{\mathbf{Q}_{p}}, \Omega^{1}\right)^{*} \rightarrow \mathbf{Q}_{p}
$$

such that for all $x \in X(\mathbf{Q})$,

$$
\theta(x)-B\left(A J_{b}(x), E\left(A J_{b}(x)\right)+c\right)=0
$$

Quadratic Chabauty functions

Lemma
A quadratic Chabauty function induces a function $F: X\left(\mathbf{Q}_{p}\right) \rightarrow \mathbf{Q}_{p}$ such that $F(X(\mathbf{Q}))=0$ and F has finitely many zeros.

Quadratic Chabauty functions

> Lemma
> A quadratic Chabauty function induces a function $F: X\left(\mathbf{Q}_{p}\right) \rightarrow \mathbf{Q}_{p}$ such that $F(X(\mathbf{Q}))=0$ and F has finitely many zeros.

- The goal is to make this explicit: need a quadratic Chabauty function: need an E, c, and need to solve for B.
- Solving for B is very similar to solving for linear relations in Chabauty-Coleman.

Quadratic Chabauty functions

Lemma

A quadratic Chabauty function induces a function $F: X\left(\mathbf{Q}_{p}\right) \rightarrow \mathbf{Q}_{p}$ such that $F(X(\mathbf{Q}))=0$ and F has finitely many zeros.

- The goal is to make this explicit: need a quadratic Chabauty function: need an E, c, and need to solve for B.
- Solving for B is very similar to solving for linear relations in Chabauty-Coleman.

We find quadratic Chabauty functions using p-adic height functions. As a warm-up, we'll use p-adic heights to find integral points on affine hyperelliptic curves when $r=g$.

p-adic heights on Jacobians of curves (Coleman-Gross)

The Coleman-Gross p-adic height pairing is a (symmetric) bilinear pairing

$$
h: \operatorname{Div}^{0}(X) \times \operatorname{Div}^{0}(X) \rightarrow \mathbf{Q}_{p},
$$

with $h=\sum_{v} h_{v}$

- We have $h(D, \operatorname{div}(g))=0$ for $g \in \mathbf{Q}(X)^{\times}$, so h is well-defined on $J \times J$.
- The global height decomposes as a finite sum of local heights $h=\sum_{v} h_{v}$ over finite primes v
- Construction of local height h_{v} depends on whether $v=p$ or $v \neq p$.
- $v \neq p$: intersection theory
- $v=p$: normalized differentials (with respect to a splitting of the Hodge filtration on $H_{\mathrm{dR}}^{1}\left(X_{\mathbf{Q}_{p}}\right)$), Coleman integration

Quadratic Chabauty (roughly)

Given a global p-adic height h, we study it on rational points:

$\underbrace{h}_{$| bilinear form, rewrite in terms |
| :---: |
| of locally analytic function |
| using known rational points |$}=\underbrace{h_{$| entes on finite |
| :---: |
| tamber of values |
| on rational points |
| (best case: all trivial) |$}^{\sum_{v=p} h_{v}} \underbrace{v \neq p}}_{$| locally analytic function |
| :---: |
| via $p \text {-adic differential equation }$ |$}$

For example, using the Coleman-Gross p-adic height, the statement of quadratic Chabauty for integral points has, as its main ideas, (1) computing the local height h_{p} as a double Coleman integral and (2) controlling the finite number of values

$$
\sum_{v \neq p} h_{v}(z-b, z-b)
$$

takes on integral points z.
Note: to determine the local height h_{p}, need to compute Frobenius structure on the relevant p-adic differential equation.

Quadratic Chabauty for integral points

We use these double and single Coleman integrals to rewrite the global p-adic height pairing h and to study it on integral points:

Quadratic Chabauty for integral points

We use these double and single Coleman integrals to rewrite the global p-adic height pairing h and to study it on integral points:

Quadratic Chabauty for integral points

Theorem (B.-Besser-Müller)

Let X / \mathbf{Q} be a hyperelliptic curve. If $r=g \geqslant 1$ and $f_{i}(x):=\int_{b}^{x} \omega_{i}$ for $\omega_{i} \in H^{0}\left(X_{\mathbf{Q}_{p}}, \Omega^{1}\right)$ are linearly independent, then there is an explicitly computable finite set $S \subset \mathbf{Q}_{p}$ and explicitly computable constants $\alpha_{i j} \in \mathbf{Q}_{p}$ such that

$$
\theta(P)-\sum_{0 \leqslant i \leqslant j \leqslant g-1} \alpha_{i j} f_{i} f_{j}(P)
$$

takes values in S on integral points, where $\theta(P)=\sum_{i=0}^{g-1} \int_{b}^{P} \omega_{i} \bar{\omega}_{i}$. This gives a quadratic Chabauty function θ and a finite set of values S (giving a quadratic Chabauty pair).

How can we use these ideas to study rational points?

Constructing quadratic Chabauty functions

Main problem generalizing this to rational points: we can't control $h_{v}(x)$ for $v \neq p$ when x is rational but not integral.

Constructing quadratic Chabauty functions

Main problem generalizing this to rational points: we can't control $h_{v}(x)$ for $v \neq p$ when x is rational but not integral.

Workaround for rational points:

- Construct a quadratic Chabauty function by associating to points of X certain p-adic Galois representations, and then take Nekovář p-adic heights.
- Idea is to construct a representation $A(x)$ for every $x \in X(\mathbf{Q})$. Depends on a choice of "nice" correspondence Z on X. Such a correspondence exists when $\operatorname{rk} N S(J)>1$.
- Restrict to case of X with everywhere potential good reduction, then for all $v \neq p$, local heights $h_{v}(A(x))$ are trivial.
- Compute p-adic height of $A(x)$ via explicit description of $D_{\text {cris }}(A(x))$ as a filtered ϕ-module.

Quadratic Chabauty for rational points

- Using Nekovář's p-adic height h, there is a local decomposition

$$
h(A(x))=h_{p}(A(x))+\sum_{v \neq p} h_{v}(A(x))
$$

where

1. $x \mapsto h_{p}(A(x))$ extends to a locally analytic function $\theta: X\left(\mathbf{Q}_{p}\right) \rightarrow \mathbf{Q}_{p}$ by Nekovář's construction and
2. For $v \neq p$ the local heights $h_{v}(A(x))$ are trivial since by assumption, all primes $v \neq p$ are of potential good reduction

This gives a QCF whose pairing is h and whose endomorphism is induced by Z.

Quadratic Chabauty

Suppose X / Q satisfies

- $r=g$,
- $\operatorname{rk} N S\left(J_{\mathbf{Q}}\right)>1$,
- p-adic closure $\overline{J(\mathbf{Q})}$ has finite index in $J\left(\mathbf{Q}_{p}\right)$,
- X has everywhere potential good reduction
- and that we know enough rational points $P_{i} \in X(\mathbf{Q})$.

If we can solve the following problems, we have an algorithm for computing a finite subset of $X\left(\mathbf{Q}_{p}\right)$ containing $X(\mathbf{Q})$:

Quadratic Chabauty

Suppose X / Q satisfies

- $r=g$,
- $\operatorname{rk} N S\left(J_{\mathbf{Q}}\right)>1$,
- p-adic closure $\overline{J(\mathbf{Q})}$ has finite index in $J\left(\mathbf{Q}_{p}\right)$,
- X has everywhere potential good reduction
- and that we know enough rational points $P_{i} \in X(\mathbf{Q})$.

If we can solve the following problems, we have an algorithm for computing a finite subset of $X\left(\mathbf{Q}_{p}\right)$ containing $X(\mathbf{Q})$:

1. Expand the function $x \mapsto h_{p}(A(x))$ into a p-adic power series on every residue disk.
2. Evaluate $h\left(A\left(P_{i}\right)\right)$ for the known rational points $P_{i} \in X(\mathbf{Q})$.

Note that since we are assuming we have everywhere potentially good reduction, we have

$$
h(A(x))=h_{p}(A(x))
$$

i.e., the second problem is subsumed by the first.

High-level strategy: QC for the cursed curve

Practical matters:

- Show that $X_{s}(13)$ has $r=3$.
- Make a small change of coordinates to work with the following curve X :

$$
\begin{aligned}
& Q(x, y)=y^{4}+5 x^{4}-6 x^{2} y^{2}+6 x^{3} z+26 x^{2} y z+10 x y^{2} z- \\
& 10 y^{3} z-32 x^{2} z^{2}-40 x y z^{2}+24 y^{2} z^{2}+32 x z^{3}-16 y z^{3}=0
\end{aligned}
$$

so that we have enough (5 of the known) rational points in each of two affine patches.

- Since $\operatorname{rk} N S\left(J_{\mathbf{Q}}\right)=3$, we have two independent nontrivial nice correspondences Z_{1}, Z_{2} on X; we compute equations for 17-adic heights $h^{Z_{1}}, h^{Z_{2}}$ on X
- Check the simultaneous solutions of the above two equations...are they precisely on the 7 known rational points?!

Rational points on $X_{s}(13)$

Theorem (B.-Dogra-Müller-Tuitman-Vonk)
We have $\left|X_{s}(13)(\mathbf{Q})\right|=7$.

Rational points on $X_{s}(13)$

> Theorem (B.-Dogra-Müller-Tuitman-Vonk)
> We have $\left|X_{s}(13)(\mathbf{Q})\right|=7$.

This completes the classification of rational points on split Cartan curves by Bilu-Parent-Rebolledo.

Rational points on $X_{s}(13)$

> Theorem (B.-Dogra-Müller-Tuitman-Vonk)
> We have $\left|X_{s}(13)(\mathbf{Q})\right|=7$.

This completes the classification of rational points on split Cartan curves by Bilu-Parent-Rebolledo.

By the work of Baran, we know $X_{\mathrm{s}}(13)$ is isomorphic to $X_{\mathrm{ns}}(13)$ over \mathbf{Q}, so we also get (for free) that $\left|X_{\mathrm{ns}}(13)(\mathbf{Q})\right|=7$.

Does the curse continue?

Does the curse continue?

Consider the following smooth plane quartic:

$$
\begin{array}{r}
X_{S_{4}}(13): 4 x^{3} y-3 x^{2} y^{2}+3 x y^{3}-x^{3} z+16 x^{2} y z-11 x y^{2} z+ \\
5 y^{3} z+3 x^{2} z^{2}+9 x y z^{2}+y^{2} z^{2}+x z^{3}+2 y z^{3}=0 .
\end{array}
$$

- Via Mazur's Program B: the last remaining modular curve of level 13^{n} whose rational points have not been determined.

Does the curse continue?

Consider the following smooth plane quartic:

$$
\begin{array}{r}
X_{S_{4}}(13): 4 x^{3} y-3 x^{2} y^{2}+3 x y^{3}-x^{3} z+16 x^{2} y z-11 x y^{2} z+ \\
5 y^{3} z+3 x^{2} z^{2}+9 x y z^{2}+y^{2} z^{2}+x z^{3}+2 y z^{3}=0 .
\end{array}
$$

- Via Mazur's Program B: the last remaining modular curve of level 13^{n} whose rational points have not been determined.
- There are 4 known rational points computed by Banwait and Cremona: $(1: 3:-2),(0: 0: 1),(0: 1: 0),(1: 0: 0)$.

Does the curse continue?

Consider the following smooth plane quartic:

$$
\begin{array}{r}
X_{S_{4}}(13): 4 x^{3} y-3 x^{2} y^{2}+3 x y^{3}-x^{3} z+16 x^{2} y z-11 x y^{2} z+ \\
5 y^{3} z+3 x^{2} z^{2}+9 x y z^{2}+y^{2} z^{2}+x z^{3}+2 y z^{3}=0 .
\end{array}
$$

- Via Mazur's Program B: the last remaining modular curve of level 13^{n} whose rational points have not been determined.
- There are 4 known rational points computed by Banwait and Cremona: $(1: 3:-2),(0: 0: 1),(0: 1: 0),(1: 0: 0)$.
- The rank of the Jacobian is 3 since its Jacobian is isogenous to $X_{s}(13)$.

Does the curse continue?

Consider the following smooth plane quartic:

$$
\begin{array}{r}
X_{S_{4}}(13): 4 x^{3} y-3 x^{2} y^{2}+3 x y^{3}-x^{3} z+16 x^{2} y z-11 x y^{2} z+ \\
5 y^{3} z+3 x^{2} z^{2}+9 x y z^{2}+y^{2} z^{2}+x z^{3}+2 y z^{3}=0 .
\end{array}
$$

- Via Mazur's Program B: the last remaining modular curve of level 13^{n} whose rational points have not been determined.
- There are 4 known rational points computed by Banwait and Cremona: $(1: 3:-2),(0: 0: 1),(0: 1: 0),(1: 0: 0)$.
- The rank of the Jacobian is 3 since its Jacobian is isogenous to $X_{s}(13)$.
- We have potential good reduction at $p=13$.

Does the curse continue?

Consider the following smooth plane quartic:

$$
\begin{array}{r}
X_{S_{4}}(13): 4 x^{3} y-3 x^{2} y^{2}+3 x y^{3}-x^{3} z+16 x^{2} y z-11 x y^{2} z+ \\
5 y^{3} z+3 x^{2} z^{2}+9 x y z^{2}+y^{2} z^{2}+x z^{3}+2 y z^{3}=0 .
\end{array}
$$

- Via Mazur's Program B: the last remaining modular curve of level 13^{n} whose rational points have not been determined.
- There are 4 known rational points computed by Banwait and Cremona: $(1: 3:-2),(0: 0: 1),(0: 1: 0),(1: 0: 0)$.
- The rank of the Jacobian is 3 since its Jacobian is isogenous to $X_{s}(13)$.
- We have potential good reduction at $p=13$.

Does the curse continue?

Consider the following smooth plane quartic:

$$
\begin{array}{r}
X_{S_{4}}(13): 4 x^{3} y-3 x^{2} y^{2}+3 x y^{3}-x^{3} z+16 x^{2} y z-11 x y^{2} z+ \\
5 y^{3} z+3 x^{2} z^{2}+9 x y z^{2}+y^{2} z^{2}+x z^{3}+2 y z^{3}=0 .
\end{array}
$$

- Via Mazur's Program B: the last remaining modular curve of level 13^{n} whose rational points have not been determined.
- There are 4 known rational points computed by Banwait and Cremona: $(1: 3:-2),(0: 0: 1),(0: 1: 0),(1: 0: 0)$.
- The rank of the Jacobian is 3 since its Jacobian is isogenous to $X_{s}(13)$.
- We have potential good reduction at $p=13$.

> Theorem (BDMTV)
> $X_{S_{4}}(13)(\mathbf{Q})=\{(1: 3:-2),(0: 0: 1),(0: 1: 0),(1: 0: 0)\}$

