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Some motivation: a question about triangles

We say a rational triangle is one with sides of rational lengths.

Question
Does there exist a rational right triangle and a rational isosceles
triangle which have the same perimeter and the same area?

This feels like a very classical question...perhaps studied by the
ancient Greeks?
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Some motivation: a question about triangles

This was the result of work by Y. Hirakawa and H. Matsumura
(2019):

The techniques used in their investigation are closely related to
the tools used for studying the cursed curve.
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A question about triangles

Assume that there exists such a pair of triangles (rational right
triangle, rational isosceles triangle). By rescaling both of the
given triangles, we may assume their lengths are

(k(1 + t2), k(1 − t2), 2kt) and ((1 + u2), (1 + u2), 4u),

respectively, for some rational numbers 0 < t, u < 1, k > 0.
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A question about triangles

Given side lengths of

(k(1 + t2), k(1 − t2), 2kt) and ((1 + u2), (1 + u2), 4u),

by comparing perimeters and areas, we have

k + kt = 1 + 2u + u2 and k2t(1 − t2) = 2u(1 − u2).

By a change of coordinates, this is equivalent to studying
rational points on the genus 2 curve given by

X : y2 = (3x3 + 2x2 − 6x + 4)2 − 8x6.
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A question about triangles

So we consider the rational points on

X : y2 = (3x3 + 2x2 − 6x + 4)2 − 8x6.

The Chabauty–Coleman bound tells us that

|X(Q)| 6 10.

We find the points

(0,±4), (1,±1), (2,±8), (12/11,±868/113),∞±
in X(Q). We’ve found 10 points!
So we have provably determined X(Q).

And (12/11, 868/113) gives rise to a pair of triangles.
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A question about triangles: answer

Theorem (Hirakawa–Matsumura, 2018)
Up to similitude, there exists a unique pair of a rational right triangle
and a rational isosceles triangle which have the same perimeter and
the same area. The unique pair consists of the right triangle with sides
of lengths (377, 135, 352) and the isosceles triangle with sides of
lengths (366, 366, 132).
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Chabauty–Coleman

What allows us to compute X(Q) in the previous example?

I Used the Chabauty–Coleman bound that, for this curve,
implied |X(Q)| 6 10:

I Crucial hypothesis: satisfying an inequality between the
genus of the curve X and the rank of the Mordell-Weil
group of its Jacobian J(Q)

I Theorem: work of Chabauty and Coleman
I ...and a bit of luck!
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Challenges in studying rational points on curves

Theorem (Faltings, 1983)
Let X be a smooth projective curve over Q of genus at least 2. The set
X(Q) is finite.

How do we find X(Q)?
I Faltings’ proof is not constructive.
I There is another proof of finiteness due to Vojta, but it also

is not constructive.
I Recent work of Lawrence–Venkatesh gives another proof

of finiteness.
I Method of Chabauty–Coleman can explicitly compute

X(Q) in some cases.

Motivating problem (Explicit Faltings): Given a curve X/Q
with g > 2, compute X(Q).
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Example: Can we compute X(Q)?
Consider X:

−x3y+2x2y2−xy3−x3z+x2yz+xy2z−2xyz2+2y2z2+xz3−3yz3 = 0.

This is a model for the “split Cartan” modular curve Xs(13).

The set X(Q) contains 7 rational points (Galbraith):

(0 : 1 : 0), (0 : 0 : 1), (−1 : 0 : 1),

(1 : 0 : 0), (1 : 1 : 0), (0 : 3 : 2), (1 : 0 : 1).

Question: Is this set of points above precisely X(Q)?
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Working with higher genus curves
I For curves X/Q of genus at least 2, X(Q) is just a set, so to

study rational points, it helps to associate to X other objects
that have more structure.

I Fix a basepoint b ∈ X(Q). Embed X into its Jacobian J via
the Abel-Jacobi map ι : X ↪→ J, sending P 7→ [(P) − (b)]. The
Mordell–Weil theorem tells us that J(Q) � Zr ⊕ T.

I The rank r is an important (but hard to compute) invariant.

A genus 2 curve and its Kummer surface
Sachi Hashimoto
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Strategy for computing rational points on curves

Upshot: for certain curves X of genus at least 2, by associating
other geometric objects to X, we can explicitly compute a
slightly larger (but importantly, finite) set of points containing
X(Q), and then (hopefully) use this set to determine X(Q).

I This story starts with the Chabauty–Coleman method.
I We will use a generalization of this (nonabelian Chabauty, a

program initiated by Kim) to understand rational points
on the cursed curve.
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Chabauty’s theorem

Theorem (Chabauty, ’41)
Let X be a curve of genus g > 2 over Q. Suppose the Mordell-Weil
rank r of J(Q) is less than g. Then X(Q) is finite.

I Coleman (1985) made Chabauty’s
theorem effective by re-interpreting
this result in terms of p-adic line
integrals of regular 1-forms.

I In fact, by counting the number of
zeros of such an integral, Coleman
gave the bound

#X(Q) 6 #X(Fp) + 2g − 2.
Robert Coleman

MFO
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The method of Chabauty–Coleman

Let p > 2 be a prime of good reduction for X. The map
H0(JQp ,Ω1) −→ H0(XQp ,Ω1) induced by ι is an isomorphism of
Qp-vector spaces. SupposeωJ restricts toω.

Then for Q, Q ′ ∈ X(Qp), define∫Q ′

Q
ω :=

∫ [Q ′−Q]

0
ωJ.

If r < g, there existsω ∈ H0(XQp ,Ω1) such that∫P

b
ω = 0

for all P ∈ X(Q). Thus by studying the zeros of
∫
ω, we can find

a finite set of p-adic points containing the rational points of X.
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Recap of the method (+bonus observations)
Given a curve X/Q of genus g > 2, embed it inside its Jacobian J
and consider the rank r of J(Q).
I If r < g, we can use the Chabauty–Coleman method to

compute a regular 1-form whose p-adic (Coleman) integral
vanishes on rational points.

I By studying the zeros of this integral, Coleman gave the
bound

#X(Q) 6 #X(Fp) + 2g − 2.
I This bound can be sharp in practice, as in the triangle

example:
I There g = 2, r = 1; taking p = 5 gave #X(Fp) = 8 and thus

#X(Q) 6 10.
I Regardless, the Coleman integral cuts out a finite set of

p-adic points; this set contains X(Q) as a subset.
I Even when the bound is not sharp, we can often combine

Chabauty–Coleman data at multiple primes (Mordell–Weil
sieve) to extract X(Q).
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Computing rational points via Chabauty–Coleman

We have

X(Q) ⊂ X(Qp)1 :=

{
z ∈ X(Qp) :

∫ z

b
ω = 0

}
for a p-adic line integral

∫∗
b ω, withω ∈ H0(XQp ,Ω1).

We would like to compute an annihilating differentialω and
then calculate the finite set of p-adic points X(Qp)1 .
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Example: Chabauty–Coleman with g = 2, r = 1
Suppose we have a genus 2 curve X/Q with rk J(Q) = 1 and
X(Q) , ∅. Fix a basepoint b ∈ X(Q).
I We know H0(XQp ,Ω1) = 〈ω0,ω1〉.
I Since r = 1 < 2 = g, we can compute X(Qp)1 as the zero set

of a p-adic integral.
I If we know one more point P ∈ X(Q), we can compute the

constants A, B ∈ Qp:∫P

b
ω0 = A,

∫P

b
ω1 = B,

then solve the equation

f (z) :=
∫ z

b
(Bω0 − Aω1) = 0

for z ∈ X(Qp).
I The set of such z is finite, and X(Q) is contained in this set.
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p-adic integration
Coleman integrals are p-adic line integrals.

P
P’ Q’

“Tiny” integral?

p-adic line integration is difficult – how do we construct the
correct path?
I We can construct local (“tiny”) integrals easily, but

extending them to the entire space is challenging.
I Coleman’s solution: analytic continuation along Frobenius,

giving rise to a theory of p-adic line integration satisfying
the usual nice properties: linearity, additivity, change of
variables, fundamental theorem of calculus.
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For which curves X do we want to compute X(Q)?

There are a number of fundamental questions in number theory
that come from moduli problems, in particular, understanding
rational points on modular curves, e.g.:

Theorem (Mazur, 1977)
If E/Q is an elliptic curve, and P ∈ E(Q) has finite order N, then
N ∈ {1, . . . , 10, 12}.

Idea: Find the rational points on the modular curve X1(N).
I Non-cuspidal points in X1(N)(Q) correspond to elliptic

curves E/Q with a point P ∈ E(Q) of order N.
I So Mazur’s theorem is equivalent to the assertion that

X1(N)(Q) consists only of cusps if N = 11 or N > 13.
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Residual Galois representations

Let E/Q be an elliptic curve, ` a prime number.
I GQ := Gal(Q/Q) acts on the `-torsion points E[`].
I Fixing a basis of E[`] � (Z/`Z)2, get a Galois representation

ρ̄E,` : GQ → Aut(E[`]) � GL2(F`)

Theorem (Serre, 1972)
If E does not have complex multiplication, then ρ̄E,` is surjective for
`� 0.
Serre’s uniformity problem: Does there exist an absolute
constant `0 such that ρ̄E,` is surjective for every non-CM elliptic
curve E/Q and every prime ` > `0?

Folklore: `0 = 37 should work.

Jennifer Balakrishnan, Boston University Rational points on the cursed curve 19



Residual Galois representations

Let E/Q be an elliptic curve, ` a prime number.
I GQ := Gal(Q/Q) acts on the `-torsion points E[`].
I Fixing a basis of E[`] � (Z/`Z)2, get a Galois representation

ρ̄E,` : GQ → Aut(E[`]) � GL2(F`)

Theorem (Serre, 1972)
If E does not have complex multiplication, then ρ̄E,` is surjective for
`� 0.

Serre’s uniformity problem: Does there exist an absolute
constant `0 such that ρ̄E,` is surjective for every non-CM elliptic
curve E/Q and every prime ` > `0?

Folklore: `0 = 37 should work.

Jennifer Balakrishnan, Boston University Rational points on the cursed curve 19



Residual Galois representations

Let E/Q be an elliptic curve, ` a prime number.
I GQ := Gal(Q/Q) acts on the `-torsion points E[`].
I Fixing a basis of E[`] � (Z/`Z)2, get a Galois representation

ρ̄E,` : GQ → Aut(E[`]) � GL2(F`)

Theorem (Serre, 1972)
If E does not have complex multiplication, then ρ̄E,` is surjective for
`� 0.
Serre’s uniformity problem: Does there exist an absolute
constant `0 such that ρ̄E,` is surjective for every non-CM elliptic
curve E/Q and every prime ` > `0?

Folklore: `0 = 37 should work.

Jennifer Balakrishnan, Boston University Rational points on the cursed curve 19



Serre’s Uniformity Problem

Idea: To show that ρ̄E,` is surjective, show that im(ρ̄E,`) is not
contained in a maximal subgroup of GL2(F`). These are

1. Borel subgroups
2. Exceptional subgroups
3. Normalizers of split Cartan subgroups
4. Normalizers of non-split Cartan subgroups

Idea: For a maximal G ⊂ GL2(F`), there is a modular curve
XG/Q such that non-cuspidal points in XG(Q) correspond to
elliptic curves E/Q with im(ρ̄E,`) ⊂ G.
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The cursed modular curve

All normalizers of split Cartan G ⊂ GL2(F`) are conjugate, so
all corresponding XG = X(`)/G are isomorphic. Denote
Xs(`) = XG.

Theorem (Bilu-Parent 2011, Bilu-Parent-Rebolledo 2013)
We have Xs(`)(Q) = {cusps, CM-points} for ` > 11, ` , 13.

What goes wrong at ` = 13? Bilu-Parent-Rebolledo refer to
` = 13 as the “cursed” level; crucial to their method is Mazur’s
method for integrality of non-cuspidal rational points, using
the following:

Jac(Xs(`)) ∼ Jac(X+
0 (`2)) ∼ J0(`)× Jac(Xns(`))
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Curses of the cursed curve

We have

Jac(Xs(`)) ∼ Jac(X+
0 (`2)) ∼ J0(`)× Jac(Xns(`))

I Mazur’s method applies whenever J0(`) , 0, which is the
case for ` = 11 and ` > 17.

I But for ` = 13, we have J0(13) = 0.
I Curse #1: We thus have Jac(Xs(13)) ∼ Jac(Xns(13)) and

Jac(Xs(13)) is absolutely simple.
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Curses of the cursed curve, continued
Curse #2: Baran found an explicit smooth plane quartic model
and showed

Xs(13) 'Q Xns(13),

its non-split analogue. (No modular explanation for this!)

Baran’s model for Xs(13) :

X : x3y+x3z−2x2y2−x2yz+xy3−xy2z+2xyz2−xz3−2y2z2+3yz3 = 0.

Visualizations of the cursed curve
JB and Sachi Hashimoto

Question: Can we use Chabauty–Coleman to compute X(Q)?

Curse #3: r = rk J(Q) > 3 = g.
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Beyond Chabauty–Coleman
Do we have any hope of doing something like
Chabauty–Coleman when r > g?
I Conjecturally, yes, via Kim’s nonabelian Chabauty

program.
I Instead of using the Jacobian of X and abelian integrals,

use nonabelian geometric objects associated to X, which carry
iterated Coleman integrals.

I These iterated integrals cut out Selmer varieties, which
give a sequence of sets

X(Q) ⊂ · · · ⊂ X(Qp)n ⊂ X(Qp)n−1 ⊂ · · · ⊂ X(Qp)2 ⊂ X(Qp)1

where the depth n set X(Qp)n is given by equations in
terms of n-fold iterated Coleman integrals∫P

b
ωn · · ·ω1.

I Note that X(Qp)1 is the classical Chabauty–Coleman set.
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Nonabelian Chabauty

Conjecture (Kim, ’12)
For n� 0, the set X(Qp)n is finite.

This is implied by the Bloch-Kato conjectures.

Questions:
I When can X(Qp)n be shown to be finite?
I For which classes of curves can nonabelian Chabauty be

used to prove Faltings’ theorem?
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Finiteness of X(Qp)n

Theorem (Coates–Kim ’10)
For X/Q with CM Jacobian, for n� 0, the set X(Qp)n is finite.

Theorem (Ellenberg–Hast ’17)
Can extend the above to give a new proof of Faltings’ theorem for
curves X/Q that are solvable Galois covers of P1.

Theorem (B.–Dogra ’16)
For X/Q with g > 2 and

r < g + rk NS(JQ) − 1,

the set X(Qp)2 is finite.

So when can we explicitly compute X(Qp)2? We call this
quadratic Chabauty.
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Quadratic Chabauty: Q-points and p-adic heights

Want to use “quadratic Chabauty” to compute X(Qp)2, a finite
set of p-adic points that contains all rational points on X for
certain curves that have r = g
I We know that X(Qp)2 is finite when r = g and rk NS(J) > 1.

The difficulty is in making this effective.
I The functions cutting out p-adic points can be expressed in

terms of p-adic heights pairings; the key is to move from
linear relations (as in Chabauty–Coleman) to bilinear
relations.

I These p-adic heights have a natural interpretation in terms
of p-adic differential equations, with relevant constants
computed in terms of known rational points.
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Dictionary between classical and quadratic Chabauty

technique classical Chabauty quadratic Chabauty
hypotheses r < g r = g and rk NS(JQ) > 2

geometry Jacobian Selmer variety
p-adic analysis line integrals iterated path integrals

algebra linear algebra bilinear algebra (heights)
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From classical Chabauty to quadratic Chabauty

Recap: we can think of classical Chabauty as using linear
relations among

∫x
b ω forω ∈ H0(XQp ,Ω1), when r < g, i.e.,

understanding

X(Q)→ X(Qp)
AJb−−→ H0(XQp ,Ω1)∗

x 7→ (ω 7→
∫ x

b
ω).

The simplest generalization of Chabauty–Coleman comes from
considering bilinear relations on H0(XQp ,Ω1)∗ when r = g. This
motivates the notion of a quadratic Chabauty function.
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Quadratic Chabauty function

Definition
A quadratic Chabauty function θ is a function θ : X(Qp)→ Qp
such that:

1. On each residue disk, the map
(AJb, θ) : X(Qp)→ H0(XQp ,Ω1)∗ ×Qp is given by a power
series.

2. There exist
I an endomorphism E of H0(XQp ,Ω1)∗,
I a functional c ∈ H0(XQp ,Ω1)∗, and
I a bilinear form

B : H0(XQp ,Ω1)∗ ⊗H0(XQp ,Ω1)∗ → Qp

such that for all x ∈ X(Q),

θ(x) − B(AJb(x), E(AJb(x)) + c) = 0.
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Quadratic Chabauty functions

Lemma
A quadratic Chabauty function induces a function F : X(Qp)→ Qp
such that F(X(Q)) = 0 and F has finitely many zeros.

I The goal is to make this explicit: need a quadratic
Chabauty function: need an E, c, and need to solve for B.

I Solving for B is very similar to solving for linear relations
in Chabauty–Coleman.

We find quadratic Chabauty functions using p-adic height
functions. As a warm-up, we’ll use p-adic heights to find
integral points on affine hyperelliptic curves when r = g.
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p-adic heights on Jacobians of curves (Coleman-Gross)

The Coleman-Gross p-adic height pairing is a (symmetric)
bilinear pairing

h : Div0(X)×Div0(X)→ Qp,

with h =
∑

v hv

I We have h(D, div(g)) = 0 for g ∈ Q(X)×, so h is
well-defined on J × J.

I The global height decomposes as a finite sum of local
heights h =

∑
v hv over finite primes v

I Construction of local height hv depends on whether v = p
or v , p.

I v , p: intersection theory
I v = p: normalized differentials (with respect to a splitting of

the Hodge filtration on H1
dR(XQp)), Coleman integration
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Quadratic Chabauty (roughly)
Given a global p-adic height h, we study it on rational points:

h︸︷︷︸
bilinear form, rewrite in terms

of locally analytic function
using known rational points

= hp︸︷︷︸
locally analytic function

via p-adic differential equation

+
∑
v,p

hv︸   ︷︷   ︸
takes on finite

number of values
on rational points

(best case: all trivial)

For example, using the Coleman-Gross p-adic height, the
statement of quadratic Chabauty for integral points has, as its
main ideas, (1) computing the local height hp as a double Coleman
integral and (2) controlling the finite number of values∑

v,p

hv(z − b, z − b)

takes on integral points z.

Note: to determine the local height hp, need to compute
Frobenius structure on the relevant p-adic differential equation.
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Quadratic Chabauty for integral points

We use these double and single Coleman integrals to rewrite the
global p-adic height pairing h and to study it on integral points:

h︸︷︷︸
quadratic form, rewrite as a

p-adic analytic function
using Coleman integrals

= hp︸︷︷︸
p-adic analytic function

via double Coleman integral

+
∑
v,p

hv︸   ︷︷   ︸
takes on finite

number of values
on integral points
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Quadratic Chabauty for integral points

Theorem (B.-Besser-Müller)
Let X/Q be a hyperelliptic curve. If r = g > 1 and fi(x) :=

∫x
b ωi for

ωi ∈ H0(XQp ,Ω1) are linearly independent, then there is an
explicitly computable finite set S ⊂ Qp and explicitly computable
constants αij ∈ Qp such that

θ(P) −
∑

06i6j6g−1

αijfifj(P),

takes values in S on integral points, where θ(P) =
∑g−1

i=0

∫P
b ωiω̄i.

This gives a quadratic Chabauty function θ and a finite set of
values S (giving a quadratic Chabauty pair).

How can we use these ideas to study rational points?

Jennifer Balakrishnan, Boston University Rational points on the cursed curve 35



Constructing quadratic Chabauty functions
Main problem generalizing this to rational points: we can’t
control hv(x) for v , p when x is rational but not integral.

Workaround for rational points:
I Construct a quadratic Chabauty function by associating to

points of X certain p-adic Galois representations, and then
take Nekovář p-adic heights.

I Idea is to construct a representation A(x) for every
x ∈ X(Q). Depends on a choice of “nice” correspondence Z
on X. Such a correspondence exists when rk NS(J) > 1.

I Restrict to case of X with everywhere potential good
reduction, then for all v , p, local heights hv(A(x)) are
trivial.

I Compute p-adic height of A(x) via explicit description of
Dcris(A(x)) as a filtered φ-module.
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Quadratic Chabauty for rational points

I Using Nekovář’s p-adic height h, there is a local
decomposition

h(A(x)) = hp(A(x)) +
∑
v,p

hv(A(x))

where
1. x 7→ hp(A(x)) extends to a locally analytic function
θ : X(Qp)→ Qp by Nekovář’s construction and

2. For v , p the local heights hv(A(x)) are trivial since by
assumption, all primes v , p are of potential good reduction

This gives a QCF whose pairing is h and whose endomorphism
is induced by Z.
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Quadratic Chabauty
Suppose X/Q satisfies
I r = g,
I rk NS(JQ) > 1,
I p-adic closure J(Q) has finite index in J(Qp),
I X has everywhere potential good reduction
I and that we know enough rational points Pi ∈ X(Q).

If we can solve the following problems, we have an algorithm
for computing a finite subset of X(Qp) containing X(Q):

1. Expand the function x 7→ hp(A(x)) into a p-adic power
series on every residue disk.

2. Evaluate h(A(Pi)) for the known rational points Pi ∈ X(Q).
Note that since we are assuming we have everywhere
potentially good reduction, we have

h(A(x)) = hp(A(x)),

i.e., the second problem is subsumed by the first.
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High-level strategy: QC for the cursed curve
Practical matters:
I Show that Xs(13) has r = 3.
I Make a small change of coordinates to work with the

following curve X:

Q(x, y) = y4 + 5x4 − 6x2y2 + 6x3z + 26x2yz + 10xy2z −
10y3z − 32x2z2 − 40xyz2 + 24y2z2 + 32xz3 − 16yz3 = 0

so that we have enough (5 of the known) rational points in
each of two affine patches.

I Since rk NS(JQ) = 3, we have two independent nontrivial
nice correspondences Z1, Z2 on X; we compute equations
for 17-adic heights hZ1 , hZ2 on X

I Check the simultaneous solutions of the above two
equations...are they precisely on the 7 known rational
points?!
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Rational points on Xs(13)

Theorem (B.–Dogra–Müller–Tuitman–Vonk)
We have |Xs(13)(Q)| = 7.

This completes the classification of rational points on split
Cartan curves by Bilu–Parent–Rebolledo.

By the work of Baran, we know Xs(13) is isomorphic to Xns(13)
over Q, so we also get (for free) that |Xns(13)(Q)| = 7.
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Does the curse continue?
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Does the curse continue?
Consider the following smooth plane quartic:

XS4(13) : 4x3y − 3x2y2 + 3xy3 − x3z + 16x2yz − 11xy2z+

5y3z + 3x2z2 + 9xyz2 + y2z2 + xz3 + 2yz3 = 0.

I Via Mazur’s Program B: the last remaining modular curve
of level 13n whose rational points have not been
determined.

I There are 4 known rational points computed by Banwait
and Cremona: (1 : 3 : −2) , (0 : 0 : 1) , (0 : 1 : 0) , (1 : 0 : 0).

I The rank of the Jacobian is 3 since its Jacobian is isogenous
to Xs(13).

I We have potential good reduction at p = 13.

Theorem (BDMTV)
XS4(13)(Q) = {(1 : 3 : −2) , (0 : 0 : 1) , (0 : 1 : 0) , (1 : 0 : 0)}.
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