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Complex multiplication and real quadratic fields

The values of modular forms at CM points, indexed by ideal classes
of imaginary quadratic orders, are of great arithmetic interest.

They generate explicit class fields of imaginary quadratic fields,
and give several basic instances of “Euler systems”: Elliptic units,
and Heegner points. (Cf. the lectures of Ye Tian and Chris Skinner
on the first day.)

Question: Is there a similar theory when quadratic imaginary fields
are replaced by real quadratic fields?

Hope: The theory of complex multiplication does extend to this
setting, after replacing classical modular forms by less familiar
avatars: so-called rigid analytic or meromorphic cocycles.



Origins: p-adic uniformisation and Cerednik-Drinfeld

H := Q[1, i , j , k], the skew field of rational Hamilton quaternions;

R := Z[1, i , j , 1+i+j+k
2 ] Hurwitz’s maximal order.

Let Γ := (R[1/p])×1 .

Jacquet-Langlands: The first cohomology H1(Γ,Q) is
(non-canonically) isomorphic to S2(Γ0(2p))new as a Hecke module.

Modularity: If E is an elliptic curve over Q of conductor 2p, there
is a Hecke eigenclass ϕE ∈ H1(Γ,Z) satisfying

T`(ϕE ) = a`(E ) · ϕE , for all ` 6= 2, p,

where a`(E ) = `+ 1−#E (Z/`Z).



Rigid analytic functions

The cocycle ϕE encodes the periods of a rigid analytic function.

Let Hp := P1(Cp)− P1(Qp) be Drinfeld’s p-adic upper half-plane.

For z := (z1:z2) ∈ P1(Cp) with z1, z2 ∈ (O2
Cp

)′,

H≥εp :=
{
z with |az1 − bz2| ≥ ε, for all (a, b) ∈ (Z2

p)′
}
,

Hp =
⋃
ε>0

H≥εp .

Definition. A function on Hp is rigid analytic if its restriction to all
H≥εp is a uniform limit of rational functions with poles outside H≥εp .

When p is an odd prime, fixing H⊗Qp = M2(Qp), the group Γ
acts discretely on Hp by Möbius transformations.



Trivialising the one-cocycle ϕE

A× := group of nowhere vanishing rigid analytic functions on Hp.

Theorem. (Mumford-Tate, Cerednik-Drinfeld). Let qE be the
Tate period of E/Qp

. Then there is a rigid analytic function
JE ∈ A× satisfying

JE (γz)/JE (z) = q
ϕE (γ)
E , for all γ ∈ Γ.

The function JE ∈ H0(Γ,A×/qZE ) gives a modular parametrisation
from the Shimura curve of level 2p to E :

JE : Γ\Hp −→ C×p /qZE = E (Cp).



Heegner points arising from Shimura curves

Definition. A CM point of Hp is a point τ satisfying
StabH×(τ) = K×, where K is a quadratic subfield of H.
(Necessarily, K is imaginary, and 2 and p are non-split.)

Theorem. If ∆ is a degree 0 divisor on Hp supported on CM
points attached to K , then

JE (∆) ∈ E (Cp)

is algebraic, and defined over a ring class field of K .

The numerical calculation of JE (∆) can be carried out efficiently
on a computer, thanks to ideas of Pollack-Stevens and Matthew
Greenberg.



p-adic uniformisation via SL2(Z[1/p])

Let Γ = SL2(Z[1/p]), acting on Hp by Mobius transformations.

It does not act discretely, and H1(Γ,Q) = 0.

The interesting cohomology occurs in degree 2.

Because Γ = SL2(Z) ∗Γ0(p) SL2(Z),

H2(Γ,Q) = H1(Γ0(p),Q) as a Hecke module.

Modularity: If E is an elliptic curve over Q of conductor p, there
is a Hecke eigenclass ϕE ∈ H2(Γ,Z) satisfying

T`(ϕE ) = a`(E ) · ϕE , for all ` 6= p.



Trivialising the two-cocyle ϕE

Theorem. (D, 2000). There is a one-cochain JE : Γ −→ A×
satisfying, for all γ1, γ2 ∈ Γ:

JE (γ1)× JE (γ1γ2)−1 × γ1(JE (γ2)) = q
ϕE (γ1,γ2)
E .

This theorem is a formal consequence of a 1986 conjecture of
Mazur, Tate and Teitelbaum, proved by Greenberg-Stevens in
1990. Thus, it was proved 10 years before it was stated!

Key ingredient in Greenberg-Stevens: p-adic deformations of
modular forms and Galois representations, and Galois cohomology.

This proof differs markedly from that of Cerednik-Drinfeld, which
relies on more geometric ideas.



Rigid analytic cocycles

Definition. The class of JE in H1(Γ,A×/qZE ) is called the rigid
analytic cocycle attached to E .

For τ ∈ Hp, there is an evaluation map evτ : A× −→ C×p ,

evτ : H1(Γ,A×/qZE ) −→ H1(Γτ ,C×p /qZE ).

If Γτ = 1, the target is trivial. It is non-trivial when Γτ ' Z,
which occurs precisely when Q(τ) is real quadratic.

JE [τ ] := JE (γτ )(τ), 〈γτ 〉 = StabΓ(τ).

This quantity is called the value of JE at the RM point τ .



Stark-Heegner points

Conjecture (D, 2000)

If τ is an RM point and F = Q(τ), then JE [τ ] is a global point on
E , defined over a ring class field of F .

The RM values JE [τ ] are called Stark-Heegner points: they are to
Heegner points what Stark units are to elliptic units.

The “Stark-Heegner point conjecture” touches on the basic
mystery of constructing algebraic points on elliptic curves, and
remains completely open.



The Dedekind-Rademacher cocycle

Samit Dasgupta’s thesis (2004): The group
H2(Γ,Z) = H1(Γ0(p),Z) contains a class ϕDR that is Eisenstein,
the Dedekind Rademacher homomorphism encoding the periods of
the modular unit ∆(pz)/∆(z).

Theorem. (Samit Dasgupta, D, 2003; Jan Vonk, D, 2018). There
is a one-cochain JDR : Γ −→ A× satisfying, for all γ1, γ2 ∈ Γ:

JDR(γ1)× JDR(γ1γ2)−1 × γ1(JDR(γ2)) = pϕDR
(γ1,γ2).

Its image in H1(Γ,A×/pZ) is the Dedekind-Rademacher cocycle.



The RM values of the Dedekind-Rademacher cocycle

Conjecture (Dasgupta, D, 2003)

If τ is an RM point and F = Q(τ), then JDR[τ ] is a global p-unit
in a ring class field of F .

This conjecture is much more tractable than the conjecture on
Stark-Heegner points!

There is now substantial theoretical evidence for it.



Gross-Stark units

The conjectural p-units JDR[τ ] can be related to Gross-Stark units.

F = Q(τ), ψ : Cl+(F ) −→ C the indicator function of [1, τ ].

L(F , ψ, s) =
∑

I�OF
ψ(I )Nm(I )−s ,

Lp(F , ψ, s) = the associated Deligne-Ribet p-adic L-function.

J+
DR[τ ] := JDR[τ ]× JDR[τ ′] = NormQp(τ)/Qp

JDR[τ ].

Theorem (Dasgupta, D, 2003)

The quantity logp(J+
DR[τ ]) is equal to L′p(F , ψ, 0), and hence its

algebraicity follows from the p-adic Gross-Stark conjecture.



Dasgupta’s thesis

Theorem (Dasgupta, D, 2003)

The quantity logp(J+
DR[τ ]) is equal to L′p(F , ψ, 0), and hence its

algebraicity follows from the p-adic Gross-Stark conjecture.

The original proof in Dasgupta’s thesis relies on a direct
comparison between J+

DR[τ ] and L′p(F , ψ, 0), expressing
Lp(F , ψ, 1− k) in terms of the p-adic Mellin transform of a
measure, à la Cassou-Noguès.

It has been extended, notably by Pierre Charollois and Samit
Dasgupta, to arbitrary totally real F .

I will now describe an alternate approach inspired by Siegel’s proof
of the rationality of L(F , ψ, 1− k)



The winding cocycle

Let [a, b; c , d ] := (a−c)(b−d)
(a−d)(b−c) be the cross-ratio.

For z1, z2 ∈ H∗, [z1, z2] := hyperbolic segment from z1 to z2.

[z1, z2] · [z3, z4] ∈ {−1, 0, 1}:= intersection product.

Fix base points ξ ∈ H and η ∈ Hp.

Proposition (Pozzi, Vonk, D)

The infinite product

Jw (γ)(z) :=
∏
γ∈Γ

[z , η;α0, α∞][α0,α∞]·[ξ,γξ]

converges to a rigid analytic function on Hp and satisfies

Jw (γ1γ2) = Jw (γ1)× γ1 · Jw (γ2) (mod C×p ).



Spectral expansion of the winding cocycle

Unlike the Dedekind-Rademacher cocycle, the winding cocycle is
not a Hecke eigenclass.

Proposition (Pozzi, Vonk, D)

The winding cocycle admits an expansion

Jw = JDR +
∑
f

L(f , 1)

Ω+
f

Jf ,

where the sum ranges over a basis of newforms in S2(Γ0(p)).

Corollary. The generating series

C +
∞∑
n=1

logp(Jw [Tnτ ])qn, with C =
(1− p)

12
logp JDR[τ ],

is a modular form of weight two on Γ0(p).



Hilbert modular Eisenstein series

Hilbert Modular Eisenstein series of parallel weight k on SL2(OF ):

Ek(1, ψ) := ck + 4
∑

ν∈d−1
+
σk−1,ψ(νd) exp(2πi(ν1z1 + ν2z2)),

ck = L(F , ψ, 1− k), σk−1,ψ(α) :=
∑

I |(α) ψ(I )Nm(I )k−1.

p-stabilised Eisenstein series on Γ0(pOF ):

E
(p)
k (1, ψ) := c

(p)
k + 4

∑
ν∈d−1

+
σ

(p)
k−1,ψ(νd) exp(2πi(ν1z1 + ν2z2)),

c
(p)
k = Lp(F , ψ, 1− k), σ

(p)
k−1,ψ(α) :=

∑
p 6 | I |(α) ψ(I )Nm(I )k−1.

The fourier coefficients of E
(p)
k (1, ψ) extend to p-adic analytic

functions of the variable k .



Diagonal restrictions

Let Gk(ψ) := the diagonal restriction of E
(p)
k (1, ψ).

Gk(ψ) ∈ M2k(Γ0(p)).

Theorem (Alice Pozzi, Jan Vonk, D)

When p is inert in F , the modular form G1(ψ) vanishes identically.
The derivative

G ′1(ψ) :=
d

dk
(Gk(ψ))k=1 = L′p(F , ψ, 0) +

∞∑
n=1

anq
n

is a p-adic modular form satisfying, for all n with (p, n) = 1,

lim
t→∞

a(npt) = logp(J+
w [Tnτ ]).



Generating series and the winding cocycle

Let eord := limUn!
p be the ordinary projection.

The modular form eordG
′
1(ψ) has fourier expansion given by

eordG
′
1(ψ) = L′p(F , ψ, 0) +

∞∑
n=1

logp(TnJ
+
w [τ ])qn ∈ M2(Γ0(p)).

On the other hand, we had already shown that

(1− p)

12
logp J

+
DR[τ ] +

∞∑
n=1

logp(TnJ
+
w [τ ])qn is in M2(Γ0(p)).

It follows that L′p(F , ψ, 0) = (1−p)
12 logp J

+
DR[τ ].

This approach is reminiscent of the “analytic proof” of the
theorem of Gross-Zagier on factorisations of singular moduli.



The Gross-Stark conjecture

The algebraicity of JDR[τ ] now follows from Gross’s p-adic
analogue of the Stark conjecture.

This conjecture turns out to be far more tractable than its
archimedean counterpart.

Theorem (Dasgupta, Rob Pollack, D, (2007))

The p-adic Gross-Stark conjecture is true. In particular, J+
DR[τ ] is,

up to torsion, a p-unit in the narrow Hilbert class field of F .

The proof is based on a careful analysis of the p-adic cuspidal
deformations of E1(1, ψ) in the parallel weight direction, and of
their associated p-adic Galois representations.



Removing the norm

Problem: The algebraicity of J+
DR[τ ] implies that JDR[τ ] is also

algebraic, but only up to multiplication by elements of Q×
p2 of norm

one.

It would be desirable to do away with this ambiguity, which is built
into the Gross-Stark conjecture.

Recent work of Samit Dasgupta and Mahesh Kakde achieves
remarkable progress in this direction.



The work of Samit Dasgupta and Mahesh Kakde

Theorem (Dasgupta, Mahesh Kakde (2019))

The algebraicity of JDR[τ ] up to torsion follows from Gross’s
“tame refinement” of the Gross-Stark conjecture.

The argument employed in the proof is reminiscent of the
“tame-patching technique” of Taylor-Wiles.

Theorem (Dasgupta, Mahesh Kakde (2019))

Gross’s tame refinement in true.

The proof is based on a careful analysis of the tame deformations
of E1(1, ψ), and of their associated mod pn Galois representations.



An alternate approach to Dasgupta-Kakde

The study of the diagonal restriction of the p-adic family of Hilbert
modular Eisenstein series can be refined, to consider the
antiparallel deformations of the Eisenstein series of weight one.

This leads to an alternate proof of the theorem of Dasgupta-Kakde,
which is “purely p-adic” and does not require tame deformations.

This is the content of a joint work in progress with Alice Pozzi and
Jan Vonk.



p-adic deformations of Hilbert Eisenstein series

Theorem (Alice Pozzi, Jan Vonk, D, (2019))

There is an infinitesimal p-adic deformation E ′1(ψ) of E1(1, ψ) in
the antiparallel weight direction satisfying:

• a0(E ′1(ψ)) = logp(uτ ) where uτ := Gross-Stark unit;

• eord(E ′1(ψ)|Diag) = logp(JDR[τ ])E
(p)
2 (z) +

∑
f

λf · f ,

where the sum runs over a newform basis of S2(Γ0(p)) and
λf = logp(Jf [τ ])L(f , 1).

Comparing constant terms, JDR[τ ]
(p−1)

12 = uτ (mod tors).



The key ingredient, again

The approaches of Dasgupta-Pollack-D + Dasgupta-Kakde, and of
Pozzi-Vonk-D differ in several key respects,

However, they all rest crucially on p-adic deformations of modular
forms and Galois representations, Galois cohomology, and global
class field theory.

This is just like the work of Greenberg and Stevens, and indeed,
much of our theoretical understanding of the emerging theory of
“real multiplication” is based on these notions.

A more geometric approach would be of great interest!



Beyond L-functions?

As Chris remarked in his lecture, we seem to be better at
constructing unramified rather than ramified invariants.

Philosophical justification. Elliptic units are related to special
values of L-functions, via the Kronecker limit formula.

On the other hand, singular moduli – the values of meromorphic
modular functions, like j(z), at CM points – are algebraic numbers
with highly non-trivial factorisations.

Our belief that the values of rigid analytic cocycles, leading to
Stark-Heegner points and Gross-Stark units, have a geometric
underpinning would be reinforced by a convincing counterpart of
singular moduli in this setting.



Rigid meromorphic cocycles

Definition (Jan Vonk, D, 2018) A rigid meromorphic cocycle is a
class in H1(Γ,M×), where M× is the multiplicative group of rigid
meromorphic functions on Hp.

Whereas H1(Γ,A×/C×p ) is a finitely generated Z-module (of rank
roughly p

12 ), the group H1(Γ,M×) is infinitely generated.

Hope. If J is a suitable rigid meromorphic cocycle, the RM values
J[τ ] lead to real quadratic analogues of singular moduli, with
interesting “Gross-Zagier style” factorisations.



The classification of rigid meromorphic cocycles

Let Γ∞ := StabΓ(∞) ⊂ Γ, and S the standard matrix of order 2 in
SL2(Z).

Theorem (Jan Vonk, D, 2018) Let J be a rigid meromorphic
cocycle satisfying J(Γ∞) = 1. Then J is completely determined by
its value at S , a finite product

J(S) =
∏

τ∈Γ\HRM
p

ατ (z)nτ ,

where ατ (z) is a rigid meromorphic function having its zeroes
(resp. poles) at the negative norm elements of Γ · τ that are
positive (resp. negative).

The finite formal sum
∑

τ nτ · (τ) ∈ Div(Γ\HRM
p ) is called the

divisor of J.



A real quadratic Borcherds lift

Let −∆ be a fundamental discriminant which is a square mod p.

Theorem. (Jan Vonk, D). Let φ :=
∑

n>>−∞ cφ(n)qn ∈ M !!
1/2(4p)

be a weakly holomorphic modular form with integer fourier
coefficients and poles only at ∞. There is a unique rigid
meromorphic cocycle J−∆,φ ∈ H1(Γ,M×) satisfying

Divisor(J−∆,φ) =
∑

D≡0,3
(mod 4)

cφ(−D)

 ∑
τa∈Γ\H∆D

p

χ−∆,−D(a)[τa]

 ,

with the outer sum running over the D satisfying
(
−D
p

)
6= 1.

The rigid meromorphic cocycle J−∆,φ is called the real quadratic
Borcherds lift attached to −∆ and φ.



Real quadratic singular moduli

Conjecture (Vonk, D, 2019) Let J be a real quadratic Borcherds
lift, and τ an RM point. The value J[τ ] belongs to the narrow ring
class field associated to τ , and admits an explicit factorisation
depending on Divisor(J) and τ .

Strategy for proving this conjecture:

1. Show that J[τ ] can be packaged in generating series that are
“p-adic mock modular forms”. (Over C: Gross-Zagier,
Kudla-Rapoport-Yang, Jan Bruinier, Bill Duke, Yingkun Li,
Stephan Ehlen, Maryna Viazovska, . . .)

2. Use the p-adic deformation theory of modular forms and Galois
representations to relate the fourier coefficients of these mock
modular forms to logarithms of algebraic numbers.
(Lauder-Rotger-D, Rotger-Rivero, . . . )



Summary

CM Theory RM Theory

H Hp

SL2(Z) SL2(Z[1/p])

Modular functions Rigid meromorphic cocycles

CM points RM points

Heegner points Stark-Heegner points

Elliptic units Gross-Stark units

Singular moduli RM values of rigid meromorphic cocycles



Conclusion

The approach to “real multiplication”, based on p-adic
deformations of modular forms and Galois representations, leads to
a good understanding of the Dedekind-Rademacher cocycle, and of
the RM values of rigid meromorphic cocycles.

Yet it is not at all satisfying: the algebraicity of Stark-Heegner
points remains wide open.

Question. Is there a geometric interpretation for rigid
meromorphic cocycles, making the algebraicity of their RM values
apparent?

The factorisation patterns of real quadratic singular moduli
reinforce the hope that such an interpretation should exist.



Thank you for your attention!


