2^{k}-Selmer groups and Goldfeld's conjecture

Alexander Smith

23 July 2019

Congruent numbers

Definition

A positive integer d is called a congruent number if it is the area of a right triangle with rational side lengths.

Alternatively, a positive integer d is a congruent number if and only if the elliptic curve

$$
E_{C N}^{d}: y^{2}=x^{3}-d^{2} x
$$

has positive rank.
Theorem (S. 2017)
Among the positive integers equal to 1,2 , or 3 mod 8 , the congruent numbers have zero natural density.

Goldfeld's conjecture

Definition

Given an elliptic curve

$$
E: y^{2}=x^{3}+a x+b
$$

defined over \mathbb{Q}, and given a positive integer d, the quadratic twist E^{d} is defined to be the curve

$$
E^{d}: y^{2}=x^{3}+d^{2} a x+d^{3} b
$$

Conjecture (Goldfeld 1979)
Given any elliptic curve E / \mathbb{Q},

- 50% of the quadratic twists of E have rank zero,
- 50% of the quadratic twists of E have rank one, and
- 0\% have any higher rank.

Selmer groups

Given an elliptic curve E / \mathbb{Q} and a positive integer n, we have an exact sequence

$$
0 \rightarrow E[n] \rightarrow E \rightarrow E \rightarrow 0
$$

of $G_{\mathbb{Q}}=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ modules. The long exact sequence for group cohomology then gives an isomorphism

$$
\begin{aligned}
E(\mathbb{Q}) / n E(\mathbb{Q}) & \cong \operatorname{ker}\left(H^{1}\left(G_{\mathbb{Q}}, E[n]\right) \longrightarrow H^{1}\left(G_{\mathbb{Q}}, E\right)\right) \\
\subseteq \operatorname{Sel}^{n} E & :=\operatorname{ker}\left(H^{1}\left(G_{\mathbb{Q}}, E[n]\right) \longrightarrow \prod_{V} H^{1}\left(G_{\mathbb{Q}_{V}}, E\right)\right)
\end{aligned}
$$

Define

$$
\operatorname{Sel}^{2^{\infty}} E:=\bigcup_{k \geq 1} i m\left(\operatorname{Sel}^{2^{k}} E \rightarrow H^{1}\left(G_{\mathbb{Q}}, E\left[2^{\infty}\right]\right)\right)
$$

Selmer ranks

Given an elliptic curve E / \mathbb{Q}, we can write the abelian group Sel $^{2 \infty} E$ in the form

$$
(\mathbb{Z} / 2 \mathbb{Z})^{r_{2}(E)-r_{4}(E)} \oplus(\mathbb{Z} / 4 \mathbb{Z})^{r_{4}(E)-r_{8}(E)} \oplus \cdots \oplus\left(\mathbb{Q}_{2} / \mathbb{Z}_{2}\right)^{r_{2} \infty(E)}
$$

with the Selmer ranks $r_{k}(E)$ determined from E.

Facts

- We have $r_{2}(E) \geq r_{4}(E) \geq \cdots \geq r_{2 \infty}(E) \geq \operatorname{rank}(E) \geq 0$.
- (Conjectured) $r_{2} \infty(E)=\operatorname{rank}(E)$.
- The integers $r_{2}(E), r_{4}(E), \ldots, r_{2 \infty}(E)$ all have the same parity.
- The analytic rank of E has this same parity.

The Cassels-Tate pairing is an alternating pairing on $\mathrm{Sel}^{2 \infty} E$ whose kernel is the maximal 2-divisible subgroup of $\mathrm{Sel}^{2^{\infty}} E$.

Heath-Brown's Result

Given $n \geq j \geq 0$, take $P^{\text {Alt }}(j \mid n)$ to be the probability that a uniformly selected $n \times n$ alternating matrix with coefficients in \mathbb{F}_{2} has kernel of rank exactly j. Take

$$
P^{\mathrm{Alt}}(j \mid \infty)=\frac{1}{2} \lim _{n \rightarrow \infty} P^{\mathrm{Alt}}(j \mid 2 n+j)
$$

Theorem (Heath-Brown, '94)
For $r_{2} \geq 0$,

$$
\lim _{N \rightarrow \infty} \frac{\#\left\{0<d<N: r_{2}\left(E_{C N}^{d}\right)=r_{2}\right\}}{N}=P^{\mathrm{Alt}}\left(r_{2} \mid \infty\right)
$$

This was extended to elliptic curves with full rational 2-torsion and no rational cyclic 4-isogeny by Kane.
(WIP) It also holds for elliptic curves with no rational 2-torsion.

Main result

Given $n \geq j \geq 0$, take $P^{\text {Alt }}(j \mid n)$ to be the probability that a uniformly selected $n \times n$ alternating matrix with coefficients in \mathbb{F}_{2} has kernel of rank exactly j.
Take

$$
P^{\mathrm{Alt}}(j \mid \infty)=\frac{1}{2} \lim _{n \rightarrow \infty} P^{\mathrm{Alt}}(j \mid 2 n+j)
$$

Theorem (S.)
Suppose the elliptic curve E / \mathbb{Q} obeys certain technical conditions. Choose $k>1$, and choose a sequence $r_{2} \geq r_{4} \geq \cdots \geq r_{2^{k}} \geq 0$ of integers. Then

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{\#\left\{0<d<N: r_{2}\left(E^{d}\right)=r_{2}, \ldots, r_{2^{k}}\left(E^{d}\right)=r_{2^{k}}\right\}}{N} \\
& \quad=P^{\mathrm{Alt}}\left(r_{2^{k}} \mid r_{2^{k-1}}\right) \cdot P^{\mathrm{Alt}}\left(r_{2^{k-1}} \mid r_{2^{k-2}}\right) \cdots \cdot P^{\mathrm{Alt}}\left(r_{4} \mid r_{2}\right) \cdot P^{\mathrm{Alt}}\left(r_{2} \mid \infty\right)
\end{aligned}
$$

The sequence $r_{2}, r_{4}, \ldots, r_{2^{k}}$ behaves like a Markov process.

Selmer ranks as a Markov chain

Table: Probability that $r_{2^{k}}\left(E^{d}\right)$ equals r.

		r					
		0	1	2	3	4	5
k	1	.21	.42	.28	.08	.01	.00
	2	.35	.49	.15	.01	.00	
	3	.43	.50	.07	.00		
	4	.46	.50	.04			
	5	.48	.50	.02			
	\vdots	\vdots	\vdots	\vdots			
	∞	$\frac{1}{2}$	$\frac{1}{2}$	0	0	0	0

Main consequence

Theorem

Suppose the elliptic curve E / \mathbb{Q} obeys the aforementioned technical conditions. Then, among the quadratic twists E^{d} of E,

- 50% have $r_{2 \infty}$ equal to zero,
- 50% have $r_{2} \infty$ equal to one, and
- 0% have higher $r_{2 \infty}$.

In particular, at least 50% of the twists of E have rank zero, and 100% have rank at most one.

If we assume either the Birch and Swinnerton-Dyer conjecture or the Shafarevich-Tate conjecture, we get Goldfeld's conjecture for curves satisfying the conditions.

Twisting

Given a Galois module M over $G_{\mathbb{Q}}$ and a character

$$
\chi \in \operatorname{Hom}\left(G_{\mathbb{Q}}, \pm 1\right)
$$

we can define a Galois module M^{χ} and a (non-equivariant) isomoprhism $\beta_{\chi}: M^{\chi} \rightarrow M$ so,for σ in $G_{\mathbb{Q}}$ and m in M, we have

$$
\beta_{\chi}(\sigma m)=\chi(\sigma)\left(\sigma \beta_{\chi}(m)\right)
$$

Because $1=-1$ in characteristic two, the map β_{χ} restricts to an isomorphism

$$
M^{\chi}[2]=M[2]
$$

of $G_{\mathbb{Q}}$ modules.

Two is special

Because of the isomorphism

$$
E[2] \cong E^{d}[2]
$$

there is an isomomrphism

$$
H^{1}\left(G_{\mathbb{Q}}, E[2]\right) \cong H^{1}\left(G_{\mathbb{Q}}, E^{d}[2]\right)
$$

We can then think of the 2-Selmer groups of the twists of E as lying in the same ambient space.
This property makes Sel^{2} uniquely approachable. After $\mathrm{Sel}^{2}, \mathrm{Sel}^{4}$ is second best because of the diagram

In cubic twist families, the special Selmer group is the 3-Selmer group.

Class groups

Take $d>1$ and consider $K=\mathbb{Q}(\sqrt{-d})$. Write Δ for the discriminant of K, and define

$$
\mathrm{Cl}^{\vee} K=\operatorname{Hom}(\mathrm{Cl} K, \mathbb{Q} / \mathbb{Z})
$$

We can write

$$
\mathrm{Cl}^{\vee} K\left[2^{\infty}\right]=\operatorname{ker}\left(H^{1}\left(G_{K}, \mathbb{Q}_{2} / \mathbb{Z}_{2}\right) \rightarrow \prod_{\mathfrak{p} \text { of } K} H^{1}\left(I_{K_{\mathfrak{p}}}, \mathbb{Q}_{2} / \mathbb{Z}_{2}\right)\right)
$$

If a divides Δ, the quadratic character for $K(\sqrt{a}) / K$ is in this kernel. Because of these elements, the 2-class torsion tends to grow with d.

Class groups as Selmer groups

Take χ to be the quadratic character associated to $K=\mathbb{Q}(\sqrt{-d})$. With some technical assumptions on Δ, we can write

$$
\begin{aligned}
& 2 \mathrm{Cl}{ }^{\vee} K\left[2^{\infty}\right] \\
& =\operatorname{ker}\left(H^{1}\left(G_{\mathbb{Q}},\left(\mathbb{Q}_{2} / \mathbb{Z}_{2}\right)^{\chi}\right) \rightarrow \begin{array}{l}
\prod_{p \mid \Delta} H^{1}\left(G_{\mathbb{Q}_{p}},\left(\mathbb{Q}_{2} / \mathbb{Z}_{2}\right)^{\chi}\right) \\
\times \prod_{p \nmid \Delta} H^{1}\left(l_{\mathbb{Q}_{p}},\left(\mathbb{Q}_{2} / \mathbb{Z}_{2}\right)^{\chi}\right)
\end{array}\right)
\end{aligned}
$$

We can write $2 \mathrm{Cl} K\left[2^{\infty}\right]$ as a subquotient of $H^{1}\left(G_{\mathbb{Q}},\left(\mu_{2^{\infty}}\right)^{\chi}\right)$. With these identifications, the natural nondegenerate pairing

$$
2 \mathrm{Cl} K\left[2^{\infty}\right] \times 2 \mathrm{Cl}{ }^{\vee} K\left[2^{\infty}\right] \rightarrow \mathbb{Q} / \mathbb{Z}
$$

takes the form of Flach's generalization of the Cassels-Tate pairing. This pairing is non-alternating.

Fouvry and Klüners' result

Given $n \geq j \geq 0$, take $P^{\text {Mat }}(j \mid n)$ to be the probability that a uniformly selected $n \times n$ matrix with coefficients in \mathbb{F}_{2} has kernel of rank exactly j. Take

$$
P^{\mathrm{Mat}}(j \mid \infty)=\lim _{n \rightarrow \infty} P^{\mathrm{Mat}}(j \mid n)
$$

Write $r_{2^{k}}(K)$ for the 2^{k} class rank of the field K.
Theorem (Fouvry and Klüners', '07)
For $r_{4} \geq 0$,

$$
\lim _{N \rightarrow \infty} \frac{\#\left\{0<d<N: r_{4}(\mathbb{Q}(\sqrt{-d}))=r_{4}\right\}}{N}=P^{\mathrm{Mat}}\left(r_{4} \mid \infty\right)
$$

Main result for class groups

Given $n \geq j \geq 0$, take $P^{\mathrm{Mat}}(j \mid n)$ to be the probability that a uniformly selected $n \times n$ matrix with coefficients in \mathbb{F}_{2} has kernel of rank exactly j.
Take

$$
P^{\mathrm{Mat}}(j \mid \infty)=\lim _{n \rightarrow \infty} P^{\mathrm{Mat}}(j \mid n)
$$

Write $r_{2^{k}}(K)$ for the 2^{k} class rank of the field K.
Theorem (S.)
Given a sequence of integers $r_{4} \geq r_{8} \geq \cdots \geq r_{2^{k}} \geq 0$, we have

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{\#\left\{0<d<N: r_{4}(\mathbb{Q}(\sqrt{-d}))=r_{4}, \ldots, r_{2^{k}}(\mathbb{Q}(\sqrt{-d}))=r_{2^{k}}\right\}}{N} \\
& \quad=P^{\mathrm{Mat}}\left(r_{2^{k}} \mid r_{2^{k-1}}\right) \cdot P^{\mathrm{Mat}}\left(r_{2^{k-1}} \mid r_{2^{k-2}}\right) \cdots \cdot P^{\mathrm{Mat}}\left(r_{8} \mid r_{4}\right) \cdot P^{\mathrm{Mat}}\left(r_{4} \mid \infty\right)
\end{aligned}
$$

Class ranks as a Markov chain

Table: Probability that $r_{2^{k}}(\mathbb{Q}(\sqrt{-d}))$ equals r

		r				
		0	1	2	3	4
k	2	.29	.58	.13	.01	.00
	3	.63	.36	.01	.00	
	4	.81	.19	.00		
	5	.91	.09			
6	.95	.05				
	\vdots	\vdots	\vdots			
	∞	1	0	0	0	0

Our first goal will be to give the method for calculating 8-class ranks in some detail.

4-class groups

With $K=\mathbb{Q}(\sqrt{\Delta})=\mathbb{Q}(\sqrt{-d})$, we have isomorphisms

$$
\begin{aligned}
2 \mathrm{Cl}^{\vee} K[4] & \cong \frac{\left\{a \mid \Delta:(a,-\Delta)_{v}=+1 \text { for all } v\right\} \cdot\left(\mathbb{Q}^{\times}\right)^{2}}{\{1, \Delta\} \cdot\left(\mathbb{Q}^{\times}\right)^{2}} \\
2 \mathrm{Cl} K[4] & \cong \frac{\left\{b \mid \Delta:(b, \Delta)_{v}=+1 \text { for all } v\right\} \cdot\left(\mathbb{Q}^{\times}\right)^{2}}{\{1,-\Delta\} \cdot\left(\mathbb{Q}^{\times}\right)^{2}}
\end{aligned}
$$

The pairing

$$
2 \mathrm{Cl}^{\vee} K[4] \times 2 \mathrm{Cl} K[4] \rightarrow \frac{1}{2} \mathbb{Z} / \mathbb{Z}
$$

is given by

$$
(a, b) \mapsto[a, \Delta / a, b]
$$

where [, ,] denotes a Rédei symbol.

Rédei symbols

Suppose a, b, c are nonzero integers satisfying

$$
(a, b)_{\mathbb{Q}, p}=+1 \quad(b, c)_{\mathbb{Q}, p}=+1 \quad(a, c)_{\mathbb{Q}, p}=+1
$$

for all places p of \mathbb{Q}. We also assume c is squarefree and positive. Choose a primitive integer triple (x, y, z) so $x^{2}-b y^{2}=a z^{2}$, and take

$$
L_{a, b}=\mathbb{Q}(\sqrt{a}, \sqrt{b}, \sqrt{x+y \sqrt{b}}) .
$$

For a rational prime p, define

$$
\left(\frac{L_{a, b} / \mathbb{Q}}{p}\right)= \begin{cases}1 / 2 & \text { if } L_{a, b} / \mathbb{Q}(\sqrt{a}, \sqrt{b}) \text { is inert over } p \\ 0 & \text { otherwise }\end{cases}
$$

We then define $[a, b, c]$ in $\frac{1}{2} \mathbb{Z} / \mathbb{Z}$ by

$$
[a, b, c]=\sum_{p \mid c}\left(\frac{L_{a, b} / \mathbb{Q}}{p}\right)+p=2 \text { correction. }
$$

An 8-class computation

$2 \mathrm{Cl}^{\vee} K[4] \cong \underline{\left\{a \mid \Delta: \forall v(a,-\Delta)_{v}=+1\right\}}$ The pairing

$$
2 \mathrm{Cl}^{\vee} K[4] \times 2 \mathrm{CI} K[4] \rightarrow \frac{1}{2} \mathbb{Z} / \mathbb{Z}
$$

$$
2 \mathrm{CIK}[4] \cong \frac{\left\{b \mid \Delta: \forall v(b, \Delta)_{v}=+1\right\}}{\{1,-\Delta\}} . \quad \begin{gathered}
2 \mathrm{Cl} K[4] \times 2 \mathrm{C} \left\lvert\, K[4] \rightarrow \frac{2}{2}\right. \\
\text { sends }(a, b) \text { to }[a, \Delta / a, b] .
\end{gathered}
$$

Fix integers a_{0}, b_{0}, d_{0} so $a_{0}, b_{0} \mid d_{0}$ and $b_{0}, d_{0}>0$.
Take I to be some interval of primes disjoint from those dividing $2 d_{0}$. For every p in I, we assume that

$$
2 \mathrm{Cl}{ }^{\vee} \mathbb{Q}\left(\sqrt{-d_{0} p}\right)[4] \cong\left\langle a_{0} p\right\rangle \quad \text { and } \quad 2 \mathrm{Cl} \mathbb{Q}\left(\sqrt{-d_{0} p}\right)[4] \cong\left\langle b_{0}\right\rangle
$$

$\mathbb{Q}\left(\sqrt{-d_{0} p}\right)$ has 8-class rank zero or one, depending on the value of

$$
[a, \Delta / a, b]=\left[a_{0} p,-d_{0} / a_{0}, b_{0}\right]=\left(\frac{L_{a_{0} p,-d_{0} / a_{0}} / \mathbb{Q}}{b_{0}}\right) .
$$

Rédei reciprocity

We have the identities

$$
\left[a a^{\prime}, b, c\right]=[a, b, c]+\left[a^{\prime}, b, c\right] \quad \text { and } \quad[a, b, c]=[b, a, c] .
$$

We also have

$$
[a, b, c]=[c, b, a] ;
$$

this can be proved as a consequence of Hilbert reciprocity.
We want to control $\left[a_{0} p,-d_{0} / a_{0}, b_{0}\right]$ as p varies over an interval.

$$
\left[a_{0} p,-d_{0} / a_{0}, b_{0}\right]=\left[b_{0},-d_{0} / a_{0}, a_{0} p\right]=C+\left(\frac{L_{b_{0},-d_{0} / a_{0}} / \mathbb{Q}}{p}\right)
$$

The splitting of p in $L_{a, b}$ determines the 8-class rank of $\mathbb{Q}\left(\sqrt{-d_{0} p}\right)$. Because of this, $L_{a, b}$ is sometimes called a governing field.

Limitations of governing fields

- In general, governing fields can be constructed that control the 8-class rank in typical families of fields $\mathbb{Q}\left(\sqrt{-d_{0} p}\right)$.
- Similarly, governing fields can usually be constructed to control the 4-Selmer rank in families of twists $E^{d_{0} p}$.
- (Little problem) Effective Chebotarev only suffices if we either assume GRH or focus on families where the family of p is much larger than d_{0}.
- (Big problem) Governing fields conjecturally do not exist for 16 -class ranks or 8 -Selmer groups.

Avoiding GRH

If we want to use effective Chebotarev, we need to use a governing field that gives less information.
We will just need the identities

$$
\begin{aligned}
& {\left[a a^{\prime}, b, c\right]=[a, b, c]+\left[a^{\prime}, b, c\right] \quad \text { and }} \\
& {\left[a, b b^{\prime}, c\right]=[a, b, c]+\left[a, b^{\prime}, c\right]}
\end{aligned}
$$

Another 8-class computation

Fix integers a_{0}, b_{0}, d_{0} so $a_{0}, b_{0} \mid d_{0}$ and $b_{0}, d_{0}>0$.
Choose three disjoint sets of primes X_{1}, X_{a}, X_{b}. Choosing $p_{a} \in X_{a}$ and $p_{b} \in X_{b}$, we assume

$$
\left(\frac{c}{p_{1}}\right)=\left(\frac{c}{p_{1}^{\prime}}\right) \quad \text { for } c \mid 2 d_{0} p_{a} p_{b}, \quad p_{1}, p_{1}^{\prime} \in X_{1}
$$

We also make the similar assumption for X_{a} and X_{b}. Under these assumptions, the 4-class rank of $K_{\left(p_{1}, p_{a}, p_{b}\right)}=\mathbb{Q}\left(\sqrt{-d_{0} p_{1} p_{a} p_{b}}\right)$ does not depend on the choice of (p_{1}, p_{a}, p_{b}). We assume that we have, for every such tuple,

$$
2 \mathrm{Cl}^{\vee} K_{\left(p_{1}, p_{a}, p_{b}\right)}[4] \cong\left\langle a_{0} p_{a}\right\rangle \quad \text { and } \quad 2 \mathrm{CI} K_{\left(p_{1}, p_{a}, p_{b}\right)}[4] \cong\left\langle b_{0} p_{b}\right\rangle .
$$

Another 8-class computation

$$
\begin{aligned}
& K_{\left(p_{1}, p_{a}, p_{b}\right)}=\mathbb{Q}\left(\sqrt{-d_{0} p_{1} p_{a} p_{b}}\right), \quad\left(p_{1}, p_{a}, p_{b}\right) \in X_{1} \times X_{a} \times X_{b} . \\
& 2 \mathrm{Cl}^{\vee} K_{\left(p_{1}, p_{a}, p_{b}\right)}[4] \cong\left\langle a_{0} p_{a}\right\rangle \quad \text { and } \quad 2 \mathrm{CI} K_{\left(p_{1}, p_{a}, p_{b}\right)}[4] \cong\left\langle b_{0} p_{b}\right\rangle . \\
& r_{8}\left(K_{\left(p_{1}, p_{a}, p_{b}\right)}\right)= \begin{cases}0 & \text { if }\left[a_{0} p_{a},-d_{0} p_{1} p_{b}, b_{0} p_{b}\right]=1 / 2 \\
1 & \text { otherwise. }\end{cases}
\end{aligned}
$$

Choose p_{a}, p_{a}^{\prime} in $X_{a}, p_{1}, p_{1}^{\prime}$ in X_{1}.

$$
\begin{aligned}
{\left[a_{0} p_{a},-d_{0} p_{1} p_{b}, b_{0} p_{b}\right]+\left[a_{0} p_{a},-d_{0} p_{1}^{\prime} p_{b}, b_{0} p_{b}\right] } & =\left[a_{0} p_{a}, p_{1} p_{1}^{\prime}, b_{0} p_{b}\right] \\
{\left[a_{0} p_{a}, p_{1} p_{1}^{\prime}, b_{0} p_{b}\right]+\left[a_{0} p_{a}^{\prime}, p_{1} p_{1}^{\prime}, b_{0} p_{b}\right] } & =\left[p_{a} p_{a}^{\prime}, p_{1} p_{1}^{\prime}, b_{0} p_{b}\right] .
\end{aligned}
$$

So the parity of

$$
r_{8}\left(K_{\left(p_{1}, p_{2}, p_{b}\right)}\right)+r_{8}\left(K_{\left(p_{1}^{\prime}, p_{8}, p_{b}\right)}\right)+r_{8}\left(K_{\left(p_{1}, p_{3}^{\prime}, p_{b}\right)}\right)+r_{8}\left(K_{\left(p_{1}^{\prime}, p_{3}^{\prime}, p_{b}\right)}\right)
$$

is determined from the splitting of p_{b} in $L_{p_{a} p_{a}^{\prime}, p_{1} p_{1}^{\prime}}$.

Relative governing fields

Controling higher class groups

Consider the family

$$
\mathbb{Q}\left(\sqrt{-d_{0} p_{1} p_{2} p_{a} p_{b}}\right), \quad\left(p_{1}, p_{2}, p_{a}, p_{b}\right) \in X_{1} \times X_{2} \times X_{a} \times X_{b}
$$

$$
2 \mathrm{Cl}^{\vee} K_{\left(p_{1}, p_{a}, p_{b}\right)}[4] \cong\left\langle a_{0} p_{a}\right\rangle \quad \text { and } \quad 2 \mathrm{CI} K_{\left(p_{1}, p_{a}, p_{b}\right)}[4] \cong\left\langle b_{0} p_{b}\right\rangle .
$$

If various (quite delicate) hypotheses are satisfied, the parity of

$$
\begin{aligned}
& r_{16}\left(K_{\left(p_{1}, p_{2}, p_{a}, p_{b}\right)}\right)+r_{16}\left(K_{\left(p_{1}^{\prime}, p_{2}, p_{a}, p_{b}\right)}\right) \\
+ & r_{16}\left(K_{\left(p_{1}, p_{2}, p_{a}^{\prime}, p_{b}\right)}\right)+r_{16}\left(K_{\left(p_{1}^{\prime}, p_{2}, p_{a}^{\prime}, p_{b}\right)}\right) \\
+r_{16}\left(K_{\left(p_{1}, p_{2}^{\prime}, p_{a}, p_{b}\right)}\right) & +r_{16}\left(K_{\left(p_{1}^{\prime}, p_{2}^{\prime}, p_{a}, p_{b}\right)}\right) \\
+ & r_{16}\left(K_{\left(p_{1}, p_{2}^{\prime}, p_{a}^{\prime}, p_{b}\right)}\right)+r_{16}\left(K_{\left(p_{1}^{\prime}, p_{2}^{\prime}, p_{a}^{\prime}, p_{b}\right)}\right)
\end{aligned}
$$

is determined by the splitting of p_{b} in a field $L_{p_{a} p_{a}^{\prime}: p_{1} p_{1}^{\prime}, p_{2} p_{2}^{\prime}}$. Etc.

Trilinearity equivalent for elliptic curves

Write

$$
H^{1}\left(G_{\mathbb{Q}}, E\left[2^{k}\right]\right)=C^{1}\left(G_{\mathbb{Q}}, E\left[2^{k}\right]\right) / B^{1}\left(G_{\mathbb{Q}}, E\left[2^{k}\right]\right)
$$

Choose nonzero integers d_{1}, d_{2}, and take

$$
\begin{aligned}
& \phi_{1} \in C^{1}\left(G_{\mathbb{Q}}, E^{d_{1}}[4]\right), \quad \phi_{2} \in C^{1}\left(G_{\mathbb{Q}}, E^{d_{2}}[4]\right), \text { and } \\
& \phi_{12} \in C^{1}\left(G_{\mathbb{Q}}, E^{d_{1} d_{2}}[4]\right) .
\end{aligned}
$$

Suppose

$$
2 \phi_{1}=2 \phi_{2}=2 \phi_{12}
$$

Then

$$
-\phi_{1}-\phi_{2}-\phi_{12} \in C^{1}\left(G_{\mathbb{Q}}, E[4]\right)
$$

Generating 8-Selmer elements

Choose nonzero integers d_{1}, d_{2}, d_{3}, and take

$$
\begin{array}{ll}
\phi_{1} \in C^{1}\left(E^{d_{1}}[8]\right), \quad \phi_{2} \in C^{1}\left(E^{d_{2}}[8]\right), & \phi_{3} \in C^{1}\left(E^{d_{3}}[8]\right), \\
\phi_{12} \in C^{1}\left(E^{d_{1} d_{2}}[8]\right), & \phi_{13} \in C^{1}\left(E^{d_{1} d_{3}}[8]\right), \\
\phi_{23} \in C^{1}\left(E^{d_{2} d_{3}}[8]\right), \\
\phi_{123} \in C^{1}\left(E^{d_{1} d_{2} d_{3}}[8]\right) . &
\end{array}
$$

Suppose $4 \phi_{1}=4 \phi_{2}=4 \phi_{3}=4 \phi_{12}=4 \phi_{13}=4 \phi_{23}=4 \phi_{123}$ and

$$
\begin{aligned}
& 2 \phi_{1}+2 \phi_{12}+2 \phi_{13}+2 \phi_{123} \\
= & 2 \phi_{2}+2 \phi_{12}+2 \phi_{23}+2 \phi_{123} \\
= & 2 \phi_{3}+2 \phi_{13}+2 \phi_{23}+2 \phi_{123}=0 .
\end{aligned}
$$

Then

$$
-\phi_{1}-\phi_{2}-\phi_{3}-\phi_{12}-\phi_{13}-\phi_{23}-\phi_{123} \in C^{1}(E[8])
$$

Generating 8-Selmer elements

Thank you!

