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Congruent numbers

Definition
A positive integer d is called a congruent number if it is the area
of a right triangle with rational side lengths.

Alternatively, a positive integer d is a congruent number if and
only if the elliptic curve

Ed
CN : y2 = x3 − d2x

has positive rank.

Theorem (S. 2017)

Among the positive integers equal to 1, 2, or 3 mod 8, the
congruent numbers have zero natural density.



Goldfeld’s conjecture

Definition
Given an elliptic curve

E : y2 = x3 + ax + b

defined over Q, and given a positive integer d , the quadratic twist
Ed is defined to be the curve

Ed : y2 = x3 + d2ax + d3b.

Conjecture (Goldfeld 1979)

Given any elliptic curve E/Q,

I 50% of the quadratic twists of E have rank zero,

I 50% of the quadratic twists of E have rank one, and

I 0% have any higher rank.



Selmer groups

Given an elliptic curve E/Q and a positive integer n, we have an
exact sequence

0→ E [n]→ E → E → 0

of GQ = Gal(Q/Q) modules. The long exact sequence for group
cohomology then gives an isomorphism

E (Q)
/
nE (Q) ∼= ker

(
H1(GQ, E [n]) −−→ H1(GQ,E )

)
⊆ SelnE := ker

(
H1(GQ, E [n]) −−→

∏
v

H1(GQv ,E )

)
.

Define

Sel2
∞
E :=

⋃
k≥1

im
(

Sel2
k
E → H1 (GQ,E [2∞])

)
.



Selmer ranks

Given an elliptic curve E/Q, we can write the abelian group
Sel2

∞
E in the form

(Z/2Z)r2(E)−r4(E) ⊕ (Z/4Z)r4(E)−r8(E) ⊕ · · · ⊕ (Q2/Z2)r2∞ (E),

with the Selmer ranks rk(E ) determined from E .

Facts

I We have r2(E ) ≥ r4(E ) ≥ · · · ≥ r2∞(E ) ≥ rank(E ) ≥ 0.

I (Conjectured) r2∞(E ) = rank(E ).

I The integers r2(E ), r4(E ), . . . , r2∞(E ) all have the same parity.

I The analytic rank of E has this same parity.

The Cassels-Tate pairing is an alternating pairing on Sel2
∞
E whose

kernel is the maximal 2-divisible subgroup of Sel2
∞
E .



Heath-Brown’s Result

Given n ≥ j ≥ 0, take PAlt(j
∣∣n) to be the probability that a

uniformly selected n × n alternating matrix with coefficients in F2

has kernel of rank exactly j . Take

PAlt(j
∣∣∞) =

1

2
lim
n→∞

PAlt(j
∣∣2n + j).

Theorem (Heath-Brown, ’94)

For r2 ≥ 0,

lim
N→∞

#
{

0 < d < N : r2(Ed
CN) = r2

}
N

= PAlt(r2
∣∣∞)

This was extended to elliptic curves with full rational 2-torsion and
no rational cyclic 4-isogeny by Kane.
(WIP) It also holds for elliptic curves with no rational 2-torsion.



Main result
Given n ≥ j ≥ 0, take PAlt(j

∣∣n) to be the probability that a
uniformly selected n × n alternating matrix with coefficients in F2

has kernel of rank exactly j .
Take

PAlt(j
∣∣∞) =

1

2
lim
n→∞

PAlt(j
∣∣2n + j).

Theorem (S.)

Suppose the elliptic curve E/Q obeys certain technical conditions.
Choose k > 1, and choose a sequence r2 ≥ r4 ≥ · · · ≥ r2k ≥ 0 of
integers. Then

lim
N→∞

#
{

0 < d < N : r2(Ed) = r2, . . . , r2k (Ed) = r2k
}

N

= PAlt(r2k
∣∣r2k−1) · PAlt(r2k−1

∣∣r2k−2) · · · · · PAlt(r4
∣∣r2) · PAlt(r2

∣∣∞)

The sequence r2, r4, . . . , r2k behaves like a Markov process.



Selmer ranks as a Markov chain
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Table: Probability that r2k (E d) equals r .

r
0 1 2 3 4 5

k 1 .21 .42 .28 .08 .01 .00
2 .35 .49 .15 .01 .00
3 .43 .50 .07 .00
4 .46 .50 .04
5 .48 .50 .02

...
...

...
...

∞ 1
2

1
2 0 0 0 0



Main consequence

Theorem
Suppose the elliptic curve E/Q obeys the aforementioned technical
conditions. Then, among the quadratic twists Ed of E ,

I 50% have r2∞ equal to zero,

I 50% have r2∞ equal to one, and

I 0% have higher r2∞ .

In particular, at least 50% of the twists of E have rank zero, and
100% have rank at most one.

If we assume either the Birch and Swinnerton-Dyer conjecture or
the Shafarevich-Tate conjecture, we get Goldfeld’s conjecture for
curves satisfying the conditions.



Twisting

Given a Galois module M over GQ and a character

χ ∈ Hom(GQ,±1),

we can define a Galois module Mχ and a (non-equivariant)
isomoprhism βχ : Mχ → M so,for σ in GQ and m in M, we have

βχ(σm) = χ(σ) (σβχ(m)) .

Because 1 = −1 in characteristic two, the map βχ restricts to an
isomorphism

Mχ[2] = M[2]

of GQ modules.



Two is special
Because of the isomorphism

E [2] ∼= Ed [2],

there is an isomomrphism

H1(GQ,E [2]) ∼= H1(GQ,E
d [2]).

We can then think of the 2-Selmer groups of the twists of E as
lying in the same ambient space.
This property makes Sel2 uniquely approachable. After Sel2, Sel4 is
second best because of the diagram

0 E [2] E [4] E [2] 0

0 Ed [2] Ed [4] Ed [2] 0.

·2
/

·2

In cubic twist families, the special Selmer group is the 3-Selmer
group.



Class groups

Take d > 1 and consider K = Q(
√
−d). Write ∆ for the

discriminant of K , and define

Cl ∨K = Hom (ClK , Q/Z) .

We can write

Cl ∨K [2∞] = ker

H1(GK ,Q2/Z2)→
∏

p of K

H1(IKp ,Q2/Z2)

 .

If a divides ∆, the quadratic character for K (
√
a)/K is in this

kernel. Because of these elements, the 2-class torsion tends to
grow with d .



Class groups as Selmer groups

Take χ to be the quadratic character associated to K = Q(
√
−d).

With some technical assumptions on ∆, we can write

2Cl ∨K [2∞]

= ker

(
H1(GQ, (Q2/Z2)χ)→

∏
p|∆ H1(GQp , (Q2/Z2)χ)

×
∏

p -∆ H1(IQp , (Q2/Z2)χ)

)

We can write 2ClK [2∞] as a subquotient of H1 (GQ, (µ2∞)χ).
With these identifications, the natural nondegenerate pairing

2ClK [2∞]× 2Cl ∨K [2∞]→ Q/Z

takes the form of Flach’s generalization of the Cassels-Tate
pairing.This pairing is non-alternating.



Fouvry and Klüners’ result

Given n ≥ j ≥ 0, take PMat(j
∣∣n) to be the probability that a

uniformly selected n× n matrix with coefficients in F2 has kernel of
rank exactly j . Take

PMat(j
∣∣∞) = lim

n→∞
PMat(j

∣∣n).

Write r2k (K ) for the 2k class rank of the field K .

Theorem (Fouvry and Klüners’, ’07)

For r4 ≥ 0,

lim
N→∞

#
{

0 < d < N : r4
(
Q(
√
−d)

)
= r4

}
N

= PMat(r4
∣∣∞)



Main result for class groups

Given n ≥ j ≥ 0, take PMat(j
∣∣n) to be the probability that a

uniformly selected n× n matrix with coefficients in F2 has kernel of
rank exactly j .
Take

PMat(j
∣∣∞) = lim

n→∞
PMat(j

∣∣n).

Write r2k (K ) for the 2k class rank of the field K .

Theorem (S.)

Given a sequence of integers r4 ≥ r8 ≥ · · · ≥ r2k ≥ 0, we have

lim
N→∞

#
{

0 < d < N : r4
(
Q(
√
−d)

)
= r4, . . . , r2k (Q(

√
−d)) = r2k

}
N

= PMat(r2k
∣∣r2k−1) · PMat(r2k−1

∣∣r2k−2) · · · · · PMat(r8
∣∣r4) · PMat(r4

∣∣∞).



Class ranks as a Markov chain
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Table: Probability that r2k (Q(
√
−d))

equals r

r
0 1 2 3 4

k 2 .29 .58 .13 .01 .00
3 .63 .36 .01 .00
4 .81 .19 .00
5 .91 .09
6 .95 .05
...

...
...

∞ 1 0 0 0 0



Our first goal will be to give the method for calculating 8-class
ranks in some detail.



4-class groups

With K = Q(
√

∆) = Q(
√
−d), we have isomorphisms

2Cl ∨K [4] ∼=
{a|∆ : (a,−∆)v = +1 for all v} · (Q×)2

{1,∆} · (Q×)2

2ClK [4] ∼=
{b|∆ : (b,∆)v = +1 for all v} · (Q×)2

{1,−∆} · (Q×)2

The pairing

2Cl ∨K [4]× 2ClK [4]→ 1

2
Z
/
Z

is given by
(a, b) 7→ [a,∆/a, b],

where [ , , ] denotes a Rédei symbol.



Rédei symbols
Suppose a, b, c are nonzero integers satisfying

(a, b)Q,p = +1 (b, c)Q,p = +1 (a, c)Q,p = +1

for all places p of Q. We also assume c is squarefree and positive.
Choose a primitive integer triple (x , y , z) so x2 − by2 = az2, and
take

La,b = Q
(√

a,
√
b,

√
x + y

√
b

)
.

For a rational prime p, define(
La,b/Q

p

)
=

{
1/2 if La,b

/
Q(
√
a,
√
b) is inert over p

0 otherwise.

We then define [a, b, c] in 1
2Z/Z by

[a, b, c] =
∑
p|c

(
La,b/Q

p

)
+ p = 2 correction.



An 8-class computation

2Cl ∨K [4] ∼=
{a|∆ : ∀v (a,−∆)v = +1}

{1,∆}

2ClK [4] ∼=
{b|∆ : ∀v (b,∆)v = +1}

{1,−∆}
.

The pairing

2Cl ∨K [4]× 2ClK [4]→ 1

2
Z
/
Z

sends (a, b) to [a,∆/a, b].

Fix integers a0, b0, d0 so a0, b0

∣∣d0 and b0, d0 > 0.
Take I to be some interval of primes disjoint from those dividing
2d0. For every p in I , we assume that

2Cl ∨Q(
√
−d0p)[4] ∼= 〈a0p〉 and 2ClQ(

√
−d0p)[4] ∼= 〈b0〉

Q(
√
−d0p) has 8-class rank zero or one, depending on the value of

[a,∆/a, b] = [a0p, −d0/a0, b0] =

(
La0p,−d0/a0

/Q
b0

)
.



Rédei reciprocity

We have the identities

[aa′, b, c] = [a, b, c] + [a′, b, c] and [a, b, c] = [b, a, c].

We also have
[a, b, c] = [c , b, a];

this can be proved as a consequence of Hilbert reciprocity.
We want to control [a0p,−d0/a0, b0] as p varies over an interval.

[a0p,−d0/a0, b0] = [b0,−d0/a0, a0p] = C +

(
Lb0,−d0/a0

/Q
p

)
.

The splitting of p in La,b determines the 8-class rank of
Q(
√
−d0p). Because of this, La,b is sometimes called a governing

field.



Limitations of governing fields

I In general, governing fields can be constructed that control
the 8-class rank in typical families of fields Q(

√
−d0p).

I Similarly, governing fields can usually be constructed to
control the 4-Selmer rank in families of twists Ed0p.

I (Little problem) Effective Chebotarev only suffices if we either
assume GRH or focus on families where the family of p is
much larger than d0.

I (Big problem) Governing fields conjecturally do not exist for
16-class ranks or 8-Selmer groups.



Avoiding GRH

If we want to use effective Chebotarev, we need to use a governing
field that gives less information.
We will just need the identities

[aa′, b, c] = [a, b, c] + [a′, b, c] and

[a, bb′, c] = [a, b, c] + [a, b′, c]



Another 8-class computation

Fix integers a0, b0, d0 so a0, b0

∣∣d0 and b0, d0 > 0.
Choose three disjoint sets of primes X1, Xa, Xb. Choosing pa ∈ Xa

and pb ∈ Xb, we assume(
c

p1

)
=

(
c

p′1

)
for c

∣∣ 2d0papb, p1, p
′
1 ∈ X1.

We also make the similar assumption for Xa and Xb.
Under these assumptions, the 4-class rank of
K(p1,pa,pb) = Q(

√
−d0p1papb) does not depend on the choice of

(p1, pa, pb). We assume that we have, for every such tuple,

2Cl ∨K(p1,pa,pb)[4] ∼= 〈a0pa〉 and 2ClK(p1,pa,pb)[4] ∼= 〈b0pb〉.



Another 8-class computation

K(p1,pa,pb) = Q(
√
−d0p1papb), (p1, pa, pb) ∈ X1 × Xa × Xb.

2Cl ∨K(p1,pa,pb)[4] ∼= 〈a0pa〉 and 2ClK(p1,pa,pb)[4] ∼= 〈b0pb〉.

r8(K(p1,pa,pb)) =

{
0 if [a0pa, −d0p1pb, b0pb] = 1/2

1 otherwise.

Choose pa, p
′
a in Xa, p1, p

′
1 in X1.

[a0pa, −d0p1pb, b0pb] + [a0pa, −d0p
′
1pb, b0pb] = [a0pa, p1p

′
1, b0pb]

[a0pa, p1p
′
1, b0pb] + [a0p

′
a, p1p

′
1, b0pb] = [pap

′
a, p1p

′
1, b0pb].

So the parity of

r8(K(p1,pa,pb)) + r8(K(p′1,pa,pb)) + r8(K(p1,p′a,pb)) + r8(K(p′1,p
′
a,pb))

is determined from the splitting of pb in Lpap′a,p1p′1
.



Relative governing fields

p1 p′1

pa
p′a

Xb



Controling higher class groups

Consider the family

Q(
√
−d0p1p2papb), (p1, p2, pa, pb) ∈ X1 × X2 × Xa × Xb

2Cl ∨K(p1,pa,pb)[4] ∼= 〈a0pa〉 and 2ClK(p1,pa,pb)[4] ∼= 〈b0pb〉.

If various (quite delicate) hypotheses are satisfied, the parity of

r16(K(p1,p2,pa,pb)) + r16(K(p′1,p2,pa,pb))

+r16(K(p1,p2,p′a,pb)) + r16(K(p′1,p2,p′a,pb))

+r16(K(p1,p′2,pa,pb)) + r16(K(p′1,p
′
2,pa,pb))

+r16(K(p1,p′2,p
′
a,pb)) + r16(K(p′1,p

′
2,p
′
a,pb))

is determined by the splitting of pb in a field Lpap′a:p1p′1,p2p′2
. Etc.



Trilinearity equivalent for elliptic curves

Write

H1(GQ, E [2k ]) = C 1(GQ, E [2k ])
/
B1(GQ, E [2k ])

Choose nonzero integers d1, d2, and take

φ1 ∈ C 1(GQ, E
d1 [4]), φ2 ∈ C 1(GQ, E

d2 [4]), and

φ12 ∈ C 1(GQ, E
d1d2 [4]).

Suppose
2φ1 = 2φ2 = 2φ12.

Then
−φ1 − φ2 − φ12 ∈ C 1(GQ, E [4]).



Generating 8-Selmer elements

Choose nonzero integers d1, d2, d3, and take

φ1 ∈ C 1(Ed1 [8]), φ2 ∈ C 1(Ed2 [8]), φ3 ∈ C 1(Ed3 [8]),

φ12 ∈ C 1(Ed1d2 [8]), φ13 ∈ C 1(Ed1d3 [8]), φ23 ∈ C 1(Ed2d3 [8]),

φ123 ∈ C 1(Ed1d2d3 [8]).

Suppose 4φ1 = 4φ2 = 4φ3 = 4φ12 = 4φ13 = 4φ23 = 4φ123 and

2φ1 + 2φ12 + 2φ13 + 2φ123

= 2φ2 + 2φ12 + 2φ23 + 2φ123

= 2φ3 + 2φ13 + 2φ23 + 2φ123 = 0.

Then

−φ1 − φ2 − φ3 − φ12 − φ13 − φ23 − φ123 ∈ C 1(E [8]).



Generating 8-Selmer elements

Ed1

Ed1d2 Ed2

Ed3Ed1d3

Ed1d2d3 Ed2d3

E



Thank you!


