
Greatest common divisors and Diophantine
approximation

Aaron Levin

Michigan State University

The First JNT Biennial Conference
Cetraro, Italy

Aaron Levin Greatest common divisors and Diophantine approximation



Greatest Common Divisors

Aaron Levin Greatest common divisors and Diophantine approximation



gcd(2n − 1,3n − 1)

We’ll be interested in greatest common divisors like

gcd(2n − 1,3n − 1), n = 1,2,3, . . .

Let’s compute some values:

n 2n − 1 3n − 1 gcd(2n − 1,3n − 1)

1 1 2 1
2 3 8 1
3 7 26 1
4 15 80 5
5 31 242 1
6 63 728 7
7 127 2186 1
8 255 6560 5
9 511 19862 1

10 1023 59048 11
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A question

First question: Are there infinitely many n ≥ 1 such that

gcd(2n − 1,3n − 1) = 1?

Not known! Conjectured answer: yes.
For integers a,b, let’s look more generally at

gcd(an − 1,bn − 1).

Note that gcd(a− 1,b− 1) divides gcd(an − 1,bn − 1) for all
positive n.
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Multiplicative dependence

Another observation: If a = c i and b = c j for some i , j ≥ 1,
then

an − 1 = (cn)i − 1,

bn − 1 = (cn)j − 1,

and

(cn − 1)| gcd(an − 1,bn − 1), n ≥ 1.

In this case, a and b are multiplicatively dependent:

ar = bs

for some integers r , s, not both 0.
Thus, if a,b are multiplicatively dependent then
gcd(an − 1,bn − 1) can grow exponentially.
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Ailon-Rudnick Conjecture

Conjecture (Ailon-Rudnick)
If a,b ∈ Z are multiplicatively independent then there exist
infinitely many n ≥ 1 such that

gcd(an − 1,bn − 1) = gcd(a− 1,b − 1).

In particular, there should be infinitely many n ≥ 1 such
that

gcd(2n − 1,3n − 1) = 1.

Conjecture seems very difficult. Ailon and Rudnick proved
the analogous conjecture for polynomials f ,g ∈ C[x ].
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Upper bounds for gcd(2n − 1,3n − 1)

Now look at upper bounds.
How large can gcd(2n − 1,3n − 1) be?
Let’s look at entries from our table with
gcd(2n − 1,3n − 1) > 1:

n 2n − 1 3n − 1 gcd(2n − 1,3n − 1)

4 15 80 5
6 63 728 7
8 255 6560 5

10 1023 59048 11
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Fermat’s little theorem

All the nontrivial gcds in the table come from Fermat’s little
theorem:

np−1 ≡ 1 (mod p)

for any prime p and integer n with p - n.
So for any prime p 6= 2,3,

p| gcd(2p−1 − 1,3p−1 − 1).

We can try to make gcd(2n − 1,3n − 1) large by finding n
so that p − 1 divides n for many primes p.
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A lower bound

In this direction, we have:

Theorem (Adleman, Pomerance, Rumely)

There exists a constant C > 0 such that

#{p : p is prime, (p − 1)|n} > eC log n/ log log n

holds for infinitely many positive integers n.

Using Fermat’s theorem this easily gives:

log gcd(2n − 1,3n − 1) > eC log n/ log log n

for infinitely many positive integers n and some constant
C > 0.
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Bugeaud-Corvaja-Zannier theorem

In the other direction, an upper bound was given by
Bugeaud, Corvaja, and Zannier in 2003.

Theorem (Bugeaud, Corvaja, Zannier)

Let a,b ∈ Z be multiplicatively independent integers. Then for
every ε > 0,

log gcd(an − 1,bn − 1) ≤ εn

for all but finitely many positive integers n.

In view of the previous lower bound, the result is
reasonably close to optimal.
Proof uses the deep Schmidt Subspace Theorem from
Diophantine approximation.
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gcd(u − 1, v − 1)

Now discuss several generalizations.
First, let S = {∞,p1, . . . ,pm} be a set of primes and

Z∗S = {±pi1
1 · · · p

im
m | i1, . . . , im ∈ Z}

be the group of S-units in Q.
Corvaja and Zannier and, independently, Hernández and
Luca, generalized Bugeaud-Corvaja-Zannier’s result:

Theorem (Corvaja-Zannier, Hernández-Luca)
For every ε > 0,

log gcd(u − 1, v − 1) ≤ εmax{log |u|, log |v |}

for all but finitely many multiplicatively independent S-unit
integers u, v ∈ Z∗S.
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Generalized logarithmic greatest common divisor

Define the (generalized) logarithmic greatest common
divisor of α, β ∈ Q̄ (not both zero) by

log gcd(α, β) = h([1 : α : β])− h([α : β]),

where h is the usual absolute logarithmic height on
projective space.
Alternatively, if α and β are in a number field k :

log gcd(α, β) = −
∑

v∈Mk

log−max{|α|v , |β|v},

where log− z = min{0, log z} and Mk = set of places of k .
This generalizes the gcd for integers, and notably includes
an archimedean contribution.
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Multiplicative independence

Also want to rephrase the multiplicative independence
condition.
Let Gn

m denote the n-dimensional algebraic torus, where
Gm = P1 \ {0,∞} = A1 \ {0}.
Then Gn

m(k) ∼= (k∗)n with the obvious group structure
coming from coordinate-wise multiplication.
The condition that u and v are multiplicatively independent
can be rephrased as saying that (u, v) is not an element of
a proper algebraic subgroup of G2

m (subtorus).
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An explicit result

In fact, Corvaja and Zannier show that

log gcd(u − 1, v − 1) ≤ εmax{log |u|, log |v |}

holds outside of the union of finitely many proper subtori of
G2

m along with a finite number of exceptions.
Explicitly, one needs to exclude subgroups given by an
equation up = vq with p and q coprime integers satisfying
|p|, |q| ≤ 1/ε.
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Corvaja-Zannier theorem

Corvaja and Zannier generalized their result to:
Arbitrary number fields.
Polynomials in u and v .

Theorem (Corvaja, Zannier)

Let Γ ⊂ G2
m(Q̄) be a finitely generated group. Let

f (x , y),g(x , y) ∈ Q̄[x , y ] be coprime polynomials such that not
both of them vanish at (0,0). For all ε > 0, there exists a finite
union Z of translates of proper subtori of G2

m such that

log gcd(f (u, v),g(u, v)) < εmax{h(u),h(v)}

for all (u, v) ∈ Γ \ Z.
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A generalization to several variables

Main result:

Theorem (L.)

Let n be a positive integer. Let Γ ⊂ Gn
m(Q̄) be a finitely

generated group. Let f (x1, . . . , xn),g(x1, . . . , xn) ∈ Q̄[x1, . . . , xn]
be coprime polynomials such that not both of them vanish at
(0,0, . . . ,0). For all ε > 0, there exists a finite union Z of
translates of proper subtori of Gn

m such that

log gcd(f (u1, . . . ,un),g(u1, . . . ,un)) < εmax{h(u1), . . . ,h(un)}

for all (u1, . . . ,un) ∈ Γ \ Z.

Can avoid nonvanishing hypothesis: if u1, . . . ,un are
S-units, replace the gcd by the “gcd outside S”.
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Height interpretation
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Height reformulation

Classically, a height function hD and local height functions
hD,v , v ∈ Mk , can be associated to a Cartier divisor D on a
projective variety X .
Let D be a hypersurface over k in Pn of degree d defined
by f (x0, . . . , xn) = 0 and let v ∈ Mk .
A local height function with respect to D and v is:

hD,v (P) = log
max |xi |dv

|f (x0, . . . , xn)|v
, for P = [x0 : · · · : xn] ∈ Pn(k).

Roughly, when D is effective:

hD,v (P) = − log(v -adic distance from P to D).
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Heights associated to closed subschemes

More generally, can associate heights and local heights to
closed subschemes of projective varieties (Silverman).
For Y ,Z closed subschemes, a basic property is that

hY∩Z ,v (P) = min{hY ,v (P),hZ ,v (P)}.

So if D1 and D2 are hypersurfaces of the same degree d
defined by f1, f2 ∈ k [x0, . . . , xn], respectively, then

hD1∩D2,v (P) = log
max |xi |dv

max{|f1(x0, . . . , xn)|v , |f2(x0, . . . , xn)|v}
.
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Gcd heights

If P = [x0 : · · · : xn] with x0, . . . , xn ∈ Z and
gcd(x0, . . . , xn) = 1, then for any prime v = p,

hD1∩D2,v (P) = − log max{|f1(x0, . . . , xn)|v , |f2(x0, . . . , xn)|v}.

If Y = D1 ∩ D2, the closed subscheme defined by
f1 = f2 = 0, then in this case∑

v∈MQ\{∞}

hY ,v (P) = log gcd(f1(x0, . . . , xn), f2(x0, . . . , xn)).

So the height hY (P) generalizes
log gcd(f1(x0, . . . , xn), f2(x0, . . . , xn)), including a
contribution from archimedean places.
Point: GCDs are heights with respect to closed
subschemes of codimension ≥ 2.
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Height formulation of main theorem

We can state a projective version of the main theorem for
the “gcd height" hY as follows.

Theorem (L.)

Let Y be a closed subscheme of codimension ≥ 2 in Pn in
general position with the coordinate hyperplanes (boundary of
Gn

m). Let Γ ⊂ Gn
m(Q̄) be a finitely generated group and ε > 0.

Then there exists a finite union Z of translates of proper subtori
of Gn

m such that

hY (P) ≤ εh(P)

for all P ∈ Γ \ Z ⊂ Pn(Q̄).

Not quite equivalent to the earlier main theorem, but they’re
closely related (and the earlier one implies this one).
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Toric varieties

General position condition:

[1 : 0 : · · · : 0], . . . , [0 : 0 : · · · : 0 : 1] 6∈ Y .

It is a symmetric version of the earlier condition that the
polynomials don’t vanish at the origin.
More generally, prove a completely analogous result for
Gn

m ⊂ X where X is a nonsingular projective toric variety.
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Blowups and Vojta’s conjecture

Alternatively, if π : X → Pn is the blowup along Y with
exceptional divisor E , then by functoriality of heights

hY (π(P)) = hE (P) + O(1), ∀P ∈ X (Q̄).

One can interpret the main result in terms of heights on
blowups.
GCD inequalities turn out to be cases of Vojta’s conjecture
applied to blowups (Silverman).
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Application: Greatest common divisors in linear recurrence
sequences
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Linear recurrence sequences

Linear recurrence sequence: sequence of complex
numbers F (n), n ∈ N, that satisfies a relation

F (n) = a1F (n − 1) + · · ·+ ar F (n − r), n > r ,

for some constants ai ∈ C.
F (n) is a linear recurrence sequence if and only if

F (n) =
s∑

i=1

fi(n)αn
i , n ∈ N,

for some nonzero polynomials fi ∈ C[x ] and distinct
αi ∈ C∗, classically called the roots of F .
The roots are exactly the distinct roots of the
corresponding characteristic polynomial

X r − a1X r−1 − · · · − ar .
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Simple linear recurrences

A linear recurrence is called simple if it has the form

F (n) =
r∑

i=1

ciα
n
i , n ∈ N,

where αi , ci ∈ C∗, i = 1, . . . , r .
This happens if and only if the roots of the associated
characteristic polynomial are distinct (simple roots).
A simple linear recurrence is algebraic if αi , ci ∈ Q̄ for
i = 1, . . . ,n.
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A philosophy

Philosophy: Arithmetic properties of F (n) and G(n) holding
for all (or infinitely many) n, should be explained by
corresponding identities involving F and G (in the ring of
linear recurrences).
Examples include:

Divisibility: Hadamard quotient theorem (Pourchet, van der
Poorten, Corvaja-Zannier (strong version))
Perfect powers: Pisot’s d th root conjecture (Zannier)

Consider this in the context of greatest common divisors.
Classification of terms from two algebraic simple linear
recurrences that have a “large" gcd.
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Greatest common divisors of linear recurrence terms

Theorem (L.)

Let F and G be two algebraic simple linear recurrences.
Suppose that there is no prime dividing every root of F and G.
Let ε > 0. Then all but finitely many solutions (m,n) of the
inequality

log gcd(F (m),G(n)) > εmax{m,n}

satisfy one of finitely many linear relations

(m,n) = (ai t + bi , ci t + di), t ∈ Z, i = 1, . . . , r ,

where ai ,bi , ci ,di ∈ Z, aici 6= 0, and the linear recurrences
F (ain + bi) and G(cin + di) have a nontrivial common factor for
i = 1, . . . , r .
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Greatest common divisors of linear recurrence terms

This result was recently generalized to log gcd(F (n),G(n))
and general linear recurrences by Grieve and Wang (i.e.,
without the simple hypothesis).
Proven as an application of a “moving targets" version of
the main result.
My student Zheng Xiao is currently proving further results
for log gcd(F (m),G(n)) for general linear recurrences.
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Greatest Common Divisors and Meromorphic Functions
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Vojta’s dictionary

Deep analogies between Diophantine approximation and
Nevanlinna theory (Vojta’s dictionary)
Qualitative level: infinite set of integral points on a variety X
corresponds to a nonconstant holomorphic map f : C→ X .
Entire functions without zeros are analogous to S-units.
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GCD Counting Function

Let f and g be meromorphic functions. Define

n(f ,g, r) =
∑
|z|≤r

min{ord+
z (f ), ord+

z (g)},

Ngcd(f ,g, r) =

∫ r

0

n(f ,g, t)− n(f ,g,0)

t
dt + n(f ,g,0) log r ,

The gcd counting function Ngcd(f ,g, r) gives a notion
analogous to the gcd of two numbers.
We also need an analogue of the height: the Nevanlinna
characteristic function Tf (r).
For holomorphic f it is given by

Tf (r) =

∫ 2π

0
log+ |f (reiθ)|dθ

2π
,

where log+ z = max{0, log z}.
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GCD Counting Function Inequality

In this language, a Nevanlinna theory analogue of the main
result is:

Theorem
Let F , G ∈ C[x1, . . . , xn] be coprime polynomials. Let g1, . . . ,gn

be entire functions without zeros. Assume that g i1
1 · · · g

in
n /∈ C for

any index set (i1, . . . , in) ∈ Zn \ {(0, . . . ,0)}. Let ε > 0. Then

Ngcd(F (g1, . . . ,gn),G(g1, . . . ,gn), r) ≤exc ε max
1≤i≤n

{Tgi (r)}.

The theorem is equivalent to a special case of a very
general result of Noguchi, Winkelmann, and Yamanoi for
semiabelian varieties.
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semiabelian varieties.
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Asymptotic GCD result

In recent joint work with Julie Wang we prove “asymptotic"
gcd results for meromorphic functions:

Theorem (L., Wang)

Let F , G ∈ C[x1, . . . , xn] be coprime polynomials such that not
both of them vanish at (0, . . . ,0). Let g1, . . . ,gn be
meromorphic functions such that g i1

1 · · · g
in
n /∈ C for any index set

(i1, . . . , in) ∈ Zn \ {(0, . . . ,0)}. Then for any ε > 0, there exists
k0 such that for all k ≥ k0,

Ngcd(F (gk
1 , . . . ,g

k
n ),G(gk

1 , . . . ,g
k
n ), r) ≤exc ε max

1≤i≤n
{Tgk

i
(r)};
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Pasten-Wang Conjecture

In particular, we prove a conjectured inequality of
Pasten-Wang:

Corollary (L., Wang)

Let f and g be multiplicatively independent meromorphic
functions. Then for any ε > 0, there exists k0 such that for all
k ≥ k0,

Ngcd(f k − 1,gk − 1, r) ≤exc εmax{Tf k (r),Tgk (r)}.

Guo and Wang proved a similar result with 1
2 + ε instead of

ε.
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Proofs
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Roth’s Theorem

The primary tool in the proofs is Schmidt’s Subspace
Theorem in Diophantine approximation.
Let’s first recall Roth’s foundational result in Diophantine
approximation.

Theorem (Roth 1955)

Let α ∈ Q̄. Let ε > 0. Then there are only finitely many rational
numbers p

q ∈ Q satisfying∣∣∣∣α− p
q

∣∣∣∣ < 1
q2+ε .
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Roth’s Theorem

Roth’s theorem can be generalized to arbitrary number
fields and to finite sets of places (including
nonarchimedean ones).

Theorem (Ridout-Lang version of Roth)

Let k be a number field and S a finite set of places of k. For
each v ∈ S, let Qv ∈ P1(k). Let ε > 0. Then∑

v∈S

hQv ,v (P) ≤ (2 + ε)h(P)

for all but finitely many points P ∈ P1(k).
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Schmidt’s Theorem

In 1970 Schmidt gave a deep generalization of Roth’s
theorem to the setting of approximation of hyperplanes in
projective space.
Schmidt’s theorem (as improved by Schlickewei to allow
arbitrary finite sets of places):

Theorem (Schmidt’s Subspace Theorem)
Let k be a number field. Let S be a finite set of places of k. For
each v ∈ S, let H0v , . . . ,Hnv be hyperplanes over k in Pn in
general position. Let ε > 0. Then there exists a finite union of
hyperplanes Z ⊂ Pn such that

∑
v∈S

n∑
i=0

hHiv ,v (P) ≤ (n + 1 + ε)h(P)

holds for all P ∈ Pn(k)\Z.
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Idea of proof

Briefly describe the idea for proving hY (P) ≤ εh(P).
Let π : X → Pn be the blowup along Y , let E be the
exceptional divisor, and let H be a hyperplane.
For large enough m, O(mπ∗H − E) is generated by global
sections and we consider the associated morphism
φ : X → PN .
Idea of proof: Apply Schmidt’s theorem to PN with a nicely
chosen system of hyperplanes Hv , v ∈ S.
Hyperplanes Hv are chosen (dependent on P ∈ X (k)) so
that the associated sections of O(mπ∗H − E) vanish to
high order along (pullback of) coordinate hyperplanes
v -adically close to P.
Use functoriality to pull back, via φ, the resulting
Diophantine approximation statement to X .
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Future work

Current joint work with Corvaja and Zannier exploring
function field analogues and applications (after their earlier
work in dimension 2).
This has connections to topics including Vojta’s conjecture
over function fields, unlikely intersections, lacunary
polynomials, etc.
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