Greatest common divisors and Diophantine approximation

Aaron Levin

Michigan State University

The First JNT Biennial Conference
Cetraro, Italy
Greatest Common Divisors
We’ll be interested in greatest common divisors like

\[\gcd(2^n - 1, 3^n - 1), \quad n = 1, 2, 3, \ldots \]

Let’s compute some values:

<table>
<thead>
<tr>
<th>(n)</th>
<th>(2^n - 1)</th>
<th>(3^n - 1)</th>
<th>(\gcd(2^n - 1, 3^n - 1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>26</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>80</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>31</td>
<td>242</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>63</td>
<td>728</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>127</td>
<td>2186</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>255</td>
<td>6560</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>511</td>
<td>19862</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>1023</td>
<td>59048</td>
<td>11</td>
</tr>
</tbody>
</table>
We’ll be interested in greatest common divisors like

$$\gcd(2^n - 1, 3^n - 1), \quad n = 1, 2, 3, \ldots$$

Let’s compute some values:

<table>
<thead>
<tr>
<th>n</th>
<th>$2^n - 1$</th>
<th>$3^n - 1$</th>
<th>$\gcd(2^n - 1, 3^n - 1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>26</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>80</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>31</td>
<td>242</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>63</td>
<td>728</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>127</td>
<td>2186</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>255</td>
<td>6560</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>511</td>
<td>19862</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>1023</td>
<td>59048</td>
<td>11</td>
</tr>
</tbody>
</table>
First question: Are there infinitely many \(n \geq 1 \) such that
\[
gcd(2^n - 1, 3^n - 1) = 1?
\]

Not known! Conjectured answer: yes.

For integers \(a, b \), let's look more generally at
\[
gcd(a^n - 1, b^n - 1).
\]

Note that \(\gcd(a - 1, b - 1) \) divides \(\gcd(a^n - 1, b^n - 1) \) for all positive \(n \).
First question: Are there infinitely many \(n \geq 1 \) such that
\[
gcd(2^n - 1, 3^n - 1) = 1?
\]
Not known! Conjectured answer: yes.

For integers \(a, b \), let’s look more generally at
\[
gcd(a^n - 1, b^n - 1).
\]
Note that \(\gcd(a - 1, b - 1) \) divides \(\gcd(a^n - 1, b^n - 1) \) for all positive \(n \).
First question: Are there infinitely many $n \geq 1$ such that
\[
gcd(2^n - 1, 3^n - 1) = 1?
\]

Not known! Conjectured answer: yes.

For integers a, b, let’s look more generally at
\[
gcd(a^n - 1, b^n - 1).
\]

Note that $gcd(a - 1, b - 1)$ divides $gcd(a^n - 1, b^n - 1)$ for all positive n.
First question: Are there infinitely many \(n \geq 1 \) such that

\[\gcd(2^n - 1, 3^n - 1) = 1? \]

- Not known! Conjectured answer: yes.

For integers \(a, b \), let's look more generally at

\[\gcd(a^n - 1, b^n - 1). \]

- Note that \(\gcd(a - 1, b - 1) \) divides \(\gcd(a^n - 1, b^n - 1) \) for all positive \(n \).
Another observation: If \(a = c^i \) and \(b = c^j \) for some \(i, j \geq 1 \), then

\[
\begin{align*}
a^n - 1 &= (c^n)^i - 1, \\
b^n - 1 &= (c^n)^j - 1,
\end{align*}
\]

and

\[
(c^n - 1) \mid \gcd(a^n - 1, b^n - 1), \quad n \geq 1.
\]

In this case, \(a \) and \(b \) are multiplicatively dependent:

\[
a^r = b^s
\]

for some integers \(r, s \), not both 0.

Thus, if \(a, b \) are multiplicatively dependent then \(\gcd(a^n - 1, b^n - 1) \) can grow exponentially.
Another observation: If \(a = c^i \) and \(b = c^j \) for some \(i, j \geq 1 \), then

\[
a^n - 1 = (c^n)^i - 1,
\]
\[
b^n - 1 = (c^n)^j - 1,
\]

and

\[(c^n - 1) \mid \gcd(a^n - 1, b^n - 1), \quad n \geq 1.\]

In this case, \(a \) and \(b \) are multiplicatively dependent:

\[a^r = b^s\]

for some integers \(r, s \), not both 0.

Thus, if \(a, b \) are multiplicatively dependent then \(\gcd(a^n - 1, b^n - 1) \) can grow exponentially.
Another observation: If \(a = c^i \) and \(b = c^j \) for some \(i, j \geq 1 \), then

\[
a^n - 1 = (c^n)^i - 1,
b^n - 1 = (c^n)^j - 1,
\]

and

\[
(c^n - 1) \mid \gcd(a^n - 1, b^n - 1), \quad n \geq 1.
\]

In this case, \(a \) and \(b \) are multiplicatively dependent:

\[
a^r = b^s
\]

for some integers \(r, s \), not both 0.

Thus, if \(a, b \) are multiplicatively dependent then \(\gcd(a^n - 1, b^n - 1) \) can grow exponentially.
Ailon-Rudnick Conjecture

Conjecture (Ailon-Rudnick)

If $a, b \in \mathbb{Z}$ are multiplicatively independent then there exist infinitely many $n \geq 1$ such that

$$\gcd(a^n - 1, b^n - 1) = \gcd(a - 1, b - 1).$$

In particular, there should be infinitely many $n \geq 1$ such that

$$\gcd(2^n - 1, 3^n - 1) = 1.$$

Conjecture seems very difficult. Ailon and Rudnick proved the analogous conjecture for polynomials $f, g \in \mathbb{C}[x]$.
Conjecture (Ailon-Rudnick)

If \(a, b \in \mathbb{Z} \) are multiplicatively independent then there exist infinitely many \(n \geq 1 \) such that

\[
\gcd(a^n - 1, b^n - 1) = \gcd(a - 1, b - 1).
\]

1. In particular, there should be infinitely many \(n \geq 1 \) such that

\[
\gcd(2^n - 1, 3^n - 1) = 1.
\]

2. Conjecture seems very difficult. Ailon and Rudnick proved the analogous conjecture for polynomials \(f, g \in \mathbb{C}[x] \).
Conjecture (Ailon-Rudnick)

If \(a, b \in \mathbb{Z}\) are multiplicatively independent then there exist infinitely many \(n \geq 1\) such that

\[
gcd(a^n - 1, b^n - 1) = gcd(a - 1, b - 1).
\]

- In particular, there should be infinitely many \(n \geq 1\) such that

\[
gcd(2^n - 1, 3^n - 1) = 1.
\]

- Conjecture seems very difficult. Ailon and Rudnick proved the analogous conjecture for polynomials \(f, g \in \mathbb{C}[x]\).
Now look at upper bounds.

How large can $\gcd(2^n - 1, 3^n - 1)$ be?

Let’s look at entries from our table with $\gcd(2^n - 1, 3^n - 1) > 1$:

<table>
<thead>
<tr>
<th>n</th>
<th>$2^n - 1$</th>
<th>$3^n - 1$</th>
<th>$\gcd(2^n - 1, 3^n - 1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>15</td>
<td>80</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>63</td>
<td>728</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>255</td>
<td>6560</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>1023</td>
<td>59048</td>
<td>11</td>
</tr>
</tbody>
</table>
Now look at upper bounds.

How large can $\gcd(2^n - 1, 3^n - 1)$ be?

Let’s look at entries from our table with $\gcd(2^n - 1, 3^n - 1) > 1$:

<table>
<thead>
<tr>
<th>n</th>
<th>$2^n - 1$</th>
<th>$3^n - 1$</th>
<th>$\gcd(2^n - 1, 3^n - 1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>15</td>
<td>80</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>63</td>
<td>728</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>255</td>
<td>6560</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>1023</td>
<td>59048</td>
<td>11</td>
</tr>
</tbody>
</table>
Now look at upper bounds.

How large can $\gcd(2^n - 1, 3^n - 1)$ be?

Let’s look at entries from our table with $\gcd(2^n - 1, 3^n - 1) > 1$:

<table>
<thead>
<tr>
<th>n</th>
<th>$2^n - 1$</th>
<th>$3^n - 1$</th>
<th>$\gcd(2^n - 1, 3^n - 1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>15</td>
<td>80</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>63</td>
<td>728</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>255</td>
<td>6560</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>1023</td>
<td>59048</td>
<td>11</td>
</tr>
</tbody>
</table>
Fermat’s little theorem

- All the nontrivial gcds in the table come from Fermat’s little theorem:

\[n^{p-1} \equiv 1 \pmod{p} \]

for any prime \(p \) and integer \(n \) with \(p \nmid n \).

- So for any prime \(p \neq 2, 3 \),

\[p \mid \gcd(2^{p-1} - 1, 3^{p-1} - 1). \]

- We can try to make \(\gcd(2^n - 1, 3^n - 1) \) large by finding \(n \) so that \(p - 1 \) divides \(n \) for many primes \(p \).
All the nontrivial gcds in the table come from Fermat’s little theorem:

\[n^{p-1} \equiv 1 \pmod{p} \]

for any prime \(p \) and integer \(n \) with \(p \nmid n \).

So for any prime \(p \neq 2, 3 \),

\[p \mid \gcd(2^{p-1} - 1, 3^{p-1} - 1). \]

We can try to make \(\gcd(2^n - 1, 3^n - 1) \) large by finding \(n \) so that \(p - 1 \) divides \(n \) for many primes \(p \).
Fermat’s little theorem

- All the nontrivial gcds in the table come from Fermat’s little theorem:

\[n^{p-1} \equiv 1 \pmod{p} \]

for any prime \(p \) and integer \(n \) with \(p \nmid n \).

- So for any prime \(p \neq 2, 3 \),

\[p \mid \gcd(2^{p-1} - 1, 3^{p-1} - 1) \]

- We can try to make \(\gcd(2^n - 1, 3^n - 1) \) large by finding \(n \) so that \(p - 1 \) divides \(n \) for many primes \(p \).
In this direction, we have:

Theorem (Adleman, Pomerance, Rumely)

There exists a constant $C > 0$ such that

$$\#\{p: p \text{ is prime}, (p - 1) | n\} > e^{C \log n / \log \log n}$$

holds for infinitely many positive integers n.

Using Fermat’s theorem this easily gives:

$$\log \gcd(2^n - 1, 3^n - 1) > e^{C \log n / \log \log n}$$

for infinitely many positive integers n and some constant $C > 0$.
In this direction, we have:

Theorem (Adleman, Pomerance, Rumely)

There exists a constant $C > 0$ such that

$$\#\{p : p \text{ is prime, } (p - 1) | n\} > e^{C \log n / \log \log n}$$

holds for infinitely many positive integers n.

Using Fermat’s theorem this easily gives:

$$\log \gcd(2^n - 1, 3^n - 1) > e^{C \log n / \log \log n}$$

for infinitely many positive integers n and some constant $C > 0$.
In this direction, we have:

Theorem (Adleman, Pomerance, Rumely)

There exists a constant $C > 0$ such that

$$\# \{ p : p \text{ is prime}, (p - 1) | n \} > e^{C \log n / \log \log n}$$

holds for infinitely many positive integers n.

Using Fermat's theorem this easily gives:

$$\log \gcd(2^n - 1, 3^n - 1) > e^{C \log n / \log \log n}$$

for infinitely many positive integers n and some constant $C > 0$.
In the other direction, an upper bound was given by Bugeaud, Corvaja, and Zannier in 2003.

Theorem (Bugeaud, Corvaja, Zannier)

Let \(a, b \in \mathbb{Z} \) be multiplicatively independent integers. Then for every \(\epsilon > 0 \),

\[
\log \gcd(a^n - 1, b^n - 1) \leq \epsilon n
\]

for all but finitely many positive integers \(n \).

In view of the previous lower bound, the result is reasonably close to optimal.

Proof uses the deep Schmidt Subspace Theorem from Diophantine approximation.
In the other direction, an upper bound was given by Bugeaud, Corvaja, and Zannier in 2003.

Theorem (Bugeaud, Corvaja, Zannier)

Let $a, b \in \mathbb{Z}$ be multiplicatively independent integers. Then for every $\epsilon > 0$,

$$\log \gcd(a^n - 1, b^n - 1) \leq \epsilon n$$

for all but finitely many positive integers n.

In view of the previous lower bound, the result is reasonably close to optimal.

Proof uses the deep Schmidt Subspace Theorem from Diophantine approximation.
In the other direction, an upper bound was given by Bugeaud, Corvaja, and Zannier in 2003.

Theorem (Bugeaud, Corvaja, Zannier)

Let $a, b \in \mathbb{Z}$ be multiplicatively independent integers. Then for every $\epsilon > 0$,

$$\log \gcd(a^n - 1, b^n - 1) \leq \epsilon n$$

for all but finitely many positive integers n.

In view of the previous lower bound, the result is reasonably close to optimal.

Proof uses the deep Schmidt Subspace Theorem from Diophantine approximation.
In the other direction, an upper bound was given by Bugeaud, Corvaja, and Zannier in 2003.

Theorem (Bugeaud, Corvaja, Zannier)

Let $a, b \in \mathbb{Z}$ be multiplicatively independent integers. Then for every $\epsilon > 0$,

$$\log \gcd(a^n - 1, b^n - 1) \leq \epsilon n$$

for all but finitely many positive integers n.

In view of the previous lower bound, the result is reasonably close to optimal.

Proof uses the deep Schmidt Subspace Theorem from Diophantine approximation.
Now discuss several generalizations.

First, let \(S = \{\infty, p_1, \ldots, p_m\} \) be a set of primes and

\[
\mathbb{Z}_S^* = \{\pm p_1^{i_1} \cdots p_m^{i_m} \mid i_1, \ldots, i_m \in \mathbb{Z}\}
\]

be the group of \(S \)-units in \(\mathbb{Q} \).

Corvaja and Zannier and, independently, Hernández and Luca, generalized Bugeaud-Corvaja-Zannier’s result:

Theorem (Corvaja-Zannier, Hernández-Luca)

For every \(\epsilon > 0 \),

\[
\log \gcd(u - 1, v - 1) \leq \epsilon \max\{\log |u|, \log |v|\}
\]

for all but finitely many multiplicatively independent \(S \)-unit integers \(u, v \in \mathbb{Z}_S^* \).
Now discuss several generalizations.

First, let $S = \{\infty, p_1, \ldots, p_m\}$ be a set of primes and

$$\mathbb{Z}_S^* = \{\pm p_1^{i_1} \cdots p_m^{i_m} \mid i_1, \ldots, i_m \in \mathbb{Z}\}$$

be the group of S-units in \mathbb{Q}.

Corvaja and Zannier and, independently, Hernández and Luca, generalized Bugeaud-Corvaja-Zannier’s result:

Theorem (Corvaja-Zannier, Hernández-Luca)

For every $\epsilon > 0$,

$$\log \gcd(u - 1, v - 1) \leq \epsilon \max\{\log |u|, \log |v|\}$$

for all but finitely many multiplicatively independent S-unit integers $u, v \in \mathbb{Z}_S^*$.
Now discuss several generalizations.

First, let \(S = \{\infty, p_1, \ldots, p_m\} \) be a set of primes and

\[
\mathbb{Z}_S^* = \{\pm p_1^{i_1} \cdots p_m^{i_m} \mid i_1, \ldots, i_m \in \mathbb{Z}\}
\]

be the group of \(S \)-units in \(\mathbb{Q} \).

Corvaja and Zannier and, independently, Hernández and Luca, generalized Bugeaud-Corvaja-Zannier’s result:

Theorem (Corvaja-Zannier, Hernández-Luca)

For every \(\epsilon > 0 \),

\[
\log \gcd(u - 1, v - 1) \leq \epsilon \max\{\log |u|, \log |v|\}
\]

for all but finitely many multiplicatively independent \(S \)-unit integers \(u, v \in \mathbb{Z}_S^* \).
Now discuss several generalizations.

First, let $S = \{\infty, p_1, \ldots, p_m\}$ be a set of primes and

$$\mathbb{Z}^*_S = \{\pm p_1^{i_1} \cdots p_m^{i_m} \mid i_1, \ldots, i_m \in \mathbb{Z}\}$$

be the group of S-units in \mathbb{Q}.

Corvaja and Zannier and, independently, Hernández and Luca, generalized Bugeaud-Corvaja-Zannier’s result:

Theorem (Corvaja-Zannier, Hernández-Luca)

*For every $\epsilon > 0$,

$$\log \gcd(u - 1, v - 1) \leq \epsilon \max\{\log |u|, \log |v|\}$$

for all but finitely many multiplicatively independent S-unit integers $u, v \in \mathbb{Z}^*_S$.***
Define the (generalized) logarithmic greatest common divisor of $\alpha, \beta \in \mathbb{Q}$ (not both zero) by

$$\log \gcd(\alpha, \beta) = h(\left[1 : \alpha : \beta\right]) - h(\left[\alpha : \beta\right]),$$

where h is the usual absolute logarithmic height on projective space.

Alternatively, if α and β are in a number field k:

$$\log \gcd(\alpha, \beta) = -\sum_{v \in M_k} \log^- \max\{|\alpha|_v, |\beta|_v\},$$

where $\log^- z = \min\{0, \log z\}$ and $M_k = $ set of places of k.

This generalizes the gcd for integers, and notably includes an archimedean contribution.
Define the (generalized) logarithmic greatest common divisor of $\alpha, \beta \in \bar{\mathbb{Q}}$ (not both zero) by

$$\log \gcd(\alpha, \beta) = h([1 : \alpha : \beta]) - h([\alpha : \beta]),$$

where h is the usual absolute logarithmic height on projective space.

Alternatively, if α and β are in a number field k:

$$\log \gcd(\alpha, \beta) = -\sum_{v \in M_k} \log^- \max\{|\alpha|_v, |\beta|_v\},$$

where $\log^- z = \min\{0, \log z\}$ and $M_k =$ set of places of k.

This generalizes the gcd for integers, and notably includes an archimedean contribution.
Define the (generalized) logarithmic greatest common divisor of \(\alpha, \beta \in \bar{\mathbb{Q}} \) (not both zero) by

\[
\log \gcd(\alpha, \beta) = h([1 : \alpha : \beta]) - h([\alpha : \beta]),
\]

where \(h \) is the usual absolute logarithmic height on projective space.

Alternatively, if \(\alpha \) and \(\beta \) are in a number field \(k \):

\[
\log \gcd(\alpha, \beta) = - \sum_{v \in M_k} \log^- \max\{|\alpha|_v, |\beta|_v\},
\]

where \(\log^- z = \min\{0, \log z\} \) and \(M_k = \) set of places of \(k \).

This generalizes the gcd for integers, and notably includes an archimedean contribution.
Also want to rephrase the multiplicative independence condition.

Let G^n_m denote the n-dimensional algebraic torus, where $G_m = \mathbb{P}^1 \setminus \{0, \infty\} = \mathbb{A}^1 \setminus \{0\}$.

Then $G^n_m(k) \cong (k^*)^n$ with the obvious group structure coming from coordinate-wise multiplication.

The condition that u and v are multiplicatively independent can be rephrased as saying that (u, v) is not an element of a proper algebraic subgroup of G^2_m (subtorus).
Also want to rephrase the multiplicative independence condition.

Let G^n_m denote the n-dimensional algebraic torus, where $G_m = \mathbb{P}^1 \setminus \{0, \infty\} = \mathbb{A}^1 \setminus \{0\}$.

Then $G^n_m(k) \cong (k^*)^n$ with the obvious group structure coming from coordinate-wise multiplication.

The condition that u and v are multiplicatively independent can be rephrased as saying that (u, v) is not an element of a proper algebraic subgroup of G^2_m (subtorus).
Also want to rephrase the multiplicative independence condition.

Let G^n_m denote the n-dimensional algebraic torus, where $G_m = \mathbb{P}^1 \setminus \{0, \infty\} = \mathbb{A}^1 \setminus \{0\}$.

Then $G^n_m(k) \cong (k^*)^n$ with the obvious group structure coming from coordinate-wise multiplication.

The condition that u and v are multiplicatively independent can be rephrased as saying that (u, v) is not an element of a proper algebraic subgroup of G^2_m (subtorus).
Also want to rephrase the multiplicative independence condition.

Let \mathbb{G}_m^n denote the n-dimensional algebraic torus, where $\mathbb{G}_m = \mathbb{P}^1 \setminus \{0, \infty\} = \mathbb{A}^1 \setminus \{0\}$.

Then $\mathbb{G}_m^n(k) \cong (k^*)^n$ with the obvious group structure coming from coordinate-wise multiplication.

The condition that u and v are multiplicatively independent can be rephrased as saying that (u, v) is not an element of a proper algebraic subgroup of \mathbb{G}_m^2 (subtorus).
In fact, Corvaja and Zannier show that

$$\log \gcd(u - 1, v - 1) \leq \epsilon \max\{\log |u|, \log |v|\}$$

holds outside of the union of finitely many proper subtori of \mathbb{G}_m^2 along with a finite number of exceptions.

Explicitly, one needs to exclude subgroups given by an equation $u^p = v^q$ with p and q coprime integers satisfying $|p|, |q| \leq 1/\epsilon$.
An explicit result

- In fact, Corvaja and Zannier show that

\[\log \gcd(u - 1, v - 1) \leq \epsilon \max\{\log |u|, \log |v|\} \]

holds outside of the union of finitely many proper subtori of \(\mathbb{G}_m^2 \) along with a finite number of exceptions.

- Explicitly, one needs to exclude subgroups given by an equation \(u^p = v^q \) with \(p \) and \(q \) coprime integers satisfying \(|p|, |q| \leq 1/\epsilon \).
Corvaja-Zannier theorem

Corvaja and Zannier generalized their result to:

- Arbitrary number fields.
- Polynomials in u and v.

Theorem (Corvaja, Zannier)

Let $\Gamma \subset \mathbb{G}_m^2(\overline{\mathbb{Q}})$ be a finitely generated group. Let $f(x, y), g(x, y) \in \overline{\mathbb{Q}}[x, y]$ be coprime polynomials such that not both of them vanish at $(0, 0)$. For all $\epsilon > 0$, there exists a finite union Z of translates of proper subtori of \mathbb{G}_m^2 such that

$$\log \gcd(f(u, v), g(u, v)) < \epsilon \max\{h(u), h(v)\}$$

for all $(u, v) \in \Gamma \setminus Z$.

Aaron Levin
Greatest common divisors and Diophantine approximation
Corvaja and Zannier generalized their result to:
- Arbitrary number fields.
- Polynomials in \(u \) and \(v \).

Theorem (Corvaja, Zannier)

Let \(\Gamma \subset \mathbb{G}_m^2(\overline{\mathbb{Q}}) \) be a finitely generated group. Let \(f(x, y), g(x, y) \in \overline{\mathbb{Q}}[x, y] \) be coprime polynomials such that not both of them vanish at \((0, 0)\). For all \(\epsilon > 0 \), there exists a finite union \(Z \) of translates of proper subtori of \(\mathbb{G}_m^2 \) such that

\[
\log \gcd(f(u, v), g(u, v)) < \epsilon \max\{h(u), h(v)\}
\]

for all \((u, v) \in \Gamma \setminus Z\).
Corvaja and Zannier generalized their result to:
- Arbitrary number fields.
- Polynomials in u and v.

Theorem (Corvaja, Zannier)

Let $\Gamma \subset \mathbb{G}_m^2(\bar{\mathbb{Q}})$ be a finitely generated group. Let $f(x, y), g(x, y) \in \bar{\mathbb{Q}}[x, y]$ be coprime polynomials such that not both of them vanish at $(0, 0)$. For all $\epsilon > 0$, there exists a finite union Z of translates of proper subtori of \mathbb{G}_m^2 such that

$$\log \gcd(f(u, v), g(u, v)) < \epsilon \max\{h(u), h(v)\}$$

for all $(u, v) \in \Gamma \setminus Z$.
Corvaja-Zannier theorem

- Corvaja and Zannier generalized their result to:
 - Arbitrary number fields.
 - Polynomials in u and v.

Theorem (Corvaja, Zannier)

Let $\Gamma \subset \mathbb{G}_m^2(\overline{\mathbb{Q}})$ be a finitely generated group. Let
$f(x, y), g(x, y) \in \overline{\mathbb{Q}}[x, y]$ be coprime polynomials such that not both of them vanish at $(0, 0)$. For all $\epsilon > 0$, there exists a finite union Z of translates of proper subtori of \mathbb{G}_m^2 such that

$$\log \gcd(f(u, v), g(u, v)) < \epsilon \max\{h(u), h(v)\}$$

for all $(u, v) \in \Gamma \setminus Z$.
Main result:

Theorem (L.)

Let n be a positive integer. Let $\Gamma \subset \mathbb{G}_m^n(\bar{\mathbb{Q}})$ be a finitely generated group. Let $f(x_1, \ldots, x_n), g(x_1, \ldots, x_n) \in \bar{\mathbb{Q}}[x_1, \ldots, x_n]$ be coprime polynomials such that not both of them vanish at $(0, 0, \ldots, 0)$. For all $\epsilon > 0$, there exists a finite union Z of translates of proper subtori of \mathbb{G}_m^n such that

$$\log \gcd(f(u_1, \ldots, u_n), g(u_1, \ldots, u_n)) < \epsilon \max\{h(u_1), \ldots, h(u_n)\}$$

for all $(u_1, \ldots, u_n) \in \Gamma \setminus Z$.

Can avoid nonvanishing hypothesis: if u_1, \ldots, u_n are S-units, replace the gcd by the “gcd outside S”.
Main result:

Theorem (L.)

Let n be a positive integer. Let $\Gamma \subset \mathbb{G}_m^n(\overline{\mathbb{Q}})$ be a finitely generated group. Let $f(x_1, \ldots, x_n), g(x_1, \ldots, x_n) \in \overline{\mathbb{Q}}[x_1, \ldots, x_n]$ be coprime polynomials such that not both of them vanish at $(0, 0, \ldots, 0)$. For all $\epsilon > 0$, there exists a finite union Z of translates of proper subtori of \mathbb{G}_m^n such that

$$\log \gcd(f(u_1, \ldots, u_n), g(u_1, \ldots, u_n)) < \epsilon \max\{h(u_1), \ldots, h(u_n)\}$$

for all $(u_1, \ldots, u_n) \in \Gamma \setminus Z$.

Can avoid nonvanishing hypothesis: if u_1, \ldots, u_n are S-units, replace the gcd by the “gcd outside S”.
A generalization to several variables

Main result:

Theorem (L.)

Let \(n \) be a positive integer. Let \(\Gamma \subset \mathbb{G}^n_m(\overline{\mathbb{Q}}) \) be a finitely generated group. Let \(f(x_1, \ldots, x_n), g(x_1, \ldots, x_n) \in \overline{\mathbb{Q}}[x_1, \ldots, x_n] \) be coprime polynomials such that not both of them vanish at \((0, 0, \ldots, 0)\). For all \(\epsilon > 0 \), there exists a finite union \(Z \) of translates of proper subtori of \(\mathbb{G}^n_m \) such that

\[
\log \gcd(f(u_1, \ldots, u_n), g(u_1, \ldots, u_n)) < \epsilon \max\{h(u_1), \ldots, h(u_n)\}
\]

for all \((u_1, \ldots, u_n) \in \Gamma \setminus Z\).

Can avoid nonvanishing hypothesis: if \(u_1, \ldots, u_n \) are \(S \)-units, replace the gcd by the “gcd outside \(S \)”.
Height interpretation
Classically, a height function h_D and local height functions $h_{D,v}, \, v \in M_k,$ can be associated to a Cartier divisor D on a projective variety X.

Let D be a hypersurface over k in \mathbb{P}^n of degree d defined by $f(x_0, \ldots, x_n) = 0$ and let $v \in M_k$.

A local height function with respect to D and v is:

$$h_{D,v}(P) = \log \frac{\max |x_i|^d}{|f(x_0, \ldots, x_n)|^v},$$

for $P = [x_0 : \cdots : x_n] \in \mathbb{P}^n(k)$.

Roughly, when D is effective:

$$h_{D,v}(P) = - \log (v\text{-adic distance from } P \text{ to } D).$$
Classically, a height function h_D and local height functions $h_{D,v}$, $v \in M_k$, can be associated to a Cartier divisor D on a projective variety X.

Let D be a hypersurface over k in \mathbb{P}^n of degree d defined by $f(x_0, \ldots, x_n) = 0$ and let $v \in M_k$. A local height function with respect to D and v is:

$$h_{D,v}(P) = \log \frac{\max |x_i|^d_v}{|f(x_0, \ldots, x_n)|_v},$$

for $P = [x_0 : \cdots : x_n] \in \mathbb{P}^n(k)$.

Roughly, when D is effective:

$$h_{D,v}(P) = -\log(v\text{-adic distance from } P \text{ to } D).$$
Classically, a height function h_D and local height functions $h_{D,v}$, $v \in M_k$, can be associated to a Cartier divisor D on a projective variety X.

Let D be a hypersurface over k in \mathbb{P}^n of degree d defined by $f(x_0, \ldots, x_n) = 0$ and let $v \in M_k$.

A local height function with respect to D and v is:

$$h_{D,v}(P) = \log \frac{\max |x_i|^d}{|f(x_0, \ldots, x_n)|_v}, \quad \text{for } P = [x_0 : \cdots : x_n] \in \mathbb{P}^n(k).$$

Roughly, when D is effective:

$$h_{D,v}(P) = -\log(v\text{-adic distance from } P \text{ to } D).$$
Classically, a height function h_D and local height functions $h_{D,v}$, $v \in M_k$, can be associated to a Cartier divisor D on a projective variety X.

Let D be a hypersurface over k in \mathbb{P}^n of degree d defined by $f(x_0, \ldots, x_n) = 0$ and let $v \in M_k$.

A local height function with respect to D and v is:

$$h_{D,v}(P) = \log \frac{\max |x_i|^d_v}{|f(x_0, \ldots, x_n)|_v}, \quad \text{for } P = [x_0 : \cdots : x_n] \in \mathbb{P}^n(k).$$

Roughly, when D is effective:

$$h_{D,v}(P) = -\log($$ v-adic distance from P to D).
More generally, can associate heights and local heights to closed subschemes of projective varieties (Silverman).

For Y, Z closed subschemes, a basic property is that

$$h_{Y \cap Z, v}(P) = \min\{h_{Y, v}(P), h_{Z, v}(P)\}.$$

So if D_1 and D_2 are hypersurfaces of the same degree d defined by $f_1, f_2 \in k[x_0, \ldots, x_n]$, respectively, then

$$h_{D_1 \cap D_2, v}(P) = \log \frac{\max |x_i|^d}{\max\{|f_1(x_0, \ldots, x_n)|_v, |f_2(x_0, \ldots, x_n)|_v\}}.$$
More generally, can associate heights and local heights to closed subschemes of projective varieties (Silverman).

For \(Y, Z \) closed subschemes, a basic property is that

\[
h_{Y \cap Z, \nu}(P) = \min \{ h_{Y, \nu}(P), h_{Z, \nu}(P) \}.
\]

So if \(D_1 \) and \(D_2 \) are hypersurfaces of the same degree \(d \) defined by \(f_1, f_2 \in k[x_0, \ldots, x_n] \), respectively, then

\[
h_{D_1 \cap D_2, \nu}(P) = \log \frac{\max |x_i|^d}{\max \{|f_1(x_0, \ldots, x_n)|_\nu, |f_2(x_0, \ldots, x_n)|_\nu\}}.
\]
More generally, can associate heights and local heights to closed subschemes of projective varieties (Silverman).

For Y, Z closed subschemes, a basic property is that

$$h_{Y \cap Z, \nu}(P) = \min\{h_Y, \nu(P), h_Z, \nu(P)\}.$$

So if D_1 and D_2 are hypersurfaces of the same degree d defined by $f_1, f_2 \in k[x_0, \ldots, x_n]$, respectively, then

$$h_{D_1 \cap D_2, \nu}(P) = \log \frac{\max |x_i|^d}{\max\{|f_1(x_0, \ldots, x_n)|_\nu, |f_2(x_0, \ldots, x_n)|_\nu\}}.$$
If $P = [x_0 : \cdots : x_n]$ with $x_0, \ldots, x_n \in \mathbb{Z}$ and $\gcd(x_0, \ldots, x_n) = 1$, then for any prime $\nu = p$,

$$h_{D_1 \cap D_2, \nu}(P) = -\log \max\{|f_1(x_0, \ldots, x_n)|_{\nu}, |f_2(x_0, \ldots, x_n)|_{\nu}\}.$$

If $Y = D_1 \cap D_2$, the closed subscheme defined by $f_1 = f_2 = 0$, then in this case

$$\sum_{\nu \in M_{\mathbb{Q}} \setminus \{\infty\}} h_{Y, \nu}(P) = \log \gcd(f_1(x_0, \ldots, x_n), f_2(x_0, \ldots, x_n)).$$

So the height $h_Y(P)$ generalizes $\log \gcd(f_1(x_0, \ldots, x_n), f_2(x_0, \ldots, x_n))$, including a contribution from archimedean places.

Point: GCDs are heights with respect to closed subschemes of codimension ≥ 2.
If $P = [x_0 : \cdots : x_n]$ with $x_0, \ldots, x_n \in \mathbb{Z}$ and $\gcd(x_0, \ldots, x_n) = 1$, then for any prime $v = p$,

$$h_{D_1 \cap D_2, v}(P) = -\log \max\{|f_1(x_0, \ldots, x_n)|_v, |f_2(x_0, \ldots, x_n)|_v\}.$$

If $Y = D_1 \cap D_2$, the closed subscheme defined by $f_1 = f_2 = 0$, then in this case

$$\sum_{v \in M_\mathbb{Q} \setminus \{\infty\}} h_{Y, v}(P) = \log \gcd(f_1(x_0, \ldots, x_n), f_2(x_0, \ldots, x_n)).$$

So the height $h_Y(P)$ generalizes $\log \gcd(f_1(x_0, \ldots, x_n), f_2(x_0, \ldots, x_n))$, including a contribution from archimedean places.

Point: GCDs are heights with respect to closed subschemes of codimension ≥ 2.
If $P = [x_0 : \cdots : x_n]$ with $x_0, \ldots, x_n \in \mathbb{Z}$ and $\gcd(x_0, \ldots, x_n) = 1$, then for any prime $v = p$,

$$h_{D_1 \cap D_2, v}(P) = -\log \max\{|f_1(x_0, \ldots, x_n)|_v, |f_2(x_0, \ldots, x_n)|_v\}.$$

If $Y = D_1 \cap D_2$, the closed subscheme defined by $f_1 = f_2 = 0$, then in this case

$$\sum_{v \in M_{\mathbb{Q}} \setminus \{\infty\}} h_{Y, v}(P) = \log \gcd(f_1(x_0, \ldots, x_n), f_2(x_0, \ldots, x_n)).$$

So the height $h_Y(P)$ generalizes $\log \gcd(f_1(x_0, \ldots, x_n), f_2(x_0, \ldots, x_n))$, including a contribution from archimedean places.

Point: GCDs are heights with respect to closed subschemes of codimension ≥ 2.
Gcd heights

If $P = [x_0 : \ldots : x_n]$ with $x_0, \ldots, x_n \in \mathbb{Z}$ and $\text{gcd}(x_0, \ldots, x_n) = 1$, then for any prime $v = p$,

$$h_{D_1 \cap D_2, v}(P) = -\log \max\{|f_1(x_0, \ldots, x_n)|_v, |f_2(x_0, \ldots, x_n)|_v\}.$$

If $Y = D_1 \cap D_2$, the closed subscheme defined by $f_1 = f_2 = 0$, then in this case

$$\sum_{v \in M_Q \setminus \{\infty\}} h_{Y, v}(P) = \log \text{gcd}(f_1(x_0, \ldots, x_n), f_2(x_0, \ldots, x_n)).$$

So the height $h_Y(P)$ generalizes

$\log \text{gcd}(f_1(x_0, \ldots, x_n), f_2(x_0, \ldots, x_n))$, including a contribution from archimedean places.

Point: GCDs are heights with respect to closed subschemes of codimension ≥ 2.
We can state a projective version of the main theorem for the “gcd height" h_Y as follows.

Theorem (L.)

Let Y be a closed subscheme of codimension ≥ 2 in \mathbb{P}^n in general position with the coordinate hyperplanes (boundary of \mathbb{G}^n_m). Let $\Gamma \subset \mathbb{G}^n_m(\overline{\mathbb{Q}})$ be a finitely generated group and $\epsilon > 0$. Then there exists a finite union Z of translates of proper subtori of \mathbb{G}^n_m such that

$$h_Y(P) \leq \epsilon h(P)$$

for all $P \in \Gamma \setminus Z \subset \mathbb{P}^n(\overline{\mathbb{Q}})$.

Not quite equivalent to the earlier main theorem, but they’re closely related (and the earlier one implies this one).
We can state a projective version of the main theorem for the \textquotedblleft gcd height\textquotedblright\ h_Y as follows.

Theorem (L.)

Let Y be a closed subscheme of codimension ≥ 2 in \mathbb{P}^n in general position with the coordinate hyperplanes (boundary of \mathbb{G}_m^n). Let $\Gamma \subset \mathbb{G}_m^n(\bar{\mathbb{Q}})$ be a finitely generated group and $\epsilon > 0$. Then there exists a finite union Z of translates of proper subtori of \mathbb{G}_m^n such that

$$h_Y(P) \leq \epsilon h(P)$$

for all $P \in \Gamma \setminus Z \subset \mathbb{P}^n(\bar{\mathbb{Q}})$.

Not quite equivalent to the earlier main theorem, but they’re closely related (and the earlier one implies this one).
We can state a projective version of the main theorem for the “gcd height" h_Y as follows.

Theorem (L.)

Let Y be a closed subscheme of codimension ≥ 2 in \mathbb{P}^n in general position with the coordinate hyperplanes (boundary of \mathbb{G}_m^n). Let $\Gamma \subset \mathbb{G}_m^n(\overline{\mathbb{Q}})$ be a finitely generated group and $\epsilon > 0$. Then there exists a finite union Z of translates of proper subtori of \mathbb{G}_m^n such that

$$h_Y(P) \leq \epsilon h(P)$$

for all $P \in \Gamma \setminus Z \subset \mathbb{P}^n(\overline{\mathbb{Q}})$.

Not quite equivalent to the earlier main theorem, but they’re closely related (and the earlier one implies this one).
General position condition:

\[
[1 : 0 : \cdots : 0], \ldots, [0 : 0 : \cdots : 0 : 1] \notin Y.
\]

It is a symmetric version of the earlier condition that the polynomials don’t vanish at the origin.

More generally, prove a completely analogous result for \(\mathbb{G}^n_m \subset X \) where \(X \) is a nonsingular projective toric variety.
General position condition:

\[[1 : 0 : \cdots : 0], \ldots, [0 : 0 : \cdots : 0 : 1] \notin Y. \]

It is a symmetric version of the earlier condition that the polynomials don’t vanish at the origin.

More generally, prove a completely analogous result for \(\mathbb{G}_m^n \subset X \) where \(X \) is a nonsingular projective toric variety.
General position condition:

\([1 : 0 : \cdots : 0], \ldots, [0 : 0 : \cdots : 0 : 1] \notin Y.\)

It is a symmetric version of the earlier condition that the polynomials don’t vanish at the origin.

More generally, prove a completely analogous result for \(\mathbb{G}_m^r \subset X\) where \(X\) is a nonsingular projective toric variety.
Alternatively, if $\pi : X \to \mathbb{P}^n$ is the blowup along Y with exceptional divisor E, then by functoriality of heights

$$h_Y(\pi(P)) = h_E(P) + O(1), \quad \forall P \in X(\bar{\mathbb{Q}}).$$

One can interpret the main result in terms of heights on blowups.

GCD inequalities turn out to be cases of Vojta’s conjecture applied to blowups (Silverman).
Blowups and Vojta’s conjecture

- Alternatively, if \(\pi : X \to \mathbb{P}^n \) is the blowup along \(Y \) with exceptional divisor \(E \), then by functoriality of heights
 \[
 h_Y(\pi(P)) = h_E(P) + O(1), \quad \forall P \in X(\bar{\mathbb{Q}}).
 \]
- One can interpret the main result in terms of heights on blowups.
- GCD inequalities turn out to be cases of Vojta’s conjecture applied to blowups (Silverman).
Alternatively, if $\pi : X \to \mathbb{P}^n$ is the blowup along Y with exceptional divisor E, then by functoriality of heights

$$h_Y(\pi(P)) = h_E(P) + O(1), \quad \forall P \in X(\mathbb{Q}).$$

One can interpret the main result in terms of heights on blowups.

GCD inequalities turn out to be cases of Vojta's conjecture applied to blowups (Silverman).
Application: Greatest common divisors in linear recurrence sequences
Linear recurrence sequence: sequence of complex numbers $F(n)$, $n \in \mathbb{N}$, that satisfies a relation

$$F(n) = a_1 F(n - 1) + \cdots + a_r F(n - r), \quad n > r,$$

for some constants $a_i \in \mathbb{C}$.

$F(n)$ is a linear recurrence sequence if and only if

$$F(n) = \sum_{i=1}^{s} f_i(n) \alpha_i^n, \quad n \in \mathbb{N},$$

for some nonzero polynomials $f_i \in \mathbb{C}[x]$ and distinct $\alpha_i \in \mathbb{C}^*$, classically called the roots of F.

The roots are exactly the distinct roots of the corresponding characteristic polynomial

$$X^r - a_1 X^{r-1} - \cdots - a_r.$$
Linear recurrence sequences

- Linear recurrence sequence: sequence of complex numbers \(F(n), n \in \mathbb{N} \), that satisfies a relation

\[
F(n) = a_1 F(n - 1) + \cdots + a_r F(n - r), \quad n > r,
\]

for some constants \(a_i \in \mathbb{C} \).
- \(F(n) \) is a linear recurrence sequence if and only if

\[
F(n) = \sum_{i=1}^{s} f_i(n) \alpha_i^n, \quad n \in \mathbb{N},
\]

for some nonzero polynomials \(f_i \in \mathbb{C}[x] \) and distinct \(\alpha_i \in \mathbb{C}^* \), classically called the roots of \(F \).
- The roots are exactly the distinct roots of the corresponding characteristic polynomial

\[
X^r - a_1 X^{r-1} - \cdots - a_r.
\]
Linear recurrence sequence: sequence of complex numbers $F(n), \ n \in \mathbb{N}$, that satisfies a relation

$$F(n) = a_1 F(n - 1) + \cdots + a_r F(n - r), \quad n > r,$$

for some constants $a_i \in \mathbb{C}$.

$F(n)$ is a linear recurrence sequence if and only if

$$F(n) = \sum_{i=1}^{s} f_i(n) \alpha_i^n, \quad n \in \mathbb{N},$$

for some nonzero polynomials $f_i \in \mathbb{C}[x]$ and distinct $\alpha_i \in \mathbb{C}^*$, classically called the roots of F.

The roots are exactly the distinct roots of the corresponding characteristic polynomial

$$X^r - a_1 X^{r-1} - \cdots - a_r.$$
A linear recurrence is called *simple* if it has the form

\[F(n) = \sum_{i=1}^{r} c_i \alpha_i^n, \quad n \in \mathbb{N}, \]

where \(\alpha_i, c_i \in \mathbb{C}^*, \ i = 1, \ldots, r. \)

This happens if and only if the roots of the associated characteristic polynomial are distinct (simple roots).

A simple linear recurrence is *algebraic* if \(\alpha_i, c_i \in \overline{\mathbb{Q}} \) for \(i = 1, \ldots, n. \)
A linear recurrence is called *simple* if it has the form

\[F(n) = \sum_{i=1}^{r} c_i \alpha_i^n, \quad n \in \mathbb{N}, \]

where \(\alpha_i, c_i \in \mathbb{C}^*, \; i = 1, \ldots, r. \)

This happens if and only if the roots of the associated characteristic polynomial are distinct (simple roots).

A simple linear recurrence is *algebraic* if \(\alpha_i, c_i \in \bar{\mathbb{Q}} \) for \(i = 1, \ldots, n. \)
A linear recurrence is called *simple* if it has the form

\[F(n) = \sum_{i=1}^{r} c_i \alpha_i^n, \quad n \in \mathbb{N}, \]

where \(\alpha_i, c_i \in \mathbb{C}^*, i = 1, \ldots, r. \)

This happens if and only if the roots of the associated characteristic polynomial are distinct (simple roots).

A simple linear recurrence is *algebraic* if \(\alpha_i, c_i \in \bar{\mathbb{Q}} \) for \(i = 1, \ldots, n. \)
Philosophy: Arithmetic properties of $F(n)$ and $G(n)$ holding for all (or infinitely many) n, should be explained by corresponding identities involving F and G (in the ring of linear recurrences).

Examples include:
- Divisibility: Hadamard quotient theorem (Pourchet, van der Poorten, Corvaja-Zannier (strong version))
- Perfect powers: Pisot’s dth root conjecture (Zannier)

Consider this in the context of greatest common divisors.

Classification of terms from two algebraic simple linear recurrences that have a “large” gcd.
Philosophy: Arithmetic properties of $F(n)$ and $G(n)$ holding for all (or infinitely many) n, should be explained by corresponding identities involving F and G (in the ring of linear recurrences).

Examples include:

- Divisibility: Hadamard quotient theorem (Pourchet, van der Poorten, Corvaja-Zannier (strong version))
- Perfect powers: Pisot’s dth root conjecture (Zannier)

Consider this in the context of greatest common divisors.

Classification of terms from two algebraic simple linear recurrences that have a “large” gcd.
Philosophy: Arithmetic properties of $F(n)$ and $G(n)$ holding for all (or infinitely many) n, should be explained by corresponding identities involving F and G (in the ring of linear recurrences).

Examples include:

- Divisibility: Hadamard quotient theorem (Pourchet, van der Poorten, Corvaja-Zannier (strong version))
- Perfect powers: Pisot’s dth root conjecture (Zannier)

Consider this in the context of greatest common divisors.

Classification of terms from two algebraic simple linear recurrences that have a “large” gcd.
Philosophy: Arithmetic properties of $F(n)$ and $G(n)$ holding for all (or infinitely many) n, should be explained by corresponding identities involving F and G (in the ring of linear recurrences).

Examples include:

- Divisibility: Hadamard quotient theorem (Pourchet, van der Poorten, Corvaja-Zannier (strong version))
- Perfect powers: Pisot’s dth root conjecture (Zannier)

Consider this in the context of greatest common divisors.

Classification of terms from two algebraic simple linear recurrences that have a “large” gcd.
A philosophy

- Philosophy: Arithmetic properties of $F(n)$ and $G(n)$ holding for all (or infinitely many) n, should be explained by corresponding identities involving F and G (in the ring of linear recurrences).

- Examples include:
 - Divisibility: Hadamard quotient theorem (Pourchet, van der Poorten, Corvaja-Zannier (strong version))
 - Perfect powers: Pisot’s dth root conjecture (Zannier)

- Consider this in the context of greatest common divisors.

- Classification of terms from two algebraic simple linear recurrences that have a “large” gcd.
Philosophy: Arithmetic properties of $F(n)$ and $G(n)$ holding for all (or infinitely many) n, should be explained by corresponding identities involving F and G (in the ring of linear recurrences).

Examples include:
- Divisibility: Hadamard quotient theorem (Pourchet, van der Poorten, Corvaja-Zannier (strong version))
- Perfect powers: Pisot’s dth root conjecture (Zannier)

Consider this in the context of greatest common divisors.

Classification of terms from two algebraic simple linear recurrences that have a “large” gcd.
Theorem (L.)

Let F and G be two algebraic simple linear recurrences. Suppose that there is no prime dividing every root of F and G. Let $\epsilon > 0$. Then all but finitely many solutions (m, n) of the inequality

$$\log \gcd(F(m), G(n)) > \epsilon \max\{m, n\}$$

satisfy one of finitely many linear relations

$$(m, n) = (a_it + b_i, c_it + d_i), \quad t \in \mathbb{Z}, i = 1, \ldots, r,$$

where $a_i, b_i, c_i, d_i \in \mathbb{Z}, a_ic_i \neq 0$, and the linear recurrences $F(a_in + b_i)$ and $G(c_in + d_i)$ have a nontrivial common factor for $i = 1, \ldots, r$.

Aaron Levin

Greatest common divisors and Diophantine approximation
This result was recently generalized to $\log \gcd(F(n), G(n))$ and general linear recurrences by Grieve and Wang (i.e., without the simple hypothesis).

Proven as an application of a “moving targets" version of the main result.

My student Zheng Xiao is currently proving further results for $\log \gcd(F(m), G(n))$ for general linear recurrences.
This result was recently generalized to $\log \gcd(F(n), G(n))$ and general linear recurrences by Grieve and Wang (i.e., without the simple hypothesis).

Proven as an application of a “moving targets" version of the main result.

My student Zheng Xiao is currently proving further results for $\log \gcd(F(m), G(n))$ for general linear recurrences.
This result was recently generalized to $\log \gcd(F(n), G(n))$ and general linear recurrences by Grieve and Wang (i.e., without the simple hypothesis).

Proven as an application of a “moving targets” version of the main result.

My student Zheng Xiao is currently proving further results for $\log \gcd(F(m), G(n))$ for general linear recurrences.
Greatest Common Divisors and Meromorphic Functions
Deep analogies between Diophantine approximation and Nevanlinna theory (Vojta’s dictionary)

Qualitative level: infinite set of integral points on a variety X corresponds to a nonconstant holomorphic map $f : \mathbb{C} \to X$.

Entire functions without zeros are analogous to S-units.
Deep analogies between Diophantine approximation and Nevanlinna theory (Vojta’s dictionary)

Qualitative level: infinite set of integral points on a variety X corresponds to a nonconstant holomorphic map $f : \mathbb{C} \to X$.

Entire functions without zeros are analogous to S-units.
Vojta’s dictionary

- Deep analogies between Diophantine approximation and Nevanlinna theory (Vojta’s dictionary)
- Qualitative level: infinite set of integral points on a variety X corresponds to a nonconstant holomorphic map $f : \mathbb{C} \to X$.
- Entire functions without zeros are analogous to S-units.
Let f and g be meromorphic functions. Define

$$n(f, g, r) = \sum_{|z| \leq r} \min\{\text{ord}_z^+(f), \text{ord}_z^+(g)\},$$

$$N_{\gcd}(f, g, r) = \int_0^r \frac{n(f, g, t) - n(f, g, 0)}{t} \, dt + n(f, g, 0) \log r,$$

The gcd counting function $N_{\gcd}(f, g, r)$ gives a notion analogous to the gcd of two numbers.

We also need an analogue of the height: the Nevanlinna characteristic function $T_f(r)$.

For holomorphic f it is given by

$$T_f(r) = \int_0^{2\pi} \log^+ |f(re^{i\theta})| \frac{d\theta}{2\pi},$$

where $\log^+ z = \max\{0, \log z\}$.
Let \(f \) and \(g \) be meromorphic functions. Define

\[
n(f, g, r) = \sum_{|z| \leq r} \min\{\text{ord}_z^+(f), \text{ord}_z^+(g)\},
\]

\[
N_{\gcd}(f, g, r) = \int_0^r \frac{n(f, g, t) - n(f, g, 0)}{t} \, dt + n(f, g, 0) \log r,
\]

The gcd counting function \(N_{\gcd}(f, g, r) \) gives a notion analogous to the gcd of two numbers.

We also need an analogue of the height: the Nevanlinna characteristic function \(T_f(r) \).

For holomorphic \(f \) it is given by

\[
T_f(r) = \int_0^{2\pi} \log^+ |f(re^{i\theta})| \frac{d\theta}{2\pi},
\]

where \(\log^+ z = \max\{0, \log z\} \).
Let \(f \) and \(g \) be meromorphic functions. Define

\[
n(f, g, r) = \sum_{|z| \leq r} \min\{\text{ord}_z^+(f), \text{ord}_z^+(g)\},
\]

\[
N_{\gcd}(f, g, r) = \int_0^r \frac{n(f, g, t) - n(f, g, 0)}{t} dt + n(f, g, 0) \log r,
\]

The gcd counting function \(N_{\gcd}(f, g, r) \) gives a notion analogous to the gcd of two numbers.

We also need an analogue of the height: the Nevanlinna characteristic function \(T_f(r) \).

For holomorphic \(f \) it is given by

\[
T_f(r) = \int_0^{2\pi} \log^+ |f(re^{i\theta})| \frac{d\theta}{2\pi},
\]

where \(\log^+ z = \max\{0, \log z\} \).
Let f and g be meromorphic functions. Define

$$n(f, g, r) = \sum_{|z| \leq r} \min\{\text{ord}_z^+(f), \text{ord}_z^+(g)\},$$

$$N_{\gcd}(f, g, r) = \int_0^r \frac{n(f, g, t) - n(f, g, 0)}{t} dt + n(f, g, 0) \log r,$$

The gcd counting function $N_{\gcd}(f, g, r)$ gives a notion analogous to the gcd of two numbers.

We also need an analogue of the height: the Nevanlinna characteristic function $T_f(r)$.

For holomorphic f it is given by

$$T_f(r) = \int_0^{2\pi} \log^+ |f(re^{i\theta})| \frac{d\theta}{2\pi},$$

where $\log^+ z = \max\{0, \log z\}$.
In this language, a Nevanlinna theory analogue of the main result is:

Theorem

Let $F, G \in \mathbb{C}[x_1, \ldots, x_n]$ be coprime polynomials. Let g_1, \ldots, g_n be entire functions without zeros. Assume that $g_1^{i_1} \cdots g_n^{i_n} \notin \mathbb{C}$ for any index set $(i_1, \ldots, i_n) \in \mathbb{Z}^n \setminus \{(0, \ldots, 0)\}$. Let $\epsilon > 0$. Then

$$N_{\gcd}(F(g_1, \ldots, g_n), G(g_1, \ldots, g_n), r) \leq \text{exc} \epsilon \max_{1 \leq i \leq n} \{T_{g_i}(r)\}.$$

The theorem is equivalent to a special case of a very general result of Noguchi, Winkelmann, and Yamanoi for semiabelian varieties.
In this language, a Nevanlinna theory analogue of the main result is:

Theorem

Let $F, G \in \mathbb{C}[x_1, \ldots, x_n]$ be coprime polynomials. Let g_1, \ldots, g_n be entire functions without zeros. Assume that $g_{i_1} \cdots g_{i_n} \not\in \mathbb{C}$ for any index set $(i_1, \ldots, i_n) \in \mathbb{Z}^n \setminus \{(0, \ldots, 0)\}$. Let $\epsilon > 0$. Then

$$N_{\gcd}(F(g_1, \ldots, g_n), G(g_1, \ldots, g_n), r) \leq \text{exc} \epsilon \max_{1 \leq i \leq n} \{ T_{g_i}(r) \}.$$

The theorem is equivalent to a special case of a very general result of Noguchi, Winkelmann, and Yamanoi for semiabelian varieties.
In this language, a Nevanlinna theory analogue of the main result is:

Theorem

Let $F, G \in \mathbb{C}[x_1, \ldots, x_n]$ be coprime polynomials. Let g_1, \ldots, g_n be entire functions without zeros. Assume that $g_1^{i_1} \cdots g_n^{i_n} \notin \mathbb{C}$ for any index set $(i_1, \ldots, i_n) \in \mathbb{Z}^n \setminus \{(0, \ldots, 0)\}$. Let $\epsilon > 0$. Then

$$N_{\gcd}(F(g_1, \ldots, g_n), G(g_1, \ldots, g_n), r) \leq \operatorname{exc} \max_{1 \leq i \leq n} \{ T_{g_i}(r) \}.$$

The theorem is equivalent to a special case of a very general result of Noguchi, Winkelmann, and Yamano for semiabelian varieties.
In recent joint work with Julie Wang we prove “asymptotic” gcd results for *meromorphic* functions:

Theorem (L., Wang)

Let $F, G \in \mathbb{C}[x_1, \ldots, x_n]$ be coprime polynomials such that not both of them vanish at $(0, \ldots, 0)$. Let g_1, \ldots, g_n be meromorphic functions such that $g_1^{i_1} \cdots g_n^{i_n} \not\in \mathbb{C}$ for any index set $(i_1, \ldots, i_n) \in \mathbb{Z}^n \setminus \{(0, \ldots, 0)\}$. Then for any $\epsilon > 0$, there exists k_0 such that for all $k \geq k_0$,

$$N_{\gcd}(F(g_1^k, \ldots, g_n^k), G(g_1^k, \ldots, g_n^k), r) \leq \text{exc} \epsilon \max_{1 \leq i \leq n} \{T_{g_i^k}(r)\};$$
In recent joint work with Julie Wang we prove "asymptotic" gcd results for meromorphic functions:

Theorem (L., Wang)

Let $F, G \in \mathbb{C}[x_1, \ldots, x_n]$ be coprime polynomials such that not both of them vanish at $(0, \ldots, 0)$. Let g_1, \ldots, g_n be meromorphic functions such that $g_1^{i_1} \cdots g_n^{i_n} \notin \mathbb{C}$ for any index set $(i_1, \ldots, i_n) \in \mathbb{Z}^n \setminus \{(0, \ldots, 0)\}$. Then for any $\epsilon > 0$, there exists k_0 such that for all $k \geq k_0$,

$$N_{\gcd}(F(g_1^k, \ldots, g_n^k), G(g_1^k, \ldots, g_n^k), r) \leq_{\text{exc}} \epsilon \max_{1 \leq i \leq n} \{ T_{g_i^k}(r) \};$$
In particular, we prove a conjectured inequality of Pasten-Wang:

Corollary (L., Wang)

Let f and g be multiplicatively independent meromorphic functions. Then for any $\varepsilon > 0$, there exists k_0 such that for all $k \geq k_0$,

$$
N_{\gcd(f^k - 1, g^k - 1, r)} \leq_{\text{exc}} \varepsilon \max\{T_{f^k}(r), T_{g^k}(r)\}.
$$

Guo and Wang proved a similar result with $\frac{1}{2} + \varepsilon$ instead of ε.
In particular, we prove a conjectured inequality of Pasten-Wang:

Corollary (L., Wang)

Let f and g be multiplicatively independent meromorphic functions. Then for any $\epsilon > 0$, there exists k_0 such that for all $k \geq k_0$,

$$N_{\gcd(f^k - 1, g^k - 1, r)} \leq_{\text{exc}} \epsilon \max\{T_{f^k}(r), T_{g^k}(r)\}.$$

Guo and Wang proved a similar result with $\frac{1}{2} + \epsilon$ instead of ϵ.
In particular, we prove a conjectured inequality of Pasten-Wang:

Corollary (L., Wang)

Let f and g be multiplicatively independent meromorphic functions. Then for any $\epsilon > 0$, there exists k_0 such that for all $k \geq k_0$,

$$N_{\gcd(f^k - 1, g^k - 1, r)} \leq_{\text{exc}} \epsilon \max\{T_{f^k}(r), T_{g^k}(r)\}.$$

Guo and Wang proved a similar result with $\frac{1}{2} + \epsilon$ instead of ϵ.
Proofs
The primary tool in the proofs is Schmidt’s Subspace Theorem in Diophantine approximation.

Let’s first recall Roth’s foundational result in Diophantine approximation.

Theorem (Roth 1955)

Let $\alpha \in \overline{\mathbb{Q}}$. Let $\epsilon > 0$. Then there are only finitely many rational numbers $\frac{p}{q} \in \mathbb{Q}$ satisfying

$$\left| \alpha - \frac{p}{q} \right| < \frac{1}{q^{2+\epsilon}}.$$
Roth’s Theorem

- The primary tool in the proofs is Schmidt’s Subspace Theorem in Diophantine approximation.
- Let’s first recall Roth’s foundational result in Diophantine approximation.

Theorem (Roth 1955)

Let \(\alpha \in \bar{Q} \). **Let** \(\epsilon > 0 \). **Then there are only finitely many rational numbers** \(\frac{p}{q} \in \mathbb{Q} \) **satisfying**

\[
\left| \alpha - \frac{p}{q} \right| < \frac{1}{q^{2+\epsilon}}.
\]
Roth’s Theorem

The primary tool in the proofs is Schmidt’s Subspace Theorem in Diophantine approximation.

Let’s first recall Roth’s foundational result in Diophantine approximation.

Theorem (Roth 1955)

Let \(\alpha \in \overline{\mathbb{Q}} \). Let \(\epsilon > 0 \). Then there are only finitely many rational numbers \(\frac{p}{q} \in \mathbb{Q} \) satisfying

\[
\left| \alpha - \frac{p}{q} \right| < \frac{1}{q^{2+\epsilon}}.
\]
Roth’s theorem can be generalized to arbitrary number fields and to finite sets of places (including nonarchimedean ones).

Theorem (Ridout-Lang version of Roth)

Let k be a number field and S a finite set of places of k. For each $v \in S$, let $Q_v \in \mathbb{P}^1(k)$. Let $\epsilon > 0$. Then

\[
\sum_{v \in S} h_{Q_v,v}(P) \leq (2 + \epsilon) h(P)
\]

for all but finitely many points $P \in \mathbb{P}^1(k)$.

Aaron Levin

Greatest common divisors and Diophantine approximation
Roth’s theorem can be generalized to arbitrary number fields and to finite sets of places (including nonarchimedean ones).

Theorem (Ridout-Lang version of Roth)

Let k be a number field and S a finite set of places of k. For each $v \in S$, let $Q_v \in \mathbb{P}^1(k)$. Let $\epsilon > 0$. Then

$$\sum_{v \in S} h_{Q_v,v}(P) \leq (2 + \epsilon) h(P)$$

for all but finitely many points $P \in \mathbb{P}^1(k)$.

Aaron Levin
Greatest common divisors and Diophantine approximation
In 1970 Schmidt gave a deep generalization of Roth’s theorem to the setting of approximation of hyperplanes in projective space.

Schmidt’s theorem (as improved by Schlickewei to allow arbitrary finite sets of places):

Theorem (Schmidt’s Subspace Theorem)

Let k be a number field. Let S be a finite set of places of k. For each $v \in S$, let H_{0v}, \ldots, H_{nv} be hyperplanes over k in \mathbb{P}^n in general position. Let $\epsilon > 0$. Then there exists a finite union of hyperplanes $Z \subset \mathbb{P}^n$ such that

$$\sum_{v \in S} \sum_{i=0}^{n} h_{H_{iv},v}(P) \leq (n + 1 + \epsilon)h(P)$$

holds for all $P \in \mathbb{P}^n(k) \setminus Z$.
Schmidt’s Theorem

In 1970 Schmidt gave a deep generalization of Roth’s theorem to the setting of approximation of hyperplanes in projective space.

Schmidt’s theorem (as improved by Schlickewei to allow arbitrary finite sets of places):

Theorem (Schmidt’s Subspace Theorem)

Let k be a number field. Let S be a finite set of places of k. For each $v \in S$, let H_{0v}, \ldots, H_{nv} be hyperplanes over k in \mathbb{P}^n in general position. Let $\epsilon > 0$. Then there exists a finite union of hyperplanes $Z \subset \mathbb{P}^n$ such that

$$\sum_{v \in S} \sum_{i=0}^{n} h_{H_{iv},v}(P) \leq (n + 1 + \epsilon)h(P)$$

holds for all $P \in \mathbb{P}^n(k) \setminus Z$.

Aaron Levin

Greatest common divisors and Diophantine approximation
In 1970 Schmidt gave a deep generalization of Roth’s theorem to the setting of approximation of hyperplanes in projective space.

Schmidt’s theorem (as improved by Schlickewei to allow arbitrary finite sets of places):

Theorem (Schmidt’s Subspace Theorem)

Let \(k \) be a number field. Let \(S \) be a finite set of places of \(k \). For each \(v \in S \), let \(H_{0v}, \ldots, H_{nv} \) be hyperplanes over \(k \) in \(\mathbb{P}^n \) in general position. Let \(\epsilon > 0 \). Then there exists a finite union of hyperplanes \(Z \subseteq \mathbb{P}^n \) such that

\[
\sum_{v \in S} \sum_{i=0}^{n} h_{H_{iv},v}(P) \leq (n + 1 + \epsilon) h(P)
\]

holds for all \(P \in \mathbb{P}^n(k) \setminus Z \).
Briefly describe the idea for proving $h_Y(P) \leq \epsilon h(P)$.

Let $\pi : X \to \mathbb{P}^n$ be the blowup along Y, let E be the exceptional divisor, and let H be a hyperplane.

For large enough m, $\mathcal{O}(m\pi^*H - E)$ is generated by global sections and we consider the associated morphism $\phi : X \to \mathbb{P}^N$.

Idea of proof: Apply Schmidt’s theorem to \mathbb{P}^N with a nicely chosen system of hyperplanes \mathcal{H}_v, $v \in S$.

Hyperplanes \mathcal{H}_v are chosen (dependent on $P \in X(k)$) so that the associated sections of $\mathcal{O}(m\pi^*H - E)$ vanish to high order along (pullback of) coordinate hyperplanes v-adically close to P.

Use functoriality to pull back, via ϕ, the resulting Diophantine approximation statement to X.
Briefly describe the idea for proving $h_Y(P) \leq \epsilon h(P)$.

Let $\pi : X \to \mathbb{P}^n$ be the blowup along Y, let E be the exceptional divisor, and let H be a hyperplane.

For large enough m, $\mathcal{O}(m\pi^*H - E)$ is generated by global sections and we consider the associated morphism $\phi : X \to \mathbb{P}^N$.

Idea of proof: Apply Schmidt’s theorem to \mathbb{P}^N with a nicely chosen system of hyperplanes \mathcal{H}_v, $v \in S$.

Hyperplanes \mathcal{H}_v are chosen (dependent on $P \in X(k)$) so that the associated sections of $\mathcal{O}(m\pi^*H - E)$ vanish to high order along (pullback of) coordinate hyperplanes v-adically close to P.

Use functoriality to pull back, via ϕ, the resulting Diophantine approximation statement to X.
Briefly describe the idea for proving $h_Y(P) \leq \epsilon h(P)$.

Let $\pi : X \to \mathbb{P}^n$ be the blowup along Y, let E be the exceptional divisor, and let H be a hyperplane.

For large enough m, $\mathcal{O}(m\pi^*H - E)$ is generated by global sections and we consider the associated morphism $\phi : X \to \mathbb{P}^N$.

Idea of proof: Apply Schmidt’s theorem to \mathbb{P}^N with a nicely chosen system of hyperplanes \mathcal{H}_v, $v \in S$.

Hyperplanes \mathcal{H}_v are chosen (dependent on $P \in X(k)$) so that the associated sections of $\mathcal{O}(m\pi^*H - E)$ vanish to high order along (pullback of) coordinate hyperplanes v-adically close to P.

Use functoriality to pull back, via ϕ, the resulting Diophantine approximation statement to X.
Idea of proof

Briefly describe the idea for proving $h_Y(P) \leq \epsilon h(P)$.

Let $\pi : X \rightarrow \mathbb{P}^n$ be the blowup along Y, let E be the exceptional divisor, and let H be a hyperplane.

For large enough m, $\mathcal{O}(m\pi^*H - E)$ is generated by global sections and we consider the associated morphism $\phi : X \rightarrow \mathbb{P}^N$.

Idea of proof: Apply Schmidt’s theorem to \mathbb{P}^N with a nicely chosen system of hyperplanes \mathcal{H}_v, $v \in S$.

Hyperplanes \mathcal{H}_v are chosen (dependent on $P \in X(k)$) so that the associated sections of $\mathcal{O}(m\pi^*H - E)$ vanish to high order along (pullback of) coordinate hyperplanes v-adically close to P.

Use functoriality to pull back, via ϕ, the resulting Diophantine approximation statement to X.

Aaron Levin

Greatest common divisors and Diophantine approximation
Idea of proof

- Briefly describe the idea for proving $h_Y(P) \leq \epsilon h(P)$.
- Let $\pi : X \rightarrow \mathbb{P}^n$ be the blowup along Y, let E be the exceptional divisor, and let H be a hyperplane.
- For large enough m, $\mathcal{O}(m\pi^*H - E)$ is generated by global sections and we consider the associated morphism $\phi : X \rightarrow \mathbb{P}^N$.
- Idea of proof: Apply Schmidt’s theorem to \mathbb{P}^N with a nicely chosen system of hyperplanes \mathcal{H}_v, $v \in S$.
- Hyperplanes \mathcal{H}_v are chosen (dependent on $P \in X(k)$) so that the associated sections of $\mathcal{O}(m\pi^*H - E)$ vanish to high order along (pullback of) coordinate hyperplanes v-adically close to P.
- Use functoriality to pull back, via ϕ, the resulting Diophantine approximation statement to X.
Idea of proof

- Briefly describe the idea for proving $h_Y(P) \leq \epsilon h(P)$.
- Let $\pi : X \to \mathbb{P}^n$ be the blowup along Y, let E be the exceptional divisor, and let H be a hyperplane.
- For large enough m, $\mathcal{O}(m\pi^*H - E)$ is generated by global sections and we consider the associated morphism $\phi : X \to \mathbb{P}^N$.
- Idea of proof: Apply Schmidt’s theorem to \mathbb{P}^N with a nicely chosen system of hyperplanes \mathcal{H}_v, $v \in S$.
- Hyperplanes \mathcal{H}_v are chosen (dependent on $P \in X(k)$) so that the associated sections of $\mathcal{O}(m\pi^*H - E)$ vanish to high order along (pullback of) coordinate hyperplanes v-adically close to P.
- Use functoriality to pull back, via ϕ, the resulting Diophantine approximation statement to X.
Future work

- Current joint work with Corvaja and Zannier exploring function field analogues and applications (after their earlier work in dimension 2).
- This has connections to topics including Vojta’s conjecture over function fields, unlikely intersections, lacunary polynomials, etc.
Future work

- Current joint work with Corvaja and Zannier exploring function field analogues and applications (after their earlier work in dimension 2).
- This has connections to topics including Vojta’s conjecture over function fields, unlikely intersections, lacunary polynomials, etc.