Greatest common divisors and Diophantine approximation

Aaron Levin

Michigan State University

The First JNT Biennial Conference
 Cetraro, Italy

Greatest Common Divisors

$\operatorname{gcd}\left(2^{n}-1,3^{n}-1\right)$

- We'll be interested in greatest common divisors like

$$
\operatorname{gcd}\left(2^{n}-1,3^{n}-1\right), \quad n=1,2,3, \ldots
$$

- Let's compute some values:

n	$2^{n}-1$	$3^{n}-1$	$\operatorname{gcd}\left(2^{n}-1,3^{n}-1\right)$
1	1	2	1
2	3	8	1
3	7	26	1
4	15	80	5
5	31	242	1
6	63	728	7
7	127	2186	1
8	255	6560	5
9	511	19862	1
10	1023	59048	11

$\operatorname{gcd}\left(2^{n}-1,3^{n}-1\right)$

- We'll be interested in greatest common divisors like

$$
\operatorname{gcd}\left(2^{n}-1,3^{n}-1\right), \quad n=1,2,3, \ldots
$$

- Let's compute some values:

n	$2^{n}-1$	$3^{n}-1$	$\operatorname{gcd}\left(2^{n}-1,3^{n}-1\right)$
1	1	2	1
2	3	8	1
3	7	26	1
4	15	80	5
5	31	242	1
6	63	728	7
7	127	2186	1
8	255	6560	5
9	511	19862	1
10	1023	59048	11

A question

- First question: Are there infinitely many $n \geq 1$ such that

$$
\operatorname{gcd}\left(2^{n}-1,3^{n}-1\right)=1 ?
$$

- Not known! Conjectured answer: yes.
- For integers a, b, let's look more generally at

- Note that $\operatorname{gcd}(a-1, b-1)$ divides $\operatorname{gcd}\left(a^{n}-1, b^{n}-1\right)$ for all positive n.

A question

- First question: Are there infinitely many $n \geq 1$ such that

$$
\operatorname{gcd}\left(2^{n}-1,3^{n}-1\right)=1 ?
$$

- Not known! Conjectured answer: yes.
- For integers a, b, let's look more generally at

- Note that $\operatorname{gcd}(a-1, b-1)$ divides $\operatorname{gcd}\left(a^{n}-1, b^{n}-1\right)$ for all positive n.

A question

- First question: Are there infinitely many $n \geq 1$ such that

$$
\operatorname{gcd}\left(2^{n}-1,3^{n}-1\right)=1 ?
$$

- Not known! Conjectured answer: yes.
- For integers a, b, let's look more generally at

$$
\operatorname{gcd}\left(a^{n}-1, b^{n}-1\right)
$$

- Note that $\operatorname{gcd}(a-1, b-1)$ divides $\operatorname{gcd}\left(a^{n}-1, b^{n}-1\right)$ for all positive n.

A question

- First question: Are there infinitely many $n \geq 1$ such that

$$
\operatorname{gcd}\left(2^{n}-1,3^{n}-1\right)=1 ?
$$

- Not known! Conjectured answer: yes.
- For integers a, b, let's look more generally at

$$
\operatorname{gcd}\left(a^{n}-1, b^{n}-1\right)
$$

- Note that $\operatorname{gcd}(a-1, b-1)$ divides $\operatorname{gcd}\left(a^{n}-1, b^{n}-1\right)$ for all positive n.

Multiplicative dependence

- Another observation: If $a=c^{i}$ and $b=c^{j}$ for some $i, j \geq 1$, then

$$
\begin{aligned}
& a^{n}-1=\left(c^{n}\right)^{i}-1 \\
& b^{n}-1=\left(c^{n}\right)^{j}-1
\end{aligned}
$$

and

$$
\left(c^{n}-1\right) \mid \operatorname{gcd}\left(a^{n}-1, b^{n}-1\right), \quad n \geq 1
$$

- In this case, a and b are multiplicatively dependent:
for some integers r, s, not both 0 .
- Thus, if a, b are multiplicatively dependent then $\operatorname{gcd}\left(a^{n}-1, b^{n}-1\right)$ can grow exponentially.

Multiplicative dependence

- Another observation: If $a=c^{i}$ and $b=c^{j}$ for some $i, j \geq 1$, then

$$
\begin{aligned}
& a^{n}-1=\left(c^{n}\right)^{i}-1 \\
& b^{n}-1=\left(c^{n}\right)^{j}-1
\end{aligned}
$$

and

$$
\left(c^{n}-1\right) \mid \operatorname{gcd}\left(a^{n}-1, b^{n}-1\right), \quad n \geq 1
$$

- In this case, a and b are multiplicatively dependent:

$$
a^{r}=b^{s}
$$

for some integers r, s, not both 0 .
\square

- Thus, if a, b are multiplicatively dependent then $\operatorname{gcd}\left(a^{n}-1, b^{n}-1\right)$ can grow exponentially.

Multiplicative dependence

- Another observation: If $a=c^{i}$ and $b=c^{j}$ for some $i, j \geq 1$, then

$$
\begin{aligned}
& a^{n}-1=\left(c^{n}\right)^{i}-1, \\
& b^{n}-1=\left(c^{n}\right)^{j}-1,
\end{aligned}
$$

and

$$
\left(c^{n}-1\right) \mid \operatorname{gcd}\left(a^{n}-1, b^{n}-1\right), \quad n \geq 1
$$

- In this case, a and b are multiplicatively dependent:

$$
a^{r}=b^{s}
$$

for some integers r, s, not both 0 .

- Thus, if a, b are multiplicatively dependent then $\operatorname{gcd}\left(a^{n}-1, b^{n}-1\right)$ can grow exponentially.

Ailon-Rudnick Conjecture

Conjecture (Ailon-Rudnick)

If $a, b \in \mathbb{Z}$ are multiplicatively independent then there exist infinitely many $n \geq 1$ such that

$$
\operatorname{gcd}\left(a^{n}-1, b^{n}-1\right)=\operatorname{gcd}(a-1, b-1)
$$

- In particular, there should be infinitely many $n \geq 1$ such that

- Conjecture seems very difficult. Ailon and Rudnick proved the analogous conjecture for polynomials $f, g \in \mathbb{C}[x]$.

Ailon-Rudnick Conjecture

Conjecture (Ailon-Rudnick)

If $a, b \in \mathbb{Z}$ are multiplicatively independent then there exist infinitely many $n \geq 1$ such that

$$
\operatorname{gcd}\left(a^{n}-1, b^{n}-1\right)=\operatorname{gcd}(a-1, b-1)
$$

- In particular, there should be infinitely many $n \geq 1$ such that

$$
\operatorname{gcd}\left(2^{n}-1,3^{n}-1\right)=1
$$

- Conjecture seems very difficult. Ailon and Rudnick proved the analogous conjecture for polynomials $f, g \in \mathbb{C}[x]$.

Ailon-Rudnick Conjecture

Conjecture (Ailon-Rudnick)

If $a, b \in \mathbb{Z}$ are multiplicatively independent then there exist infinitely many $n \geq 1$ such that

$$
\operatorname{gcd}\left(a^{n}-1, b^{n}-1\right)=\operatorname{gcd}(a-1, b-1)
$$

- In particular, there should be infinitely many $n \geq 1$ such that

$$
\operatorname{gcd}\left(2^{n}-1,3^{n}-1\right)=1
$$

- Conjecture seems very difficult. Ailon and Rudnick proved the analogous conjecture for polynomials $f, g \in \mathbb{C}[x]$.

Upper bounds for $\operatorname{gcd}\left(2^{n}-1,3^{n}-1\right)$

- Now look at upper bounds.
- How large can $\operatorname{gcd}\left(2^{n}-1,3^{n}-1\right)$ be?
- Let's look at entries from our table with
$\operatorname{gcd}\left(2^{n}-1,3^{n}-1\right)>1$:

Upper bounds for $\operatorname{gcd}\left(2^{n}-1,3^{n}-1\right)$

- Now look at upper bounds.
- How large can $\operatorname{gcd}\left(2^{n}-1,3^{n}-1\right)$ be?
- Let's look at entries from our table with $\operatorname{gcd}\left(2^{n}-1,3^{n}-1\right)>1$:

Upper bounds for $\operatorname{gcd}\left(2^{n}-1,3^{n}-1\right)$

- Now look at upper bounds.
- How large can $\operatorname{gcd}\left(2^{n}-1,3^{n}-1\right)$ be?
- Let's look at entries from our table with $\operatorname{gcd}\left(2^{n}-1,3^{n}-1\right)>1$:

n	$2^{n}-1$	$3^{n}-1$	$\operatorname{gcd}\left(2^{n}-1,3^{n}-1\right)$
4	15	80	5
6	63	728	7
8	255	6560	5
10	1023	59048	11

- All the nontrivial gcds in the table come from Fermat's little theorem:

$$
n^{p-1} \equiv 1 \quad(\bmod p)
$$

for any prime p and integer n with $p \nmid n$.

- So for any prime $p \neq 2,3$,

- We can try to make $\operatorname{gcd}\left(2^{n}-1,3^{n}-1\right)$ large by finding n so that $p-1$ divides n for many primes p.
- All the nontrivial gcds in the table come from Fermat's little theorem:

$$
n^{p-1} \equiv 1 \quad(\bmod p)
$$

for any prime p and integer n with $p \nmid n$.

- So for any prime $p \neq 2,3$,

$$
p \mid \operatorname{gcd}\left(2^{p-1}-1,3^{p-1}-1\right)
$$

- We can try to make $\operatorname{gcd}\left(2^{n}-1,3^{n}-1\right)$ large by finding n so that $p-1$ divides n for many primes p.
- All the nontrivial gcds in the table come from Fermat's little theorem:

$$
n^{p-1} \equiv 1 \quad(\bmod p)
$$

for any prime p and integer n with $p \nmid n$.

- So for any prime $p \neq 2,3$,

$$
p \mid \operatorname{gcd}\left(2^{p-1}-1,3^{p-1}-1\right)
$$

- We can try to make $\operatorname{gcd}\left(2^{n}-1,3^{n}-1\right)$ large by finding n so that $p-1$ divides n for many primes p.

A lower bound

- In this direction, we have:

Theorem (Ademan, Pomerance, Rumely)

There exists a constant $C>0$ such that

holds for infinitely many positive integers n.

- Using Fermat's theorem this easily gives:

$$
\log \operatorname{gcd}\left(2^{n}-1,3^{n}-1\right)>e^{C \log n / \log \log n}
$$

for infinitely many positive integers n and some constant $C>0$.

A lower bound

- In this direction, we have:

Theorem (Adleman, Pomerance, Rumely)

There exists a constant $C>0$ such that

$$
\#\{p: p \text { is prime, }(p-1) \mid n\}>e^{C \log n / \log \log n}
$$

holds for infinitely many positive integers n.

- Using Fermat's theorem this easily gives:

for infinitely many positive integers n and some constant $C>0$.

A lower bound

- In this direction, we have:

Theorem (Adleman, Pomerance, Rumely)

There exists a constant $C>0$ such that

$$
\#\{p: p \text { is prime, }(p-1) \mid n\}>e^{C \log n / \log \log n}
$$

holds for infinitely many positive integers n.

- Using Fermat's theorem this easily gives:

$$
\log \operatorname{gcd}\left(2^{n}-1,3^{n}-1\right)>e^{C \log n / \log \log n}
$$

for infinitely many positive integers n and some constant $C>0$.

Bugeaud-Corvaja-Zannier theorem

- In the other direction, an upper bound was given by Bugeaud, Corvaja, and Zannier in 2003.

```
Theorem (Bugeaud, Corvaja, Zannier)
Let a,b 
every }\epsilon>0\mathrm{ ,
```


for all but finitely many positive integers n.

- In view of the previous 'ower bound', the result is reasonably close to optimal.
- Proof uses the deep Schmidt Subspace Theorem from Diophantine approximation.

Bugeaud-Corvaja-Zannier theorem

- In the other direction, an upper bound was given by Bugeaud, Corvaja, and Zannier in 2003.

Theorem (Bugeaud, Corvaja, Zannier)

Let $a, b \in \mathbb{Z}$ be multiplicatively independent integers. Then for every $\epsilon>0$,

$$
\log \operatorname{gcd}\left(a^{n}-1, b^{n}-1\right) \leq \epsilon n
$$

for all but finitely many positive integers n.

> In view of the previous lower bound, the result is reasonably close to optimal.
> Proof uses the deep Schmidt Subspace Theorem from Diophantine approximation.

Bugeaud-Corvaja-Zannier theorem

- In the other direction, an upper bound was given by Bugeaud, Corvaja, and Zannier in 2003.

Theorem (Bugeaud, Corvaja, Zannier)

Let $a, b \in \mathbb{Z}$ be multiplicatively independent integers. Then for every $\epsilon>0$,

$$
\log \operatorname{gcd}\left(a^{n}-1, b^{n}-1\right) \leq \epsilon n
$$

for all but finitely many positive integers n.

- In view of the previous lower bound, the result is reasonably close to optimal.
- Proof uses the deep Schmidt Subspace Theorem from
Diophantine approximation.

Bugeaud-Corvaja-Zannier theorem

- In the other direction, an upper bound was given by Bugeaud, Corvaja, and Zannier in 2003.

Theorem (Bugeaud, Corvaja, Zannier)

Let $a, b \in \mathbb{Z}$ be multiplicatively independent integers. Then for every $\epsilon>0$,

$$
\log \operatorname{gcd}\left(a^{n}-1, b^{n}-1\right) \leq \epsilon n
$$

for all but finitely many positive integers n.

- In view of the previous lower bound, the result is reasonably close to optimal.
- Proof uses the deep Schmidt Subspace Theorem from Diophantine approximation.
- Now discuss several generalizations.
- First, let $S=\left\{\infty, p_{1}, \ldots, p_{m}\right\}$ be a set of primes and

$$
\mathbb{Z}_{S}^{*}=\left\{ \pm p_{1}^{i_{1}} \cdots p_{m}^{i_{m}} \mid i_{1}, \ldots, i_{m} \in \mathbb{Z}\right\}
$$

be the group of S-units in \mathbb{Q}.

- Corvaja and Zannier and, independently, Hernández and Luca, generalized Bugeaud-Corvaja-Zannier's result:

$\operatorname{gcd}(u-1, v-1)$

- Now discuss several generalizations.
- First, let $S=\left\{\infty, p_{1}, \ldots, p_{m}\right\}$ be a set of primes and

$$
\mathbb{Z}_{S}^{*}=\left\{ \pm p_{1}^{i_{1}} \cdots p_{m}^{i_{m}} \mid i_{1}, \ldots, i_{m} \in \mathbb{Z}\right\}
$$

be the group of S-units in \mathbb{Q}.

- Corvaja and Zannier and, independently, Hernández and Luca, generalized Bugeaud-Corvaja-Zannier's result:

$\operatorname{gcd}(u-1, v-1)$

- Now discuss several generalizations.
- First, let $S=\left\{\infty, p_{1}, \ldots, p_{m}\right\}$ be a set of primes and

$$
\mathbb{Z}_{S}^{*}=\left\{ \pm p_{1}^{i_{1}} \cdots p_{m}^{i_{m}} \mid i_{1}, \ldots, i_{m} \in \mathbb{Z}\right\}
$$

be the group of S-units in \mathbb{Q}.

- Corvaja and Zannier and, independently, Hernández and Luca, generalized Bugeaud-Corvaja-Zannier's result:

Theorem (Corvaja-Zannier, Hernández-Luca)
For every $\epsilon>0$,
$\log \operatorname{gcd}(u-1, v-1) \leq \in \max \{\log |u|, \log |v|\}$
for all but finitely many multiplicatively independent S-unit
integers $u, v \in \mathbb{Z}_{S}^{*}$.

$\operatorname{gcd}(u-1, v-1)$

- Now discuss several generalizations.
- First, let $S=\left\{\infty, p_{1}, \ldots, p_{m}\right\}$ be a set of primes and

$$
\mathbb{Z}_{S}^{*}=\left\{ \pm p_{1}^{i_{1}} \cdots p_{m}^{i_{m}} \mid i_{1}, \ldots, i_{m} \in \mathbb{Z}\right\}
$$

be the group of S-units in \mathbb{Q}.

- Corvaja and Zannier and, independently, Hernández and Luca, generalized Bugeaud-Corvaja-Zannier's result:

Theorem (Corvaja-Zannier, Hernández-Luca)

For every $\epsilon>0$,

$$
\log \operatorname{gcd}(u-1, v-1) \leq \epsilon \max \{\log |u|, \log |v|\}
$$

for all but finitely many multiplicatively independent S-unit integers $u, v \in \mathbb{Z}_{S}^{*}$.

Generalized logarithmic greatest common divisor

- Define the (generalized) logarithmic greatest common divisor of $\alpha, \beta \in \overline{\mathbb{Q}}$ (not both zero) by

$$
\log \operatorname{gcd}(\alpha, \beta)=h([1: \alpha: \beta])-h([\alpha: \beta])
$$

where h is the usual absolute logarithmic height on projective space.

- Alternatively, if α and β are in a number field k :

where $\log ^{-} z=\min \{0, \log z\}$ and $M_{k}=$ set of places of k.
- This generalizes the gcd for integers, and notably includes an archimedean contribution.

Generalized logarithmic greatest common divisor

- Define the (generalized) logarithmic greatest common divisor of $\alpha, \beta \in \overline{\mathbb{Q}}$ (not both zero) by

$$
\log \operatorname{gcd}(\alpha, \beta)=h([1: \alpha: \beta])-h([\alpha: \beta]),
$$

where h is the usual absolute logarithmic height on projective space.

- Alternatively, if α and β are in a number field k :

$$
\log \operatorname{gcd}(\alpha, \beta)=-\sum_{v \in M_{k}} \log ^{-} \max \left\{|\alpha|_{v},|\beta|_{v}\right\},
$$

where $\log ^{-} z=\min \{0, \log z\}$ and $M_{k}=$ set of places of k.

- This generalizes the gcd for integers, and notably includes an archimedean contribution.

Generalized logarithmic greatest common divisor

- Define the (generalized) logarithmic greatest common divisor of $\alpha, \beta \in \overline{\mathbb{Q}}$ (not both zero) by

$$
\log \operatorname{gcd}(\alpha, \beta)=h([1: \alpha: \beta])-h([\alpha: \beta]),
$$

where h is the usual absolute logarithmic height on projective space.

- Alternatively, if α and β are in a number field k :

$$
\log \operatorname{gcd}(\alpha, \beta)=-\sum_{v \in M_{k}} \log ^{-} \max \left\{|\alpha|_{v},|\beta|_{v}\right\}
$$

where $\log ^{-} z=\min \{0, \log z\}$ and $M_{k}=$ set of places of k.

- This generalizes the gcd for integers, and notably includes an archimedean contribution.

Multiplicative independence

- Also want to rephrase the multiplicative independence condition.
- Let \mathbb{G}_{m}^{n} denote the n-dimensional algebraic torus, where $\mathbb{G}_{m}=\mathbb{P}^{1} \backslash\{0, \infty\}=\mathbb{A}^{1} \backslash\{0\}$.
- Then $\mathbb{G}_{m}^{n}(k) \cong\left(k^{*}\right)^{n}$ with the obvious group structure coming from coordinate-wise multiplication.
- The condition that u and v are multiplicatively independent can be rephrased as saying that (u, v) is not an element of a proper algebraic subgroup of \mathbb{G}_{m}^{2} (subtorus).

Multiplicative independence

- Also want to rephrase the multiplicative independence condition.
- Let \mathbb{G}_{m}^{n} denote the n-dimensional algebraic torus, where $\mathbb{G}_{m}=\mathbb{P}^{1} \backslash\{0, \infty\}=\mathbb{A}^{1} \backslash\{0\}$.
- Then $\mathbb{G}_{m}^{n}(k) \cong\left(k^{*}\right)^{n}$ with the obvious group structure coming from coordinate-wise multiplication.
- The condition that u and v are multiplicatively independent can be rephrased as saying that (u, v) is not an element of a proper algebraic subgroup of \mathbb{G}_{m}^{2} (subtorus).

Multiplicative independence

- Also want to rephrase the multiplicative independence condition.
- Let \mathbb{G}_{m}^{n} denote the n-dimensional algebraic torus, where $\mathbb{G}_{m}=\mathbb{P}^{1} \backslash\{0, \infty\}=\mathbb{A}^{1} \backslash\{0\}$.
- Then $\mathbb{G}_{m}^{n}(k) \cong\left(k^{*}\right)^{n}$ with the obvious group structure coming from coordinate-wise multiplication.
- The condition that u and v are multiplicatively independent can be rephrased as saying that (u, v) is not an element of a proper algebraic subgroup of \mathbb{G}_{m}^{2} (subtorus).

Multiplicative independence

- Also want to rephrase the multiplicative independence condition.
- Let \mathbb{G}_{m}^{n} denote the n-dimensional algebraic torus, where $\mathbb{G}_{m}=\mathbb{P}^{1} \backslash\{0, \infty\}=\mathbb{A}^{1} \backslash\{0\}$.
- Then $\mathbb{G}_{m}^{n}(k) \cong\left(k^{*}\right)^{n}$ with the obvious group structure coming from coordinate-wise multiplication.
- The condition that u and v are multiplicatively independent can be rephrased as saying that (u, v) is not an element of a proper algebraic subgroup of \mathbb{G}_{m}^{2} (subtorus).

An explicit result

- In fact, Corvaja and Zannier show that

$$
\log \operatorname{gcd}(u-1, v-1) \leq \epsilon \max \{\log |u|, \log |v|\}
$$

holds outside of the union of finitely many proper subtori of \mathbb{G}_{m}^{2} along with a finite number of exceptions.

- Explicitly, one needs to exclude subgroups given by an equation $u^{p}=v^{q}$ with p and q coprime integers satisfying

An explicit result

- In fact, Corvaja and Zannier show that

$$
\log \operatorname{gcd}(u-1, v-1) \leq \epsilon \max \{\log |u|, \log |v|\}
$$

holds outside of the union of finitely many proper subtori of \mathbb{G}_{m}^{2} along with a finite number of exceptions.

- Explicitly, one needs to exclude subgroups given by an equation $u^{p}=v^{q}$ with p and q coprime integers satisfying $|p|,|q| \leq 1 / \epsilon$.

Corvaja-Zannier theorem

- Corvaja and Zannier generalized their result to:
- Arbitrary number fields.
- Polynomials in u and v.
Theorem (Corvaja, Zannier)
Let $\Gamma \subset \mathbb{G}_{m}^{2}(\overline{\mathbb{Q}})$ be a finitely generated group. Let
$f(x, y), g(x, y) \in \overline{\mathbb{Q}}[x, y]$ be coprime polynomials such that not
both of them vanish at $(0,0)$. For all $\epsilon>0$, there exists a finite
union Z of translates of proper subtori of \mathbb{G}_{m}^{2} such that

$$
\log \operatorname{gcd}(f(u, v), g(u, v))<\epsilon \max \{h(u), h(v)\}
$$

for all $(u, v) \in \Gamma \backslash Z$.

Corvaja-Zannier theorem

- Corvaja and Zannier generalized their result to:
- Arbitrary number fields.
- Polynomials in u and v.

Corvaja-Zannier theorem

- Corvaja and Zannier generalized their result to:
- Arbitrary number fields.
- Polynomials in u and v.

Corvaja-Zannier theorem

- Corvaja and Zannier generalized their result to:
- Arbitrary number fields.
- Polynomials in u and v.

Theorem (Corvaja, Zannier)

Let $\Gamma \subset \mathbb{G}_{m}^{2}(\overline{\mathbb{Q}})$ be a finitely generated group. Let
$f(x, y), g(x, y) \in \overline{\mathbb{Q}}[x, y]$ be coprime polynomials such that not both of them vanish at $(0,0)$. For all $\epsilon>0$, there exists a finite union Z of translates of proper subtori of \mathbb{G}_{m}^{2} such that

$$
\log \operatorname{gcd}(f(u, v), g(u, v))<\epsilon \max \{h(u), h(v)\}
$$

for all $(u, v) \in \Gamma \backslash Z$.

A generalization to several variables

- Main result:

Theorem (L.)
Let n be a positive integer. Let $\Gamma \subset \mathbb{G}_{m}^{n}(\overline{\mathbb{Q}})$ be a finitely

be coprime polynomials such that not both of them vanish at
$(0,0, \ldots, 0)$. For all $\epsilon>0$, there exists a finite union Z of
translates of proper subtori of \mathbb{G}_{m}^{n} such that
$\log \operatorname{gcd}\left(f\left(u_{1}, \ldots, u_{n}\right), g\left(u_{1}, \ldots, u_{n}\right)\right)<\epsilon \max \left\{h\left(u_{1}\right), \ldots, h\left(u_{n}\right)\right\}$
for all $\left(u_{1}, \ldots, u_{n}\right) \in \Gamma \backslash Z$.

- Can avoid nonvanishing hypothesis: if u_{1}, \ldots, u_{n} are S-units, replace the gcd by the "gcd outside S".

A generalization to several variables

- Main result:

Theorem (L.)

Let n be a positive integer. Let $\Gamma \subset \mathbb{G}_{m}^{n}(\overline{\mathbb{Q}})$ be a finitely generated group. Let $f\left(x_{1}, \ldots, x_{n}\right), g\left(x_{1}, \ldots, x_{n}\right) \in \overline{\mathbb{Q}}\left[x_{1}, \ldots, x_{n}\right]$ be coprime polynomials such that not both of them vanish at $(0,0, \ldots, 0)$. For all $\epsilon>0$, there exists a finite union Z of translates of proper subtori of \mathbb{G}_{m}^{n} such that

$$
\log \operatorname{gcd}\left(f\left(u_{1}, \ldots, u_{n}\right), g\left(u_{1}, \ldots, u_{n}\right)\right)<\epsilon \max \left\{h\left(u_{1}\right), \ldots, h\left(u_{n}\right)\right\}
$$

for all $\left(u_{1}, \ldots, u_{n}\right) \in \Gamma \backslash Z$.

- Can avoid nonvanishing hypothesis: if u_{1}, \ldots, u_{n} are S-units, replace the gcd by the "gcd outside S ".

A generalization to several variables

- Main result:

Theorem (L.)

Let n be a positive integer. Let $\Gamma \subset \mathbb{G}_{m}^{n}(\overline{\mathbb{Q}})$ be a finitely generated group. Let $f\left(x_{1}, \ldots, x_{n}\right), g\left(x_{1}, \ldots, x_{n}\right) \in \overline{\mathbb{Q}}\left[x_{1}, \ldots, x_{n}\right]$ be coprime polynomials such that not both of them vanish at $(0,0, \ldots, 0)$. For all $\epsilon>0$, there exists a finite union Z of translates of proper subtori of \mathbb{G}_{m}^{n} such that
$\log \operatorname{gcd}\left(f\left(u_{1}, \ldots, u_{n}\right), g\left(u_{1}, \ldots, u_{n}\right)\right)<\epsilon \max \left\{h\left(u_{1}\right), \ldots, h\left(u_{n}\right)\right\}$ for all $\left(u_{1}, \ldots, u_{n}\right) \in \Gamma \backslash Z$.

- Can avoid nonvanishing hypothesis: if u_{1}, \ldots, u_{n} are S-units, replace the gcd by the "gcd outside S ".

Height interpretation

- Classically, a height function h_{D} and local height functions $h_{D, v}, v \in M_{k}$, can be associated to a Cartier divisor D on a projective variety X.
- Let D be a hypersurface over k in \mathbb{P}^{n} of degree d defined by $f\left(x_{0}, \ldots, x_{n}\right)=0$ and let $v \in M_{k}$
- A local height function with respect to D and v is:

- Roughly, when D is effective:

$$
h_{D, v}(P)=-\log (v \text {-adic distance from } P \text { to } D) \text {. }
$$

- Classically, a height function h_{D} and local height functions $h_{D, v}, v \in M_{k}$, can be associated to a Cartier divisor D on a projective variety X.
- Let D be a hypersurface over k in \mathbb{P}^{n} of degree d defined by $f\left(x_{0}, \ldots, x_{n}\right)=0$ and let $v \in M_{k}$.
- A local height function with respect to D and v is:
- Roughly, when D is effective:

$$
h_{D, v}(P)=-\log (v \text {-adic distance from } P \text { to } D) \text {. }
$$

- Classically, a height function h_{D} and local height functions $h_{D, v}, v \in M_{k}$, can be associated to a Cartier divisor D on a projective variety X.
- Let D be a hypersurface over k in \mathbb{P}^{n} of degree d defined by $f\left(x_{0}, \ldots, x_{n}\right)=0$ and let $v \in M_{k}$.
- A local height function with respect to D and v is:

$$
h_{D, v}(P)=\log \frac{\max \left|x_{i}\right|_{v}^{d}}{\left|f\left(x_{0}, \ldots, x_{n}\right)\right|_{v}}, \quad \text { for } P=\left[x_{0}: \cdots: x_{n}\right] \in \mathbb{P}^{n}(k)
$$

- Roughly, when D is effective:
$h_{D, v}(P)=-\log (v$-adic distance from P to $D)$.
- Classically, a height function h_{D} and local height functions $h_{D, v}, v \in M_{k}$, can be associated to a Cartier divisor D on a projective variety X.
- Let D be a hypersurface over k in \mathbb{P}^{n} of degree d defined by $f\left(x_{0}, \ldots, x_{n}\right)=0$ and let $v \in M_{k}$.
- A local height function with respect to D and v is:

$$
h_{D, v}(P)=\log \frac{\max \left|x_{i}\right|_{v}^{d}}{\left|f\left(x_{0}, \ldots, x_{n}\right)\right|_{v}}, \quad \text { for } P=\left[x_{0}: \cdots: x_{n}\right] \in \mathbb{P}^{n}(k)
$$

- Roughly, when D is effective:

$$
h_{D, v}(P)=-\log (v \text {-adic distance from } P \text { to } D)
$$

Heights associated to closed subschemes

- More generally, can associate heights and local heights to closed subschemes of projective varieties (Silverman).
- For Y, Z closed subschemes, a basic property is that

- So if D_{1} and D_{2} are hypersurfaces of the same degree d defined by $f_{1}, f_{2} \in k\left[x_{0}, \ldots, x_{n}\right]$, respectively, then

Heights associated to closed subschemes

- More generally, can associate heights and local heights to closed subschemes of projective varieties (Silverman).
- For Y, Z closed subschemes, a basic property is that

$$
h_{Y \cap Z, v}(P)=\min \left\{h_{Y, v}(P), h_{Z, v}(P)\right\}
$$

- So if D_{1} and D_{2} are hypersurfaces of the same degree d defined by $f_{1}, f_{2} \in k\left[x_{0}, \ldots, x_{n}\right]$, respectively, then
- More generally, can associate heights and local heights to closed subschemes of projective varieties (Silverman).
- For Y, Z closed subschemes, a basic property is that

$$
h_{Y \cap Z, v}(P)=\min \left\{h_{Y, v}(P), h_{Z, v}(P)\right\} .
$$

- So if D_{1} and D_{2} are hypersurfaces of the same degree d defined by $f_{1}, f_{2} \in k\left[x_{0}, \ldots, x_{n}\right]$, respectively, then

$$
h_{D_{1} \cap D_{2}, v}(P)=\log \frac{\max \left|x_{i}\right|_{v}^{d}}{\max \left\{\left|f_{1}\left(x_{0}, \ldots, x_{n}\right)\right|_{v},\left|f_{2}\left(x_{0}, \ldots, x_{n}\right)\right|_{v}\right\}}
$$

Gcd heights

- If $P=\left[x_{0}: \cdots: x_{n}\right]$ with $x_{0}, \ldots, x_{n} \in \mathbb{Z}$ and $\operatorname{gcd}\left(x_{0}, \ldots, x_{n}\right)=1$, then for any prime $v=p$, $h_{D_{1} \cap D_{2}, v}(P)=-\log \max \left\{\left|f_{1}\left(x_{0}, \ldots, x_{n}\right)\right| v,\left|f_{2}\left(x_{0}, \ldots, x_{n}\right)\right| v\right\}$.
- If $Y=D_{1} \cap D_{2}$, the closed subscheme defined by $f_{1}=f_{2}=0$, then in this case

- So the height $h_{Y}(P)$ generalizes $\log \operatorname{gcd}\left(f_{1}\left(x_{0}, \ldots, x_{n}\right), f_{2}\left(x_{0}, \ldots, x_{n}\right)\right)$, including a
contribution from archimedean places.
- Point: GCDs are heights with respect to closed subschemes of codimension ≥ 2.

Gcd heights

- If $P=\left[x_{0}: \cdots: x_{n}\right]$ with $x_{0}, \ldots, x_{n} \in \mathbb{Z}$ and $\operatorname{gcd}\left(x_{0}, \ldots, x_{n}\right)=1$, then for any prime $v=p$,

$$
h_{D_{1} \cap D_{2}, v}(P)=-\log \max \left\{\left|f_{1}\left(x_{0}, \ldots, x_{n}\right)\right| v,\left|f_{2}\left(x_{0}, \ldots, x_{n}\right)\right| v\right\} .
$$

- If $Y=D_{1} \cap D_{2}$, the closed subscheme defined by $f_{1}=f_{2}=0$, then in this case

$$
\sum_{\in M_{Q} \backslash\{\infty\}} h_{Y, v}(P)=\log \operatorname{gcd}\left(f_{1}\left(x_{0}, \ldots, x_{n}\right), f_{2}\left(x_{0}, \ldots, x_{n}\right)\right) .
$$

- So the height $h_{\gamma}(P)$ generalizes $\log \operatorname{gcd}\left(f_{1}\left(x_{0}, \ldots, x_{n}\right), f_{2}\left(x_{0}, \ldots, x_{n}\right)\right)$, including a
contribution from archimedean places.
- Point: GCDs are heights with respect to closed subschemes of codimension ≥ 2.

Gcd heights

- If $P=\left[x_{0}: \cdots: x_{n}\right]$ with $x_{0}, \ldots, x_{n} \in \mathbb{Z}$ and $\operatorname{gcd}\left(x_{0}, \ldots, x_{n}\right)=1$, then for any prime $v=p$,

$$
h_{D_{1} \cap D_{2}, v}(P)=-\log \max \left\{\left|f_{1}\left(x_{0}, \ldots, x_{n}\right)\right| v,\left|f_{2}\left(x_{0}, \ldots, x_{n}\right)\right| v\right\} .
$$

- If $Y=D_{1} \cap D_{2}$, the closed subscheme defined by $f_{1}=f_{2}=0$, then in this case

$$
\sum_{E M_{Q} \backslash\{\infty\}} h_{Y, v}(P)=\log \operatorname{gcd}\left(f_{1}\left(x_{0}, \ldots, x_{n}\right), f_{2}\left(x_{0}, \ldots, x_{n}\right)\right) .
$$

- So the height $h_{Y}(P)$ generalizes $\log \operatorname{gcd}\left(f_{1}\left(x_{0}, \ldots, x_{n}\right), f_{2}\left(x_{0}, \ldots, x_{n}\right)\right)$, including a contribution from archimedean places.
- Point: GCDs are heights with respect to closed subschemes of codimension ≥ 2.

Gcd heights

- If $P=\left[x_{0}: \cdots: x_{n}\right]$ with $x_{0}, \ldots, x_{n} \in \mathbb{Z}$ and $\operatorname{gcd}\left(x_{0}, \ldots, x_{n}\right)=1$, then for any prime $v=p$,

$$
h_{D_{1} \cap D_{2}, v}(P)=-\log \max \left\{\left|f_{1}\left(x_{0}, \ldots, x_{n}\right)\right| v,\left|f_{2}\left(x_{0}, \ldots, x_{n}\right)\right| v\right\} .
$$

- If $Y=D_{1} \cap D_{2}$, the closed subscheme defined by $f_{1}=f_{2}=0$, then in this case

$$
\sum_{E M_{Q} \backslash\{\infty\}} h_{Y, v}(P)=\log \operatorname{gcd}\left(f_{1}\left(x_{0}, \ldots, x_{n}\right), f_{2}\left(x_{0}, \ldots, x_{n}\right)\right) .
$$

- So the height $h_{Y}(P)$ generalizes $\log \operatorname{gcd}\left(f_{1}\left(x_{0}, \ldots, x_{n}\right), f_{2}\left(x_{0}, \ldots, x_{n}\right)\right)$, including a contribution from archimedean places.
- Point: GCDs are heights with respect to closed subschemes of codimension ≥ 2.

Height formulation of main theorem

- We can state a projective version of the main theorem for the "gcd height" h_{Y} as follows.

> Theorem (-.)
> Let Y be a closed subscheme of codimension ≥ 2 in \mathbb{P}^{n} in
> general position with the coordinate hyperplanes (boundary of $\left.\mathbb{G}_{m}^{n}\right)$. Let $\Gamma \subset \mathbb{G}_{m}^{n}(\overline{\mathbb{Q}})$ be a finitely generated group and e Then there exists a finite union Z of translates of proper subtori of \mathbb{G}_{m}^{n} such that

for all $P \in \Gamma \backslash Z \subset \mathbb{P}^{n}(\overline{\mathbb{Q}})$

- Not quite equivaient to the earlier main theorem, but they're closely related (and the earlier one implies this one).

Height formulation of main theorem

- We can state a projective version of the main theorem for the "gcd height" h_{Y} as follows.

Theorem (L.)

Let Y be a closed subscheme of codimension ≥ 2 in \mathbb{P}^{n} in general position with the coordinate hyperplanes (boundary of $\left.\mathbb{G}_{m}^{n}\right)$. Let $\Gamma \subset \mathbb{G}_{m}^{n}(\overline{\mathbb{Q}})$ be a finitely generated group and $\epsilon>0$.
Then there exists a finite union Z of translates of proper subtori of \mathbb{G}_{m}^{n} such that

$$
h_{Y}(P) \leq \epsilon h(P)
$$

for all $P \in \Gamma \backslash Z \subset \mathbb{P}^{n}(\overline{\mathbb{Q}})$.

- Not quite equivalent to the earlier main theorem, but they're closely related (and the earlier one implies this one)

Height formulation of main theorem

- We can state a projective version of the main theorem for the "gcd height" h_{Y} as follows.

Theorem (L.)

Let Y be a closed subscheme of codimension ≥ 2 in \mathbb{P}^{n} in general position with the coordinate hyperplanes (boundary of $\left.\mathbb{G}_{m}^{n}\right)$. Let $\Gamma \subset \mathbb{G}_{m}^{n}(\overline{\mathbb{Q}})$ be a finitely generated group and $\epsilon>0$.
Then there exists a finite union Z of translates of proper subtori of \mathbb{G}_{m}^{n} such that

$$
h_{Y}(P) \leq \epsilon h(P)
$$

for all $P \in \Gamma \backslash Z \subset \mathbb{P}^{n}(\overline{\mathbb{Q}})$.

- Not quite equivalent to the earlier main theorem, but they're closely related (and the earlier one implies this one).

Toric varieties

- General position condition:

$$
[1: 0: \cdots: 0], \ldots,[0: 0: \cdots: 0: 1] \notin Y .
$$

- It is a symmetric version of the earlier condition that the polynomials don't vanish at the origin.
- More generally, prove a completely analogous result for $\mathbb{G}_{m}^{n} \subset X$ where X is a nonsingular projective toric variety.

Toric varieties

- General position condition:

$$
[1: 0: \cdots: 0], \ldots,[0: 0: \cdots: 0: 1] \notin Y
$$

- It is a symmetric version of the earlier condition that the polynomials don't vanish at the origin.
- More generally, prove a completely analogous result for $\mathbb{G}_{m}^{n} \subset X$ where X is a nonsingular projective toric variety.

Toric varieties

- General position condition:

$$
[1: 0: \cdots: 0], \ldots,[0: 0: \cdots: 0: 1] \notin Y
$$

- It is a symmetric version of the earlier condition that the polynomials don't vanish at the origin.
- More generally, prove a completely analogous result for $\mathbb{G}_{m}^{n} \subset X$ where X is a nonsingular projective toric variety.

Blowups and Vojta's conjecture

- Alternatively, if $\pi: X \rightarrow \mathbb{P}^{n}$ is the blowup along Y with exceptional divisor E, then by functoriality of heights

$$
h_{Y}(\pi(P))=h_{E}(P)+O(1), \quad \forall P \in X(\overline{\mathbb{Q}}) .
$$

- One can interpret the main result in terms of heights on blowups.
- GCD inequalities turn out to be cases of Vojta's conjecture applied to blowups (Silverman).

Blowups and Vojta's conjecture

- Alternatively, if $\pi: X \rightarrow \mathbb{P}^{n}$ is the blowup along Y with exceptional divisor E, then by functoriality of heights

$$
h_{Y}(\pi(P))=h_{E}(P)+O(1), \quad \forall P \in X(\overline{\mathbb{Q}}) .
$$

- One can interpret the main result in terms of heights on blowups.
- GCD inequalities turn out to be cases of Vojta's conjecture applied to blowups (Silverman).

Blowups and Vojta's conjecture

- Alternatively, if $\pi: X \rightarrow \mathbb{P}^{n}$ is the blowup along Y with exceptional divisor E, then by functoriality of heights

$$
h_{Y}(\pi(P))=h_{E}(P)+O(1), \quad \forall P \in X(\overline{\mathbb{Q}}) .
$$

- One can interpret the main result in terms of heights on blowups.
- GCD inequalities turn out to be cases of Vojta's conjecture applied to blowups (Silverman).

Application: Greatest common divisors in linear recurrence sequences

Linear recurrence sequences

- Linear recurrence sequence: sequence of complex numbers $F(n), n \in \mathbb{N}$, that satisfies a relation

$$
F(n)=a_{1} F(n-1)+\cdots+a_{r} F(n-r), \quad n>r,
$$

for some constants $a_{i} \in \mathbb{C}$.

- $F(n)$ is a linear recurrence sequence if and only if

for some nonzero polynomials $f_{i} \in \mathbb{C}[x]$ and distinct $\alpha_{i} \in \mathbb{C}^{*}$, classically called the roots of F.
- The roots are exactly the distinct roots of the corresponding characteristic polynomial

Linear recurrence sequences

- Linear recurrence sequence: sequence of complex numbers $F(n), n \in \mathbb{N}$, that satisfies a relation

$$
F(n)=a_{1} F(n-1)+\cdots+a_{r} F(n-r), \quad n>r,
$$

for some constants $a_{i} \in \mathbb{C}$.

- $F(n)$ is a linear recurrence sequence if and only if

$$
F(n)=\sum_{i=1}^{s} f_{i}(n) \alpha_{i}^{n}, \quad n \in \mathbb{N},
$$

for some nonzero polynomials $f_{i} \in \mathbb{C}[x]$ and distinct $\alpha_{i} \in \mathbb{C}^{*}$, classically called the roots of F.
corresponding characteristic polynomial

Linear recurrence sequences

- Linear recurrence sequence: sequence of complex numbers $F(n), n \in \mathbb{N}$, that satisfies a relation

$$
F(n)=a_{1} F(n-1)+\cdots+a_{r} F(n-r), \quad n>r
$$

for some constants $a_{i} \in \mathbb{C}$.

- $F(n)$ is a linear recurrence sequence if and only if

$$
F(n)=\sum_{i=1}^{s} f_{i}(n) \alpha_{i}^{n}, \quad n \in \mathbb{N}
$$

for some nonzero polynomials $f_{i} \in \mathbb{C}[x]$ and distinct $\alpha_{i} \in \mathbb{C}^{*}$, classically called the roots of F.

- The roots are exactly the distinct roots of the corresponding characteristic polynomial

$$
X^{r}-a_{1} X^{r-1}-\cdots-a_{r}
$$

Simple linear recurrences

- A linear recurrence is called simple if it has the form

$$
F(n)=\sum_{i=1}^{r} c_{i} \alpha_{i}^{n}, \quad n \in \mathbb{N}
$$

where $\alpha_{i}, c_{i} \in \mathbb{C}^{*}, i=1, \ldots, r$.

- This happens if and only if the roots of the associated characteristic polynomial are distinct (simple roots).
- A simple linear recurrence is alaebraic if $\alpha_{i}, c_{i} \in \overline{\mathbb{O}}$ for $i=1, \ldots, n$.

Simple linear recurrences

- A linear recurrence is called simple if it has the form

$$
F(n)=\sum_{i=1}^{r} c_{i} \alpha_{i}^{n}, \quad n \in \mathbb{N}
$$

where $\alpha_{i}, c_{i} \in \mathbb{C}^{*}, i=1, \ldots, r$.

- This happens if and only if the roots of the associated characteristic polynomial are distinct (simple roots).

Simple linear recurrences

- A linear recurrence is called simple if it has the form

$$
F(n)=\sum_{i=1}^{r} c_{i} \alpha_{i}^{n}, \quad n \in \mathbb{N}
$$

where $\alpha_{i}, c_{i} \in \mathbb{C}^{*}, i=1, \ldots, r$.

- This happens if and only if the roots of the associated characteristic polynomial are distinct (simple roots).
- A simple linear recurrence is algebraic if $\alpha_{i}, c_{i} \in \overline{\mathbb{Q}}$ for $i=1, \ldots, n$.

A philosophy

- Philosophy: Arithmetic properties of $F(n)$ and $G(n)$ holding for all (or infinitely many) n, should be explained by corresponding identities involving F and G (in the ring of linear recurrences).
- Examples include:
- Consider this in the context of greatest common divisors.
- Classification of terms from two algebraic simple linear recurrences that have a "large" gcd.

A philosophy

- Philosophy: Arithmetic properties of $F(n)$ and $G(n)$ holding for all (or infinitely many) n, should be explained by corresponding identities involving F and G (in the ring of linear recurrences).
- Examples include:
- Divisibility: Hadamard quotient theorem (Pourchet, van der

Poorten, Corvaja-Zannier (strong version))

- Perfect powers: Pisot's d th root conjecture (Zannier)
- Consider this in the context of greatest common divisors.
- Classification of terms from two algebraic simple linear recurrences that have a "large" gcd.

A philosophy

- Philosophy: Arithmetic properties of $F(n)$ and $G(n)$ holding for all (or infinitely many) n, should be explained by corresponding identities involving F and G (in the ring of linear recurrences).
- Examples include:
- Divisibility: Hadamard quotient theorem (Pourchet, van der Poorten, Corvaja-Zannier (strong version))
- Consider this in the context of greatest common divisors.
- Classification of terms from two alaebraic simple linear recurrences that have a "large" gcd.

A philosophy

- Philosophy: Arithmetic properties of $F(n)$ and $G(n)$ holding for all (or infinitely many) n, should be explained by corresponding identities involving F and G (in the ring of linear recurrences).
- Examples include:
- Divisibility: Hadamard quotient theorem (Pourchet, van der Poorten, Corvaja-Zannier (strong version))
- Perfect powers: Pisot's dth root conjecture (Zannier)
- Consider this in the context of greatest common divisors.
- Classification of terms from two algebraic simple linear recurrences that have a "large" gcd.

A philosophy

- Philosophy: Arithmetic properties of $F(n)$ and $G(n)$ holding for all (or infinitely many) n, should be explained by corresponding identities involving F and G (in the ring of linear recurrences).
- Examples include:
- Divisibility: Hadamard quotient theorem (Pourchet, van der Poorten, Corvaja-Zannier (strong version))
- Perfect powers: Pisot's dth root conjecture (Zannier)
- Consider this in the context of greatest common divisors.
- Classification of terms from two algebraic simple linear recurrences that have a "large" gcd.

A philosophy

- Philosophy: Arithmetic properties of $F(n)$ and $G(n)$ holding for all (or infinitely many) n, should be explained by corresponding identities involving F and G (in the ring of linear recurrences).
- Examples include:
- Divisibility: Hadamard quotient theorem (Pourchet, van der Poorten, Corvaja-Zannier (strong version))
- Perfect powers: Pisot's dth root conjecture (Zannier)
- Consider this in the context of greatest common divisors.
- Classification of terms from two algebraic simple linear recurrences that have a "large" gcd.

Greatest common divisors of linear recurrence terms

Theorem (L.)

Let F and G be two algebraic simple linear recurrences.
Suppose that there is no prime dividing every root of F and G.
Let $\epsilon>0$. Then all but finitely many solutions (m, n) of the inequality

$$
\log \operatorname{gcd}(F(m), G(n))>\epsilon \max \{m, n\}
$$

satisfy one of finitely many linear relations

$$
(m, n)=\left(a_{i} t+b_{i}, c_{i} t+d_{i}\right), \quad t \in \mathbb{Z}, i=1, \ldots, r,
$$

where $a_{i}, b_{i}, c_{i}, d_{i} \in \mathbb{Z}, a_{i} c_{i} \neq 0$, and the linear recurrences $F\left(a_{i} n+b_{i}\right)$ and $G\left(c_{i} n+d_{i}\right)$ have a nontrivial common factor for $i=1, \ldots, r$.

Greatest common divisors of linear recurrence terms

- This result was recently generalized to $\log \operatorname{gcd}(F(n), G(n))$ and general linear recurrences by Grieve and Wang (i.e., without the simple hypothesis).
- Proven as an application of a "moving targets" version of the main result.
- My student Zheng Xiao is currently proving further results for $\log \operatorname{gcd}(F(m), G(n))$ for general linear recurrences.

Greatest common divisors of linear recurrence terms

- This result was recently generalized to $\log \operatorname{gcd}(F(n), G(n))$ and general linear recurrences by Grieve and Wang (i.e., without the simple hypothesis).
- Proven as an application of a "moving targets" version of the main result.
- My student Zheng Xiao is currently proving further results for $\log \operatorname{gcd}(F(m), G(n))$ for general linear recurrences.

Greatest common divisors of linear recurrence terms

- This result was recently generalized to $\log \operatorname{gcd}(F(n), G(n))$ and general linear recurrences by Grieve and Wang (i.e., without the simple hypothesis).
- Proven as an application of a "moving targets" version of the main result.
- My student Zheng Xiao is currently proving further results for $\log \operatorname{gcd}(F(m), G(n))$ for general linear recurrences.

Greatest Common Divisors and Meromorphic Functions

Vojta's dictionary

- Deep analogies between Diophantine approximation and Nevanlinna theory (Vojta's dictionary)
> - Qualitative level: infinite set of integral points on a variety X corresponds to a nonconstant holomorphic map $f: \mathbb{C} \rightarrow X$.
> - Entire functions without zeros are analogous to S-units.

Vojta's dictionary

- Deep analogies between Diophantine approximation and Nevanlinna theory (Vojta's dictionary)
- Qualitative level: infinite set of integral points on a variety X corresponds to a nonconstant holomorphic map $f: \mathbb{C} \rightarrow X$.
- Entire functions without zeros are analogous to S-units.

Vojta's dictionary

- Deep analogies between Diophantine approximation and Nevanlinna theory (Vojta's dictionary)
- Qualitative level: infinite set of integral points on a variety X corresponds to a nonconstant holomorphic map $f: \mathbb{C} \rightarrow X$.
- Entire functions without zeros are analogous to S-units.

GCD Counting Function

- Let f and g be meromorphic functions. Define

$$
\begin{aligned}
n(f, g, r) & =\sum_{|z| \leq r} \min \left\{\operatorname{ord}_{z}^{+}(f), \operatorname{ord}_{z}^{+}(g)\right\}, \\
N_{\mathrm{gcd}}(f, g, r) & =\int_{0}^{r} \frac{n(f, g, t)-n(f, g, 0)}{t} d t+n(f, g, 0) \log r,
\end{aligned}
$$

- The gcd counting function $N_{\text {gcd }}(f, g, r)$ gives a notion analogous to the gcd of two numbers.
- We also need an analogue of the height: the Nevanlinna characteristic function $T_{f}(r)$.
- For holomorphic f it is given by

where $\log ^{+} z=\max \{0, \log z\}$.

GCD Counting Function

- Let f and g be meromorphic functions. Define

$$
\begin{aligned}
n(f, g, r) & =\sum_{|z| \leq r} \min \left\{\operatorname{ord}_{z}^{+}(f), \operatorname{ord}_{z}^{+}(g)\right\}, \\
N_{\mathrm{gcd}}(f, g, r) & =\int_{0}^{r} \frac{n(f, g, t)-n(f, g, 0)}{t} d t+n(f, g, 0) \log r,
\end{aligned}
$$

- The gcd counting function $N_{\text {gcd }}(f, g, r)$ gives a notion analogous to the gcd of two numbers.
- We also need an analogue of the height: the Nevanlinna characteristic function $T_{f}(r)$.
- For holomorphic f it is given by

GCD Counting Function

- Let f and g be meromorphic functions. Define

$$
\begin{aligned}
n(f, g, r) & =\sum_{|z| \leq r} \min \left\{\operatorname{ord}_{z}^{+}(f), \operatorname{ord}_{z}^{+}(g)\right\}, \\
N_{\mathrm{gcd}}(f, g, r) & =\int_{0}^{r} \frac{n(f, g, t)-n(f, g, 0)}{t} d t+n(f, g, 0) \log r,
\end{aligned}
$$

- The gcd counting function $N_{\text {gcd }}(f, g, r)$ gives a notion analogous to the gcd of two numbers.
- We also need an analogue of the height: the Nevanlinna characteristic function $T_{f}(r)$.
- For holomorphic f it is given by

Where $\log ^{+} z=\max \{0, \log z\}$

GCD Counting Function

- Let f and g be meromorphic functions. Define

$$
\begin{aligned}
n(f, g, r) & =\sum_{|z| \leq r} \min \left\{\operatorname{ord}_{z}^{+}(f), \operatorname{ord}_{z}^{+}(g)\right\}, \\
N_{\mathrm{gcd}}(f, g, r) & =\int_{0}^{r} \frac{n(f, g, t)-n(f, g, 0)}{t} d t+n(f, g, 0) \log r,
\end{aligned}
$$

- The gcd counting function $N_{\text {gcd }}(f, g, r)$ gives a notion analogous to the gcd of two numbers.
- We also need an analogue of the height: the Nevanlinna characteristic function $T_{f}(r)$.
- For holomorphic f it is given by

$$
T_{f}(r)=\int_{0}^{2 \pi} \log ^{+}\left|f\left(r e^{i \theta}\right)\right| \frac{d \theta}{2 \pi}
$$

where $\log ^{+} z=\max \{0, \log z\}$.

GCD Counting Function Inequality

- In this language, a Nevanlinna theory analogue of the main result is:

GCD Counting Function Inequality

- In this language, a Nevanlinna theory analogue of the main result is:

Theorem

Let $F, G \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ be coprime polynomials. Let g_{1}, \ldots, g_{n} be entire functions without zeros. Assume that $g_{1}^{i_{1}} \cdots g_{n}^{i_{n}} \notin \mathbb{C}$ for any index set $\left(i_{1}, \ldots, i_{n}\right) \in \mathbb{Z}^{n} \backslash\{(0, \ldots, 0)\}$. Let $\epsilon>0$. Then

$$
N_{\mathrm{gcd}}\left(F\left(g_{1}, \ldots, g_{n}\right), G\left(g_{1}, \ldots, g_{n}\right), r\right) \leq \operatorname{exc} \in \max _{1 \leq i \leq n}\left\{T_{g_{i}}(r)\right\}
$$

- The theorem is equivalent to a special case of a very general result of Noguchi, Winkelmann, and Yamanoi for semiabelian varieties.

GCD Counting Function Inequality

- In this language, a Nevanlinna theory analogue of the main result is:

Theorem

Let $F, G \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ be coprime polynomials. Let g_{1}, \ldots, g_{n} be entire functions without zeros. Assume that $g_{1}^{i_{1}} \cdots g_{n}^{i_{n}} \notin \mathbb{C}$ for any index set $\left(i_{1}, \ldots, i_{n}\right) \in \mathbb{Z}^{n} \backslash\{(0, \ldots, 0)\}$. Let $\epsilon>0$. Then

$$
N_{\mathrm{gcd}}\left(F\left(g_{1}, \ldots, g_{n}\right), G\left(g_{1}, \ldots, g_{n}\right), r\right) \leq \operatorname{exc} \epsilon \max _{1 \leq i \leq n}\left\{T_{g_{i}}(r)\right\}
$$

- The theorem is equivalent to a special case of a very general result of Noguchi, Winkelmann, and Yamanoi for semiabelian varieties.

Asymptotic GCD result

- In recent joint work with Julie Wang we prove "asymptotic" gcd results for meromorphic functions:

Asymptotic GCD result

- In recent joint work with Julie Wang we prove "asymptotic" gcd results for meromorphic functions:

Theorem (L., Wang)

Let $F, G \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ be coprime polynomials such that not both of them vanish at $(0, \ldots, 0)$. Let g_{1}, \ldots, g_{n} be meromorphic functions such that $g_{1}^{i_{1}} \cdots g_{n}^{i_{n}} \notin \mathbb{C}$ for any index set $\left(i_{1}, \ldots, i_{n}\right) \in \mathbb{Z}^{n} \backslash\{(0, \ldots, 0)\}$. Then for any $\epsilon>0$, there exists k_{0} such that for all $k \geq k_{0}$,

$$
N_{\mathrm{gcd}}\left(F\left(g_{1}^{k}, \ldots, g_{n}^{k}\right), G\left(g_{1}^{k}, \ldots, g_{n}^{k}\right), r\right) \leq \operatorname{exc} \in \max _{1 \leq i \leq n}\left\{T_{g_{i}^{k}}(r)\right\} ;
$$

Pasten-Wang Conjecture

- In particular, we prove a conjectured inequality of Pasten-Wang:

Corolary (L., Nang)

Let f and g be multiplicatively independent meromorphic functions. Then for any $\epsilon>0$, there exists k_{0} such that for al $k \geq k_{0}$,

- Guo and Wang proved a similar result with $\frac{1}{2}+\epsilon$ instead of

Pasten-Wang Conjecture

- In particular, we prove a conjectured inequality of Pasten-Wang:

Corollary (L., Wang)

Let f and g be multiplicatively independent meromorphic functions. Then for any $\epsilon>0$, there exists k_{0} such that for all $k \geq k_{0}$,

$$
N_{\mathrm{gcd}}\left(f^{k}-1, g^{k}-1, r\right) \leq_{\mathrm{exc}} \in \max \left\{T_{f^{k}}(r), T_{g^{k}}(r)\right\}
$$

- Guo and Wang proved a similar result with $\frac{1}{2}+\epsilon$ instead of

Pasten-Wang Conjecture

- In particular, we prove a conjectured inequality of Pasten-Wang:

Corollary (L., Wang)

Let f and g be multiplicatively independent meromorphic functions. Then for any $\epsilon>0$, there exists k_{0} such that for all $k \geq k_{0}$,

$$
N_{\mathrm{gcd}}\left(f^{k}-1, g^{k}-1, r\right) \leq \operatorname{exc} \in \max \left\{T_{f k}(r), T_{g^{k}}(r)\right\}
$$

- Guo and Wang proved a similar result with $\frac{1}{2}+\epsilon$ instead of ϵ.

Proofs

- The primary tool in the proofs is Schmidt's Subspace Theorem in Diophantine approximation.
- Let's first recall Roth's foundational result in Diophantine approximation.
- The primary tool in the proofs is Schmidt's Subspace Theorem in Diophantine approximation.
- Let's first recall Roth's foundational result in Diophantine approximation.

Theorem (Roth 1955)
Let $\alpha \in \overline{\mathbb{Q}}$. Let $\epsilon>0$. Then there are only finitely many rational
numbers $\frac{p}{q} \in \mathbb{Q}$ satisfying

- The primary tool in the proofs is Schmidt's Subspace Theorem in Diophantine approximation.
- Let's first recall Roth's foundational result in Diophantine approximation.

Theorem (Roth 1955)

Let $\alpha \in \overline{\mathbb{Q}}$. Let $\epsilon>0$. Then there are only finitely many rational numbers $\frac{p}{q} \in \mathbb{Q}$ satisfying

$$
\left|\alpha-\frac{p}{q}\right|<\frac{1}{q^{2+\epsilon}} .
$$

- Roth's theorem can be generalized to arbitrary number fields and to finite sets of places (including nonarchimedean ones).

for all but finitely many points $P \in \mathbb{P}^{1}(k)$.

Roth's Theorem

- Roth's theorem can be generalized to arbitrary number fields and to finite sets of places (including nonarchimedean ones).

Theorem (Ridout-Lang version of Roth)

Let k be a number field and S a finite set of places of k. For each $v \in S$, let $Q_{v} \in \mathbb{P}^{1}(k)$. Let $\epsilon>0$. Then

$$
\sum_{v \in S} h_{Q_{v}, v}(P) \leq(2+\epsilon) h(P)
$$

for all but finitely many points $P \in \mathbb{P}^{1}(k)$.

Schmidt's Theorem

- In 1970 Schmidt gave a deep generalization of Roth's theorem to the setting of approximation of hyperplanes in projective space.

- Schmidt's theorem (as improved by Schlickewei to allow arbitrary finite sets of places)

Theorem (Schmidt's Subspace Theorem)
\square

 hyperplanes $Z \subset \mathbb{P}^{n}$ such that

Schmidt's Theorem

- In 1970 Schmidt gave a deep generalization of Roth's theorem to the setting of approximation of hyperplanes in projective space.
- Schmidt's theorem (as improved by Schlickewei to allow arbitrary finite sets of places):

Schmidt's Theorem

- In 1970 Schmidt gave a deep generalization of Roth's theorem to the setting of approximation of hyperplanes in projective space.
- Schmidt's theorem (as improved by Schlickewei to allow arbitrary finite sets of places):

Theorem (Schmidt's Subspace Theorem)

Let k be a number field. Let S be a finite set of places of k. For each $v \in S$, let $H_{0 v}, \ldots, H_{n v}$ be hyperplanes over k in \mathbb{P}^{n} in general position. Let $\epsilon>0$. Then there exists a finite union of hyperplanes $Z \subset \mathbb{P}^{n}$ such that

$$
\sum_{v \in S} \sum_{i=0}^{n} h_{H_{i v}, v}(P) \leq(n+1+\epsilon) h(P)
$$

holds for all $P \in \mathbb{P}^{n}(k) \backslash Z$.

Idea of proof

- Briefly describe the idea for proving $h_{Y}(P) \leq \epsilon h(P)$.
- Let $\pi: X \rightarrow \mathbb{P}^{n}$ be the blowup along Y, let E be the exceptional divisor, and let H be a hyperplane.
- For large enough $m, \mathcal{O}\left(m \pi^{*} H-E\right)$ is generated by global sections and we consider the associated morphism $\phi: X \rightarrow \mathbb{P}^{N}$.
- Idea of proof: Apply Schmidt's theorem to \mathbb{P}^{N} with a nicely chosen system of hyperplanes $\mathcal{H}_{v}, v \in S$.
- Hyperplanes \mathcal{H}_{v} are chosen (dependent on $\left.P \in X(k)\right)$ so that the associated sections of $\mathcal{O}\left(m \pi^{*} H-E\right)$ vanish to high order along (pullback of) coordinate hyperplanes v-adically close to P.
- Use functoriality to pull back, via ϕ, the resulting Diophantine approximation statement to X.

Idea of proof

- Briefly describe the idea for proving $h_{Y}(P) \leq \epsilon h(P)$.
- Let $\pi: X \rightarrow \mathbb{P}^{n}$ be the blowup along Y, let E be the exceptional divisor, and let H be a hyperplane.
- For large enough $m, \mathcal{O}\left(m \pi^{*} H-E\right)$ is generated by global sections and we consider the associated morphism $\phi: X \rightarrow \mathbb{P}^{N}$.
- Idea of proof: Apply Schmidt's theorem to \mathbb{P}^{N} with a nicely chosen system of hyperplanes $\mathcal{H}_{v}, v \in S$.
- Hyperplanes \mathcal{H}_{v} are chosen (dependent on $\left.P \in X(k)\right)$ so that the associated sections of $\mathcal{O}\left(m \pi^{*} H-E\right)$ vanish to high order along (pullback of) coordinate hyperplanes v-adically close to P.
- Use functoriality to pull back, via ϕ, the resulting Diophantine approximation statement to X.

Idea of proof

- Briefly describe the idea for proving $h_{Y}(P) \leq \epsilon h(P)$.
- Let $\pi: X \rightarrow \mathbb{P}^{n}$ be the blowup along Y, let E be the exceptional divisor, and let H be a hyperplane.
- For large enough $m, \mathcal{O}\left(m \pi^{*} H-E\right)$ is generated by global sections and we consider the associated morphism $\phi: X \rightarrow \mathbb{P}^{N}$.
- Idea of proof: Apply Schmidt's theorem to \mathbb{P}^{N} with a nicely chosen system of hyperplanes $\mathcal{H}_{v}, v \in S$.
- Hyperplanes \mathcal{H}_{v}, are chosen (denendent on $P \in X(k)$) so that the associated sections of $\mathcal{O}\left(m \pi^{*} H-E\right)$ vanish to high order along (pullback of) coordinate hyperplanes v-adically close to P.
- Use functoriality to pull back, via ϕ, the resulting Diophantine approximation statement to X.

Idea of proof

- Briefly describe the idea for proving $h_{Y}(P) \leq \epsilon h(P)$.
- Let $\pi: X \rightarrow \mathbb{P}^{n}$ be the blowup along Y, let E be the exceptional divisor, and let H be a hyperplane.
- For large enough $m, \mathcal{O}\left(m \pi^{*} H-E\right)$ is generated by global sections and we consider the associated morphism $\phi: X \rightarrow \mathbb{P}^{N}$.
- Idea of proof: Apply Schmidt's theorem to \mathbb{P}^{N} with a nicely chosen system of hyperplanes $\mathcal{H}_{v}, v \in S$.
- Hyperplanes \mathcal{H}_{V} are chosen (dependent on $\left.P \in X(k)\right)$ so that the associated sections of $\mathcal{O}\left(m \pi^{*} H-E\right)$ vanish to high order along (pullback of) coordinate hyperplanes v-adically close to P.
- Use functoriality to pull back, via ϕ, the resulting Diophantine approximation statement to X.

Idea of proof

- Briefly describe the idea for proving $h_{Y}(P) \leq \epsilon h(P)$.
- Let $\pi: X \rightarrow \mathbb{P}^{n}$ be the blowup along Y, let E be the exceptional divisor, and let H be a hyperplane.
- For large enough $m, \mathcal{O}\left(m \pi^{*} H-E\right)$ is generated by global sections and we consider the associated morphism $\phi: X \rightarrow \mathbb{P}^{N}$.
- Idea of proof: Apply Schmidt's theorem to \mathbb{P}^{N} with a nicely chosen system of hyperplanes $\mathcal{H}_{v}, v \in S$.
- Hyperplanes \mathcal{H}_{v} are chosen (dependent on $P \in X(k)$) so that the associated sections of $\mathcal{O}\left(m \pi^{*} H-E\right)$ vanish to high order along (pullback of) coordinate hyperplanes v-adically close to P.
- Use functoriality to pull back, via ϕ, the resulting Diophantine approximation statement to X.

Idea of proof

- Briefly describe the idea for proving $h_{Y}(P) \leq \epsilon h(P)$.
- Let $\pi: X \rightarrow \mathbb{P}^{n}$ be the blowup along Y, let E be the exceptional divisor, and let H be a hyperplane.
- For large enough $m, \mathcal{O}\left(m \pi^{*} H-E\right)$ is generated by global sections and we consider the associated morphism $\phi: X \rightarrow \mathbb{P}^{N}$.
- Idea of proof: Apply Schmidt's theorem to \mathbb{P}^{N} with a nicely chosen system of hyperplanes $\mathcal{H}_{v}, v \in S$.
- Hyperplanes \mathcal{H}_{v} are chosen (dependent on $P \in X(k)$) so that the associated sections of $\mathcal{O}\left(m \pi^{*} H-E\right)$ vanish to high order along (pullback of) coordinate hyperplanes v-adically close to P.
- Use functoriality to pull back, via ϕ, the resulting Diophantine approximation statement to X.

Future work

- Current joint work with Corvaja and Zannier exploring function field analogues and applications (after their earlier work in dimension 2).
- This has connections to topics including Vojta's conjecture over function fields, unlikely intersections, lacunary polynomials, etc.
- Current joint work with Corvaja and Zannier exploring function field analogues and applications (after their earlier work in dimension 2).
- This has connections to topics including Vojta's conjecture over function fields, unlikely intersections, lacunary polynomials, etc.

