Ultraproduct Weil II for curves and \mathbb{Z}_{ℓ}-compagnons
 The First JNT Biennial Conference - Gran Hotel San Michele - Cetrao, Italy July 22nd-26th, 2019

Anna Cadoret
IMJ-PRG - Sorbonne Université, IUF and RIMS - Kyoto University

Disclaimer: This talk has nothing to do with model theory...
k_{0} : finite field of characteristic $p>0, k_{0} \hookrightarrow k$ algebraic closure X_{0} : smooth variety (= separated, of finite type, geo. connected) over $k_{0}, X:=$ $X_{0} \times{ }_{k 0} k$
k_{0} : finite field of characteristic $p>0, k_{0} \hookrightarrow k$ algebraic closure X_{0} : smooth variety (= separated, of finite type, geo. connected) over $k_{0}, X:=$ $X_{0} \times{ }_{k 0} k$

k_{0} : finite field of characteristic $p>0, k_{0} \hookrightarrow k$ algebraic closure X_{0} : smooth variety (= separated, of finite type, geo. connected) over $k_{0}, X:=$ $X_{0} \times{ }_{k 0} k$

- Grothendieck's standard conjectures: Pure isomotives (semisimple Tannakian category) $/ \overline{\mathbb{Q}}$
k_{0} : finite field of characteristic $p>0, k_{0} \hookrightarrow k$ algebraic closure X_{0} : smooth variety (= separated, of finite type, geo. connected) over $k_{0}, X:=$ $X_{0} \times{ }_{k 0} k$

- Grothendieck's standard conjectures: Pure isomotives (semisimple Tannakian category) $/ \overline{\mathbb{Q}}$

$$
\ell \neq p,
$$

$$
\left\langle Y_{0, x_{0}}\right\rangle^{\otimes} \xrightarrow{\cong} \operatorname{Re} p_{\overline{\mathbb{Q}}}\left(G_{m o t}\left(Y_{0, x_{0}}\right)\right)
$$

$$
\begin{array}{cc}
\ell \text {-adic realization } \mid{ }_{\downarrow} & \\
\left\langle H\left(Y_{x}, \overline{\mathbb{Q}}_{\ell}\right)\right\rangle^{\otimes} \xrightarrow{\simeq} \xrightarrow{\downarrow} \operatorname{Rep}_{\overline{\mathbb{Q}}_{\ell}}\left(G_{\ell}\left(Y_{0, x_{0}}\right)\right)
\end{array}
$$

k_{0} : finite field of characteristic $p>0, k_{0} \hookrightarrow k$ algebraic closure X_{0} : smooth variety (= separated, of finite type, geo. connected) over $k_{0}, X:=$ $X_{0} \times{ }_{k 0} k$

- Grothendieck's standard conjectures : Pure isomotives (semisimple Tannakian category) $/ \overline{\mathbb{Q}}$

$$
\ell \neq p
$$

$G_{\ell}\left(Y_{0, x_{0}}\right):=\overline{\operatorname{im}\left(\pi_{1}\left(x_{0}\right) \triangleleft H\left(Y_{x}, \overline{\mathbb{Q}}_{\ell}\right)\right)^{Z a r}}$

- Grothendieck's standard conjectures : Pure isomotives (semisimple Tannakian category) $/ \overline{\mathbb{Q}}$

$$
H_{\ell}: \operatorname{Mot}\left(x_{0}\right) \rightarrow \operatorname{Rep}_{\overline{\mathbb{Q}}_{\ell}}\left(\pi_{1}\left(x_{0}\right)\right)
$$

- Grothendieck's standard conjectures : Pure isomotives (semisimple Tannakian category) $/ \overline{\mathbb{Q}}$

$$
H_{\ell}: \operatorname{Mot}\left(x_{0}\right) \rightarrow \operatorname{Rep}_{\overline{\mathbb{Q}}_{\ell}}\left(\pi_{1}\left(x_{0}\right)\right)
$$

- Full?
- Grothendieck's standard conjectures : Pure isomotives (semisimple Tannakian category) $/ \overline{\mathbb{Q}}$

$$
H_{\ell}: \operatorname{Mot}\left(x_{0}\right) \rightarrow \operatorname{Rep}_{\overline{\mathbb{Q}}_{\ell}}\left(\pi_{1}\left(x_{0}\right)\right)
$$

- Full?
- Essential image? (= geometric objects)
- Grothendieck's standard conjectures: Pure isomotives (semisimple Tannakian category) $/ \overline{\mathbb{Q}}$

$$
H_{\ell}: \operatorname{Mot}\left(x_{0}\right) \rightarrow \operatorname{Rep}_{\overline{\mathbb{Q}}_{\ell}}\left(\pi_{1}\left(x_{0}\right)\right)
$$

- Full?
- Essential image? (= geometric objects)
- Tate, Grothendieck-Serre's conjectures: $H_{\ell}: \operatorname{Mot}\left(x_{0}\right) \rightarrow \operatorname{Rep}_{\overline{\mathbb{Q}}_{\ell}}\left(\pi_{1}\left(x_{0}\right)\right)$ is full and its essential image is semisimple
- Grothendieck's standard conjectures: Pure isomotives (semisimple Tannakian category) $/ \overline{\mathbb{Q}}$

$$
H_{\ell}: \operatorname{Mot}\left(x_{0}\right) \rightarrow \operatorname{Rep}_{\overline{\mathbb{Q}}_{\ell}}\left(\pi_{1}\left(x_{0}\right)\right)
$$

- Full?
- Essential image? (= geometric objects)
- Tate, Grothendieck-Serre's conjectures: $H_{\ell}: \operatorname{Mot}\left(x_{0}\right) \rightarrow \operatorname{Rep}_{\bar{Q}_{\ell}}\left(\pi_{1}\left(x_{0}\right)\right)$ is full and its essential image is semisimple
- Irreducible objects in the essential image?
- Grothendieck's standard conjectures: Pure isomotives (semisimple Tannakian category) $/ \overline{\mathbb{Q}}$

$$
H_{\ell}: \operatorname{Mot}\left(x_{0}\right) \rightarrow \operatorname{Rep}_{\overline{\mathbb{Q}}_{\ell}}\left(\pi_{1}\left(x_{0}\right)\right)
$$

- Full?
- Essential image? (= geometric objects)
- Tate, Grothendieck-Serre's conjectures : $H_{\ell}: \operatorname{Mot}\left(x_{0}\right) \rightarrow \operatorname{Rep}_{\overline{\mathbb{Q}}_{\ell}}\left(\pi_{1}\left(x_{0}\right)\right)$ is full and its essential image is semisimple
- Irreducible objects with finite determinant in the essential image ?
- Grothendieck's standard conjectures: Pure isomotives (semisimple Tannakian category) $/ \overline{\mathbb{Q}}$

$$
H_{\ell}: \operatorname{Mot}\left(x_{0}\right) \rightarrow \operatorname{Rep}_{\overline{\mathbb{Q}}_{\ell}}\left(\pi_{1}\left(x_{0}\right)\right)
$$

- Full?
- Essential image? (= geometric objects)
- Tate, Grothendieck-Serre's conjectures: $H_{\ell}: \operatorname{Mot}\left(x_{0}\right) \rightarrow \operatorname{Rep}_{\overline{\mathbb{Q}}_{\ell}}\left(\pi_{1}\left(x_{0}\right)\right)$ is full and its essential image is semisimple
- Irreducible objects with finite determinant in the essential image ?

Metaconjecture : All!

- Grothendieck's standard conjectures: Pure isomotives (semisimple Tannakian category) $/ \overline{\mathbb{Q}}$

$$
H_{\ell}: \operatorname{Mot}\left(x_{0}\right) \rightarrow \operatorname{Rep}_{\overline{\mathbb{Q}}_{\ell}}\left(\pi_{1}\left(x_{0}\right)\right)
$$

- Full?
- Essential image? (= geometric objects)
- Tate, Grothendieck-Serre's conjectures : $H_{\ell}: \operatorname{Mot}\left(x_{0}\right) \rightarrow \operatorname{Rep}_{\overline{\mathbb{Q}}_{\ell}}\left(\pi_{1}\left(x_{0}\right)\right)$ is full and its essential image is semisimple
- Irreducible objects with finite determinant in the essential image ?

Metaconjecture : All irreducible $\overline{\mathbb{Q}}_{\ell}$ local systems with finite determinant on dense open subsets $U_{0} \subset \overline{\left\{x_{0}\right\}^{Z a r}}$

- Grothendieck's standard conjectures: Pure isomotives (semisimple Tannakian category) $/ \overline{\mathbb{Q}}$

$$
H_{\ell}: \operatorname{Mot}\left(x_{0}\right) \rightarrow \operatorname{Rep}_{\overline{\mathbb{Q}}_{\ell}}\left(\pi_{1}\left(x_{0}\right)\right)
$$

- Full?
- Essential image? (= geometric objects)
- Tate, Grothendieck-Serre's conjectures : $H_{\ell}: \operatorname{Mot}\left(x_{0}\right) \rightarrow \operatorname{Rep}_{\overline{\mathbb{Q}}_{\ell}}\left(\pi_{1}\left(x_{0}\right)\right)$ is full and its essential image is semisimple
- Irreducible objects with finite determinant in the essential image ?

Metaconjecture : All irreducible $\overline{\mathbb{Q}}_{\ell}$ local systems with finite determinant on dense open subsets $U_{0} \subset \overline{\left\{x_{0}\right\}^{Z a r}}$
\Rightarrow Deligne's Compagnons conjecture, Weil II - 1980

- Grothendieck's standard conjectures : Pure isomotives (semisimple Tannakian category) $/ \overline{\mathbb{Q}}$

$$
H_{\ell}: \operatorname{Mot}\left(x_{0}\right) \rightarrow \operatorname{Rep}_{\overline{\mathbb{Q}}_{\ell}}\left(\pi_{1}\left(x_{0}\right)\right)
$$

- Tate, Grothendieck-Serre's conjectures: $H_{\ell}: \operatorname{Mot}\left(x_{0}\right) \rightarrow \operatorname{Rep}_{\overline{\mathbb{Q}}_{\ell}}\left(\pi_{1}\left(x_{0}\right)\right)$ is full and its essential image is semisimple
- Irreducible objects with finite determinant in the essential image ?

Metaconjecture : All irreducible $\overline{\mathbb{Q}}_{\ell}$ local systems with finite determinant on dense open subsets $U_{0} \subset \overline{\left\{x_{0}\right\}^{Z a r}}$
\Rightarrow Deligne's Compagnons conjecture, Weil II - 1980

- Weil's conjectures (Deligne, Weil I-1974) : $f_{0}: Y_{0} \rightarrow X_{0}=\operatorname{spec}\left(k_{0}\right)$ smooth proper. Then the eigenvalues α of φ acting on $H^{i}\left(Y, \mathbb{Q}_{\ell}\right)$ are algebraic and pure of weight i : for every $\iota: \overline{\mathbb{Q}} \hookrightarrow \mathbb{C}|\iota \alpha|=\left|k_{0}\right|^{\frac{i}{2}}$ In part., $\operatorname{det}\left(I d-T \varphi \mid H^{i}(Y, \mathbb{Q} \ell)\right) \in \mathbb{Q}[T]$, independent of ℓ

Deligne's compagnon conjecture, Weil II - 1980

Deligne's compagnon conjecture, Weil II - 1980

Conj. (Compagnons)

\mathscr{F}_{ℓ} irreducible $\overline{\mathbb{Q}}_{\ell}$-local system on X_{0} with finite determinant

Deligne's compagnon conjecture, Weil II - 1980

Conj. (Compagnons)

\mathscr{F}_{ℓ} irreducible $\overline{\mathbb{Q}}_{\ell}$-local system on X_{0} with finite determinant

- (Purity) \mathscr{F}_{ℓ} is pure of weight 0 : for every $x_{0} \in\left|X_{0}\right|$ the eigenvalues of $\varphi_{x_{0}}$ acting on $\mathscr{F}_{\ell, X}$ are algebraic and pure of weight 0

Deligne's compagnon conjecture, Weil II - 1980

Conj. (Compagnons)

\mathscr{F}_{ℓ} irreducible $\overline{\mathbb{Q}}_{\ell}$-local system on X_{0} with finite determinant

- (Purity) \mathscr{F}_{ℓ} is pure of weight 0 : for every $x_{0} \in\left|X_{0}\right|$ the eigenvalues of $\varphi_{x_{0}}$ acting on $\mathscr{F}_{\ell, x}$ are algebraic and pure of weight 0
- (Finiteness) $Q_{\mathscr{F}}^{\ell}$: $=\mathbb{Q}$-sub-extension of $\overline{\mathbb{Q}}$ generated by the coefficients of the $\operatorname{det}\left(I d-T \varphi_{x_{0}} \mid \mathscr{F}_{\ell, x}\right), x_{0} \in\left|X_{0}\right|$ is a number field

Deligne's compagnon conjecture, Weil II - 1980

Conj. (Compagnons)

\mathscr{F}_{ℓ} irreducible $\overline{\mathbb{Q}}_{\ell}$-local system on X_{0} with finite determinant

- (Purity) \mathscr{F}_{ℓ} is pure of weight 0 : for every $x_{0} \in\left|X_{0}\right|$ the eigenvalues of $\varphi_{x_{0}}$ acting on $\mathscr{F}_{\ell, X}$ are algebraic and pure of weight 0
- (Finiteness) $Q_{\mathscr{F}_{\ell}}:=\mathbb{Q}$-sub-extension of $\overline{\mathbb{Q}}$ generated by the coefficients of the $\operatorname{det}\left(I d-T \varphi_{x_{0}} \mid \mathscr{F}_{\ell, x}\right), x_{0} \in\left|X_{0}\right|$ is a number field
- (Compagnons) For every $\ell^{\prime} \neq p$ there exists a (unique) semisimple $\overline{\mathbb{Q}}_{\ell^{\prime}}$-local system $\mathscr{F}_{\ell^{\prime}}$ on X_{0} compatible with \mathscr{F}_{ℓ} :

$$
\operatorname{det}\left(I d-T \varphi_{x_{0}} \mid \mathscr{F}_{\ell, x}\right)=\operatorname{det}\left(I d-T \varphi_{x_{0}} \mid \mathscr{F}_{\ell^{\prime}, x}\right), x_{0} \in\left|X_{0}\right|
$$

Deligne's compagnon conjecture, Weil II - 1980

Conj. (Compagnons)

\mathscr{F}_{ℓ} irreducible $\overline{\mathbb{Q}}_{\ell}$-local system on X_{0} with finite determinant

- (Purity) \mathscr{F}_{ℓ} is pure of weight 0 : for every $x_{0} \in\left|X_{0}\right|$ the eigenvalues of $\varphi_{x_{0}}$ acting on $\mathscr{F}_{\ell, x}$ are algebraic and pure of weight 0
- (Finiteness) $Q_{\mathscr{F}_{\ell}}:=\mathbb{Q}$-sub-extension of $\overline{\mathbb{Q}}$ generated by the coefficients of the $\operatorname{det}\left(I d-T \varphi_{x_{0}} \mid \mathscr{F}_{\ell, x}\right), x_{0} \in\left|X_{0}\right|$ is a number field
- (Compagnons) For every $\ell^{\prime} \neq p$ there exists a (unique) semisimple $\overline{\mathbb{Q}}_{\ell^{\prime}}$-local system $\mathscr{F}_{\ell^{\prime}}$ on X_{0} compatible with \mathscr{F}_{ℓ} : $\operatorname{det}\left(I d-T \varphi_{x_{0}} \mid \mathscr{F}_{\ell, x}\right)=\operatorname{det}\left(I d-T \varphi_{x_{0}} \mid \mathscr{F}_{\ell^{\prime}, x}\right), x_{0} \in\left|X_{0}\right|$

Rem : $\mathscr{F}_{\ell^{\prime}}$ is then automatically irreducible with finite determinant

Deligne's compagnon conjecture, Weil II - 1980

Thm. (Drinfeld - 78, L. Lafforgue - 02, Deligne, Drinfeld - 2012)

\mathscr{F}_{ℓ} irreducible $\overline{\mathbb{Q}}_{\ell}$-local system on X_{0} with finite determinant

- (Purity) \mathscr{F}_{ℓ} is pure of weight 0 : for every $x_{0} \in\left|X_{0}\right|$ the eigenvalues of $\varphi_{x_{0}}$ acting on $\mathscr{F}_{\ell, X}$ are algebraic and pure of weight 0
- (Finiteness) $Q_{\mathscr{F}_{\ell}}:=\mathbb{Q}$-sub-extension of $\overline{\mathbb{Q}}$ generated by the coefficients of the $\operatorname{det}\left(I d-T \varphi_{x_{0}} \mid \mathscr{F}_{\ell, x}\right), x_{0} \in\left|X_{0}\right|$ is a number field
- (Compagnons) For every $\ell^{\prime} \neq p$ there exists a (unique) semisimple $\overline{\mathbb{Q}}_{\ell^{\prime}}$-local system $\mathscr{F}_{\ell^{\prime}}$ on X_{0} compatible with \mathscr{F}_{ℓ} :

$$
\operatorname{det}\left(I d-T \varphi_{x_{0}} \mid \mathscr{F}_{\ell, x}\right)=\operatorname{det}\left(I d-T \varphi_{x_{0}} \mid \mathscr{F}_{\ell^{\prime}, x}\right), x_{0} \in\left|X_{0}\right|
$$

Deligne's compagnon conjecture, Weil II - 1980

Thm. (Drinfeld - 78, L. Lafforgue - 02, Deligne, Drinfeld - 2012)

\mathscr{F}_{ℓ} irreducible $\overline{\mathbb{Q}}_{\ell}$-local system on X_{0} with finite determinant

- (Purity) \mathscr{F}_{ℓ} is pure of weight 0 : for every $x_{0} \in\left|X_{0}\right|$ the eigenvalues of $\varphi_{x_{0}}$ acting on $\mathscr{F}_{\ell, X}$ are algebraic and pure of weight 0
- (Finiteness) $Q_{\mathscr{F}_{\ell}}:=\mathbb{Q}$-sub-extension of $\overline{\mathbb{Q}}$ generated by the coefficients of the $\operatorname{det}\left(I d-T \varphi_{x_{0}} \mid \mathscr{F}_{\ell, x}\right), x_{0} \in\left|X_{0}\right|$ is a number field
- (Compagnons) For every $\ell^{\prime} \neq p$ there exists a (unique) semisimple $\overline{\mathbb{Q}}_{\ell^{\prime}}$-local system $\mathscr{F}_{\ell^{\prime}}$ on X_{0} compatible with \mathscr{F}_{ℓ} : $\operatorname{det}\left(I d-T \varphi_{x_{0}} \mid \mathscr{F}_{\ell, x}\right)=\operatorname{det}\left(I d-T \varphi_{x_{0}} \mid \mathscr{F}_{\ell^{\prime}, x}\right), x_{0} \in\left|X_{0}\right|$
- X_{0} curve \Leftarrow Langlands' correspondance for $G L_{r}+$ Ramanujan-Peterson conjecture (Cuspidal automorphic rep. instead of motives; motives appear in the cohomology of Shutkas)

Deligne's compagnon conjecture, Weil II - 1980

Thm. (Drinfeld - 78, L. Lafforgue - 02, Deligne, Drinfeld - 2012)

\mathscr{F}_{ℓ} irreducible $\overline{\mathbb{Q}}_{\ell}$-local system on X_{0} with finite determinant

- (Purity) \mathscr{F}_{ℓ} is pure of weight 0 : for every $x_{0} \in\left|X_{0}\right|$ the eigenvalues of $\varphi_{x_{0}}$ acting on $\mathscr{F}_{\ell, X}$ are algebraic and pure of weight 0
- (Finiteness) $Q_{\mathscr{F}_{\ell}}:=\mathbb{Q}$-sub-extension of $\overline{\mathbb{Q}}$ generated by the coefficients of the $\operatorname{det}\left(I d-T \varphi_{x_{0}} \mid \mathscr{F}_{\ell, x}\right), x_{0} \in\left|X_{0}\right|$ is a number field
- (Compagnons) For every $\ell^{\prime} \neq p$ there exists a (unique) semisimple $\overline{\mathbb{Q}}_{\ell^{\prime}}$-local system $\mathscr{F}_{\ell^{\prime}}$ on X_{0} compatible with \mathscr{F}_{ℓ} : $\operatorname{det}\left(I d-T \varphi_{x_{0}} \mid \mathscr{F}_{\ell, x}\right)=\operatorname{det}\left(I d-T \varphi_{x_{0}} \mid \mathscr{F}_{\ell^{\prime}, x}\right), x_{0} \in\left|X_{0}\right|$
- X_{0} curve \Leftarrow Langlands' correspondance for $G L_{r}+$ Ramanujan-Peterson conjecture (Cuspidal automorphic rep. instead of motives; motives appear in the cohomology of Shutkas)
- For higer dimensional X_{0}, reduce to the case of curves by geometric methods (no motives...)

Integral motives? ?

Integral motives? ?

Je n'ai pas le coeur net non plus sur la nécessité de mettre du "iso" partout dans la théorie des motifs. Je ne serais pas tellement étonné qu'il y ait en caractéristique nulle une théorie des motifs (pas iso), qui s'envoie dans les théories ℓ-adiques (sur \mathbb{Z}_{ℓ} pas \mathbb{Q}_{ℓ}) pour tout $\ell(\ldots)$ En caractéristique $p>0$, j'ai des doutes très sérieux pour l'existence d'une théorie des motifs pas iso du tout à cause des phénomènes de p-torsion (...) Par contre, il pourrait être vrai que seule la ptorsion canule, et qu'il suffise de localiser par tuage de p-torsion, c'est à dire de travailler avec des catégories $\mathbb{Z}[1 / p]$-linéaires. On aurait alors encore des foncteurs allant des "motifs" (pas iso) vers les \mathbb{Z}_{ℓ}-faisceaux (quel que soit $\ell \neq p$) (...) on a certainement dans l'idée que les "vrais" groupes de Galois motiviques (associés à des foncteurs fibres comme la cohomologie ℓ-adique, ou la cohomologie de Betti) sont des schémas en groupes sur \mathbb{Z}_{ℓ} et sur \mathbb{Z} plutôt que sur \mathbb{Q}_{ℓ} et sur \mathbb{Q}, et par là on devrait rejoindre le point de vue des groupes de type arithmétique de gens comme Borel, Griffith etc. (...)
A. Grothendieck, letter to L. Illusie, Buffalo, May 3rd, 1973.

Integral motives??

Je n'ai pas le coeur net non plus sur la nécessité de mettre du "iso" partout dans la théorie des motifs. Je ne serais pas tellement étonné qu'il y ait en caractéristique nulle une théorie des motifs (pas iso), qui s'envoie dans les théories ℓ-adiques (sur \mathbb{Z}_{ℓ} pas \mathbb{Q}_{ℓ}) pour tout $\ell(\ldots)$ En caractéristique $p>0$, j 'ai des doutes très sérieux pour l'existence d'une théorie des motifs pas iso du tout à cause des phénomènes de p-torsion (...) Par contre, il pourrait être vrai que seule la p-torsion canule, et qu'il suffise de localiser par tuage de p-torsion, c'est à dire de travailler avec des catégories $\mathbb{Z}[1 / p]$-linéaires. On aurait alors encore des foncteurs allant des "motifs" (pas iso) vers les \mathbb{Z}_{ℓ}-faisceaux (quel que soit $\ell \neq p$) (...) on a certainement dans l'idée que les "vrais" groupes de Galois motiviques (associés à des foncteurs fibres comme la cohomologie ℓ-adique, ou la cohomologie de Betti) sont des schémas en groupes sur \mathbb{Z}_{ℓ} et sur \mathbb{Z} plutôt que sur \mathbb{Q}_{ℓ} et sur \mathbb{Q}, et par là on devrait rejoindre le point de vue des groupes de type arithmétique de gens comme Borel, Griffith etc. (...)
A. Grothendieck, letter to L. Illusie, Buffalo, May 3rd, 1973.

Integral motives? ?

$\mathscr{F}_{\ell}, \ell \neq p$: compatible family of pure $\overline{\mathbb{Q}}_{\ell}$-local systems on X_{0}

Integral motives??

$\mathscr{F}_{\ell}, \ell \neq p$: compatible family of pure $\overline{\mathbb{Q}}_{\ell}$-local systems on X_{0}

Thm. B (C., 2018)

For $\ell \gg 0$ and every choice of a torsion-free $\overline{\mathbb{Z}}_{\ell}$-model \mathscr{H}_{ℓ} of \mathscr{F}_{ℓ},
(1) For ? $=\varnothing, c, i \geqslant 0$ and if X_{0} is proper over k_{0} or if X_{0} is a curve or, For $?=\varnothing$ and $i=0$ or $?=c$ and $i=2 \operatorname{dim}\left(X_{0}\right)$

- $\operatorname{dim}\left(H_{?}^{i}\left(X, \mathscr{F}_{\ell}\right)\right)=\operatorname{dim}\left(H_{?}^{i}\left(X, \mathscr{H}_{\ell} \otimes \bar{F}_{\ell}\right)\right)$
- $H_{?}^{j}\left(X, \mathscr{H}_{\ell}\right)[\ell]=0, j=i, i+1$
- $H_{?}^{i}\left(X, \mathscr{H}_{\ell}\right) \otimes \overline{\mathbb{F}}_{\ell}=H_{?}^{i}\left(X, \mathscr{H}_{\ell} \otimes \overline{\mathbb{F}}_{\ell}\right)$
(2) $\left.\mathscr{H}_{\ell} \otimes \bar{F}_{\ell}\right|_{X}$ is semisimple and if $\left.\mathscr{F}_{\ell}\right|_{X}$ is irreducible (resp. \mathscr{F}_{ℓ} is semisimple, resp. \mathscr{F}_{ℓ} is irreducible) then $\left.\mathscr{H}_{\ell} \otimes \overline{\mathbb{F}}_{\ell}\right|_{X}$ is irreducible (resp. $\mathscr{H}_{\ell} \otimes \overline{\mathbb{F}}_{\ell}$ is semisimple resp. $\mathscr{H}_{\ell} \otimes \overline{\mathbb{F}}_{\ell}$ is irreducible).
(3) If $\mathscr{H}_{\ell}^{\prime}$ is another $\overline{\mathbb{Z}}_{\ell}$-model of \mathscr{F}_{ℓ} then $\left.\left.\mathscr{H}_{\ell}\right|_{x} \simeq \mathscr{H}_{\ell}^{\prime}\right|_{x}$ and if \mathscr{F}_{ℓ} is semisimple, then $\mathscr{H}_{\ell} \simeq \mathscr{H}_{\ell}^{\prime}$.
(4) (Resp. If \mathscr{F}_{ℓ} is semisimple) the Zariski-closure of the image of $\pi_{1}(X)$ (resp. of $\left.\pi_{1}\left(X_{0}\right)\right)$ acting on the stalks of \mathscr{H}_{ℓ} is a semisimple (resp. a reductive) group scheme over $\overline{\mathbb{Z}}_{\ell}$.

Integral motives??

$\mathscr{F}_{\ell}, \ell \neq p$: compatible family of pure $\overline{\mathbb{Q}}_{\ell}$-local systems on X_{0}

Thm. B (C., 2018)

For $\ell \gg 0$ and every choice of a torsion-free $\overline{\mathbb{Z}}_{\ell}$-model \mathscr{H}_{ℓ} of \mathscr{F}_{ℓ},
(1) For ? $=\varnothing, c, i \geqslant 0$ and if X_{0} is proper over k_{0} or if X_{0} is a curve or,

For $?=\varnothing$ and $i=0$ or $?=c$ and $i=2 \operatorname{dim}\left(X_{0}\right)$

- $\operatorname{dim}\left(H_{?}^{i}\left(X, \mathscr{F}_{\ell}\right)\right)=\operatorname{dim}\left(H_{?}^{i}\left(X, \mathscr{H}_{\ell} \otimes \bar{F}_{\ell}\right)\right)$
- $H_{?}^{j}\left(X, \mathscr{H}_{\ell}\right)[\ell]=0, j=i, i+1$ (Gabber, CRAS $1980 X_{0}$ proper, $\mathscr{H}_{\ell}=\mathbb{Z}_{\ell}$)
- $H_{?}^{i}\left(X, \mathscr{H}_{\ell}\right) \otimes \overline{\mathbb{F}}_{\ell}=H_{?}^{i}\left(X, \mathscr{H}_{\ell} \otimes \overline{\mathbb{F}}_{\ell}\right)$
(2) $\left.\mathscr{H}_{\ell} \otimes \overline{\mathbb{F}}_{\ell}\right|_{X}$ is semisimple and if $\left.\mathscr{F}_{\ell}\right|_{X}$ is irreducible (resp. \mathscr{F}_{ℓ} is semisimple, resp. \mathscr{F}_{ℓ} is irreducible) then $\left.\mathscr{H}_{\ell} \otimes \overline{\mathbb{F}}_{\ell}\right|_{X}$ is irreducible (resp. $\mathscr{H}_{\ell} \otimes \overline{\mathbb{F}}_{\ell}$ is semisimple resp. $\mathscr{H}_{\ell} \otimes \overline{\mathbb{F}}_{\ell}$ is irreducible).
(3) If $\mathscr{H}_{\ell}^{\prime}$ is another $\overline{\mathbb{Z}}_{\ell}$-model of \mathscr{F}_{ℓ} then $\left.\left.\mathscr{H}_{\ell}\right|_{x} \simeq \mathscr{H}_{\ell}^{\prime}\right|_{x}$ and if \mathscr{F}_{ℓ} is semisimple, then $\mathscr{H}_{\ell} \simeq \mathscr{H}_{\ell}^{\prime}$.
(4) (Resp. If \mathscr{F}_{ℓ} is semisimple) the Zariski-closure of the image of $\pi_{1}(X)$ (resp. of $\pi_{1}\left(X_{0}\right)$) acting on the stalks of \mathscr{H}_{ℓ} is a semisimple (resp. a reductive) group scheme over $\overline{\mathbb{Z}}_{\ell}$.

Integral motives??

$\mathscr{F}_{\ell}, \ell \neq p$: compatible family of pure $\overline{\mathbb{Q}}_{\ell}$-local systems on X_{0}

Thm. B (C., 2018)

For $\ell \gg 0$ and every choice of a torsion-free $\overline{\mathbb{Z}}_{\ell}$-model \mathscr{H}_{ℓ} of \mathscr{F}_{ℓ},
(1) For $?=\varnothing, c, i \geqslant 0$ and if X_{0} is proper over k_{0} or if X_{0} is a curve or, For $?=\varnothing$ and $i=0$ or $?=c$ and $i=2 \operatorname{dim}\left(X_{0}\right)$

- $\operatorname{dim}\left(H_{?}^{i}\left(X, \mathscr{F}_{\ell}\right)\right)=\operatorname{dim}\left(H_{?}^{i}\left(X, \mathscr{H}_{\ell} \otimes \overline{\mathbb{F}}_{\ell}\right)\right)$
- $H_{?}^{j}\left(X, \mathscr{H}_{\ell}\right)[\ell]=0, j=i, i+1$ (Gabber, CRAS $1980 X_{0}$ proper, $\left.\mathscr{H}_{\ell}=\mathbb{Z}_{\ell}\right)$
- $H_{?}^{i}\left(X, \mathscr{H}_{\ell}\right) \otimes \overline{\mathbb{F}}_{\ell}=H_{?}^{i}\left(X, \mathscr{H}_{\ell} \otimes \overline{\mathbb{F}}_{\ell}\right)$ (C.-Hui-Tamagawa, Annals 2017 $\left.\mathscr{H}_{\ell}=R^{i} f_{0, *} \mathbb{Z}_{\ell}, i=0\right)$
(2) $\left.\mathscr{H}_{\ell} \otimes \overline{\mathbb{F}}_{\ell}\right|_{X}$ is semisimple and if $\left.\mathscr{F}_{\ell}\right|_{X}$ is irreducible (resp. \mathscr{F}_{ℓ} is semisimple, resp. \mathscr{F}_{ℓ} is irreducible) then $\left.\mathscr{H}_{\ell} \otimes \overline{\mathbb{F}}_{\ell}\right|_{X}$ is irreducible (resp. $\mathscr{H}_{\ell} \otimes \overline{\mathbb{F}}_{\ell}$ is semisimple resp. $\mathscr{H}_{\ell} \otimes \overline{\mathbb{F}}_{\ell}$ is irreducible).
(3) If $\mathscr{H}_{\ell}^{\prime}$ is another $\overline{\mathbb{Z}}_{\ell}$-model of \mathscr{F}_{ℓ} then $\left.\mathscr{H}_{\ell}\right|_{X} \simeq \mathscr{H}_{\ell}^{\prime} \mid x$ and if \mathscr{F}_{ℓ} is semisimple, then $\mathscr{H}_{\ell} \simeq \mathscr{H}_{\ell}^{\prime}$.
(4) (Resp. If \mathscr{F}_{ℓ} is semisimple) the Zariski-closure of the image of $\pi_{1}(X)$ (resp. of $\pi_{1}\left(X_{0}\right)$) acting on the stalks of \mathscr{H}_{ℓ} is a semisimple (resp. a reductive) group scheme over $\overline{\mathbb{Z}}_{\ell}$.

Key technical ingredient

Introduction of an ad hoc category of ultra product coefficients (almost \mathfrak{u}-tame local systems) and develop a (partial) theory of Frobenius weights in this setting

Ultraproducts

Ultraproducts

\mathscr{L} : infinite set of primes $\neq p$
$\underline{\mathbb{F}}:=\prod_{\ell \in \mathscr{L}} \overline{\mathbb{F}}_{\ell}$

Ultraproducts

\mathscr{L} : infinite set of primes $\neq p$
$\underline{\mathbb{F}}:=\prod_{\ell \in \mathscr{L}} \overline{\mathbb{F}}_{\ell}$

- Filter on \mathscr{L} : family of subsets of \mathscr{L} which does not contain \varnothing and is stable under supsets and finite intersections

Ultraproducts

\mathscr{L} : infinite set of primes $\neq p$
$\underline{\mathbb{F}}:=\prod_{\ell \in \mathscr{L}} \overline{\mathbb{F}}_{\ell}$

- Filter on \mathscr{L} : family of subsets of \mathscr{L} which does not contain \varnothing and is stable under supsets and finite intersections
- Ultrafilter on \mathscr{L} : filter \mathfrak{u} on \mathscr{L} which is maximal for $\subset(\Leftrightarrow S \in \mathfrak{u}$ or $\mathscr{L} \backslash S \in \mathfrak{u})$

Ultraproducts

\mathscr{L} : infinite set of primes $\neq p$
$\underline{\mathbb{F}}:=\prod_{\ell \in \mathscr{L}} \overline{\mathbb{F}}_{\ell}$

- Filter on \mathscr{L} : family of subsets of \mathscr{L} which does not contain \varnothing and is stable under supsets and finite intersections
- Ultrafilter on \mathscr{L} : filter \mathfrak{u} on \mathscr{L} which is maximal for $\subset(\Leftrightarrow S \in \mathfrak{u}$ or $\mathscr{L} \backslash S \in \mathfrak{u})$

Filters on \mathscr{L} Ultrafilters on \mathscr{L}	\longleftrightarrow	Ideals in \mathbb{F} \mathfrak{u}
$\mathfrak{u}_{\mathfrak{m}}:=\left\{S \subset \mathscr{L} \mid e_{S} \in \mathfrak{m}\right\}$	\longleftrightarrow	$\operatorname{Spec}(\underline{F})=\operatorname{Spm}(\underline{F})$
$\mathfrak{m}_{\mathfrak{u}}:=\left\langle e_{S} \mid S \in \mathfrak{u}\right\rangle$		
\mathfrak{m},		

$e_{S}: \mathscr{L} \rightarrow\{0,1\}$ characteristic function of $\mathscr{L} \backslash S$

Ultraproducts

$$
\begin{array}{ccc}
\text { Filters on } \mathscr{L} & \longleftrightarrow & \text { Ideals in } \mathbb{F} \\
\text { Ultrafilters on } \mathscr{L} & \longleftrightarrow & \operatorname{Spec}(\mathbb{F})=S p m(\mathbb{F}) \\
\mathfrak{u} & \longrightarrow & \mathfrak{m}_{\mathfrak{u}}:=\left\langle e_{S} \mid S \in \mathfrak{u}\right\rangle \\
\mathfrak{u}_{\mathfrak{m}}:=\left\{S \subset \mathscr{L} \mid e_{S} \in \mathfrak{m}\right\} & \longleftrightarrow & \mathfrak{m},
\end{array}
$$

$e_{S}: \mathscr{L} \rightarrow\{0,1\}$ characteristic function of $\mathscr{L} \backslash S$

$$
\mathbb{F} \rightarrow \overline{\mathbb{Q}}_{\mathfrak{u}}:=\mathbb{F} / \mathfrak{m}_{\mathfrak{u}}
$$

Ultraproducts

$$
\begin{array}{ccc}
\text { Filters on } \mathscr{L} & \longleftrightarrow & \text { Ideals in } \mathbb{F} \\
\text { Ultrafilters on } \mathscr{L} & \longleftrightarrow & \operatorname{Spec}(\underline{\mathbb{F}})=\operatorname{Spm}(\underline{\mathrm{F}}) \\
\mathfrak{u} & \longrightarrow & \mathfrak{m}_{\mathfrak{u}}:=\left\langle e_{S} \mid S \in \mathfrak{u}\right\rangle \\
\mathfrak{u}_{\mathfrak{m}}:=\left\{S \subset \mathscr{L} \mid e_{S} \in \mathfrak{m}\right\} & \longleftrightarrow & \mathfrak{m},
\end{array}
$$

$e_{S}: \mathscr{L} \rightarrow\{0,1\}$ characteristic function of $\mathscr{L} \backslash S$

$$
\underline{\mathbb{E}} \rightarrow \overline{\mathbb{Q}}_{\mathfrak{u}}:=\mathbb{F} / \mathfrak{m}_{\mathfrak{u}}
$$

Principal ultrafilters :

$$
\begin{aligned}
\operatorname{char}\left(\overline{\mathbb{Q}}_{\mathfrak{u}}\right)>0 & \Leftrightarrow \overline{\mathbb{Q}}_{\mathfrak{u}}=\bar{F}_{\ell} \text { for some } \ell \in \mathscr{L} \\
& \Leftrightarrow \mathfrak{m}_{\mathfrak{u}} \text { principal } \\
& \Leftrightarrow \mathfrak{u}=\mathfrak{u}_{\ell}:=\{S \subset \mathscr{L} \mid \ell \in S\} \text { for some } \ell \in \mathscr{L}
\end{aligned}
$$

Ultraproducts

$$
\begin{array}{ccc}
\text { Filters on } \mathscr{L} & \longleftrightarrow & \text { Ideals in } \mathbb{F} \\
\text { Ultrafilters on } \mathscr{L} & \longleftrightarrow & \operatorname{Spec}(\underline{\mathbb{F}})=\operatorname{Spm}(\underline{\mathrm{F}}) \\
\mathfrak{u} & \longrightarrow & \mathfrak{m}_{\mathfrak{u}}:=\left\langle e_{S} \mid S \in \mathfrak{u}\right\rangle \\
\mathfrak{u}_{\mathfrak{m}}:=\left\{S \subset \mathscr{L} \mid e_{S} \in \mathfrak{m}\right\} & \longleftrightarrow & \mathfrak{m},
\end{array}
$$

$e_{S}: \mathscr{L} \rightarrow\{0,1\}$ characteristic function of $\mathscr{L} \backslash S$

$$
\mathbb{F} \rightarrow \overline{\mathbb{Q}}_{\mathfrak{u}}:=\mathbb{F} / \mathfrak{m}_{\mathfrak{u}}
$$

Principal ultrafilters :

$$
\begin{aligned}
\operatorname{char}\left(\overline{\mathbb{Q}}_{\mathfrak{u}}\right)>0 & \Leftrightarrow \overline{\mathbb{Q}}_{\mathfrak{u}}=\overline{\mathbb{F}}_{\ell} \text { for some } \ell \in \mathscr{L} \\
& \Leftrightarrow \mathfrak{m}_{\mathfrak{u}} \text { principal } \\
& \Leftrightarrow \mathfrak{u}=\mathfrak{u}_{\ell}:=\{S \subset \mathscr{L} \mid \ell \in S\} \text { for some } \ell \in \mathscr{L}
\end{aligned}
$$

\mathscr{U} : set of non-principal ultrafilters on \mathscr{L}

Ultraproducts

Fact

- $\bigcap_{\mathfrak{u} \in \mathscr{U}} \mathfrak{u}=\{S \subset \mathscr{L}| | \mathscr{L} \backslash S \mid<+\infty\}$ Fréchet filter

$$
0 \rightarrow \oplus \ell \in \mathscr{L} \overline{\mathscr{F}}_{\ell} \rightarrow \mathbb{\mathbb { F }} \rightarrow \prod_{\mathfrak{u} \in \mathscr{U}} \overline{\mathbb{Q}}_{\mathfrak{u}}
$$

For $\mathfrak{u} \in \mathscr{U}$

- $\overline{\mathbb{Q}}_{\mathfrak{u}} \simeq \mathbb{C}$
- $\underline{\mathbb{E}} \rightarrow \overline{\mathbb{Q}}_{\mathfrak{u}}$ flat

A prototypical example

A prototypical example

$\mathscr{F}_{\ell}, \ell \neq p$: compatible family of pure $\overline{\mathbb{Q}}_{\ell}$-local systems on X_{0}

A prototypical example

$\mathscr{F}_{\ell}, \ell \neq p$: compatible family of pure $\overline{\mathbb{Q}}_{\ell}$-local systems on X_{0}

For $\ell \gg 0$ and every choice of a torsion-free $\overline{\mathbb{Z}}_{\ell}$-model \mathscr{H}_{ℓ} of $\mathscr{F}_{\ell},\left.\mathscr{M}_{\ell}\right|_{X}$ is semisimple, where $\mathscr{M}_{\ell}:=\mathscr{H}_{\ell} \otimes \bar{F}_{\ell}$

A prototypical example

$\mathscr{F}_{\ell}, \ell \neq p$: compatible family of pure $\overline{\mathbb{Q}}_{\ell}$-local systems on X_{0}

For $\ell \gg 0$ and every choice of a torsion-free $\overline{\mathbb{Z}}_{\ell}$-model \mathscr{H}_{ℓ} of $\mathscr{F}_{\ell},\left.\mathscr{M}_{\ell}\right|_{X}$ is semisimple, where $\mathscr{M}_{\ell}:=\mathscr{H}_{\ell} \otimes \overline{\mathbb{F}}_{\ell}$
$\left.(0 \neq) \mathscr{M}_{\ell}^{\prime} \subset \mathscr{M}_{\ell}\right|_{X}$ maximal $\overline{\mathbb{F}}_{\ell}$ semisimple sub local system on X

A prototypical example

$\mathscr{F}_{\ell}, \ell \neq p$: compatible family of pure $\overline{\mathbb{Q}}_{\ell}$-local systems on X_{0}

For $\ell \gg 0$ and every choice of a torsion-free $\overline{\mathbb{Z}}_{\ell}$-model \mathscr{H}_{ℓ} of $\mathscr{F}_{\ell},\left.\mathscr{M}_{\ell}\right|_{x}$ is semisimple, where $\mathscr{M}_{\ell}:=\mathscr{H}_{\ell} \otimes \overline{\mathbb{F}}_{\ell}$
$\left.(0 \neq) \mathscr{M}_{\ell}^{\prime} \subset \mathscr{M}_{\ell}\right|_{X}$ maximal $\overline{\mathbb{F}}_{\ell}$ semisimple sub local system on X

$$
\left.0 \rightarrow \mathscr{M}_{\ell}^{\prime} \rightarrow \mathscr{M}_{\ell}\right|_{x} \rightarrow \mathscr{M}_{\ell}^{\prime \prime} \rightarrow 0
$$

A prototypical example

$\mathscr{F}_{\ell}, \ell \neq p$: compatible family of pure $\overline{\mathbb{Q}}_{\ell}$-local systems on X_{0}

For $\ell \gg 0$ and every choice of a torsion-free $\overline{\mathbb{Z}}_{\ell}$-model \mathscr{H}_{ℓ} of $\mathscr{F}_{\ell},\left.\mathscr{M}_{\ell}\right|_{x}$ is semisimple, where $\mathscr{M}_{\ell}:=\mathscr{H}_{\ell} \otimes \overline{\mathbb{F}}_{\ell}$
$\left.(0 \neq) \mathscr{M}_{\ell}^{\prime} \subset \mathscr{M}_{\ell}\right|_{X}$ maximal $\overline{\mathbb{F}}_{\ell}$ semisimple sub local system on X

$$
0 \rightarrow \mathscr{M}_{\ell, x}^{\prime} \rightarrow \mathscr{M}_{\ell, x} \rightarrow \mathscr{M}_{\ell, x}^{\prime \prime} \rightarrow 0 \text { as } \pi_{1}(X) \text {-modules }
$$

A prototypical example

$\mathscr{F}_{\ell}, \ell \neq p$: compatible family of pure $\overline{\mathbb{Q}}_{\ell}$-local systems on X_{0}

For $\ell \gg 0$ and every choice of a torsion-free $\overline{\mathbb{Z}}_{\ell}$-model \mathscr{H}_{ℓ} of $\mathscr{F}_{\ell},\left.\mathscr{M}_{\ell}\right|_{x}$ is semisimple, where $\mathscr{M}_{\ell}:=\mathscr{H}_{\ell} \otimes \overline{\mathbb{F}}_{\ell}$
$\left.(0 \neq) \mathscr{M}_{\ell}^{\prime} \subset \mathscr{M}_{\ell}\right|_{X}$ maximal $\overline{\mathbb{F}}_{\ell}$ semisimple sub local system on X

$$
0 \rightarrow \mathscr{M}_{\ell, x}^{\prime} \rightarrow \mathscr{M}_{\ell, x} \rightarrow \mathscr{M}_{\ell, x}^{\prime \prime} \rightarrow 0 \text { as } \pi_{1}\left(X_{0}\right) \text {-modules }
$$

A prototypical example

$\mathscr{F}_{\ell}, \ell \neq p$: compatible family of pure $\overline{\mathbb{Q}}_{\ell}$-local systems on X_{0}

For $\ell \gg 0$ and every choice of a torsion-free $\overline{\mathbb{Z}}_{\ell}$-model \mathscr{H}_{ℓ} of $\mathscr{F}_{\ell},\left.\mathscr{M}_{\ell}\right|_{x}$ is semisimple, where $\mathscr{M}_{\ell}:=\mathscr{H}_{\ell} \otimes \overline{\mathbb{F}}_{\ell}$
$\left.(0 \neq) \mathscr{M}_{\ell}^{\prime} \subset \mathscr{M}_{\ell}\right|_{X}$ maximal $\overline{\mathbb{F}}_{\ell}$ semisimple sub local system on X

$$
\begin{aligned}
0 \rightarrow \mathscr{M}_{\ell, x}^{\prime} & \rightarrow \mathscr{M}_{\ell, x} \rightarrow \mathscr{M}_{\ell, x}^{\prime \prime} \rightarrow 0 \text { as } \pi_{1}\left(X_{0}\right) \text {-modules } \\
& \longleftrightarrow \alpha_{\ell} \in H^{1}\left(X, \mathscr{M}_{\ell}^{\prime} \otimes \mathscr{M}_{\ell}^{\prime \prime}\right)^{\varphi=1}
\end{aligned}
$$

A prototypical example

$\mathscr{F}_{\ell}, \ell \neq p$: compatible family of pure $\overline{\mathbb{Q}}_{\ell}$-local systems on X_{0}

For $\ell \gg 0$ and every choice of a torsion-free $\overline{\mathbb{Z}}_{\ell}$-model \mathscr{H}_{ℓ} of $\mathscr{F}_{\ell},\left.\mathscr{M}_{\ell}\right|_{x}$ is semisimple, where $\mathscr{M}_{\ell}:=\mathscr{H}_{\ell} \otimes \overline{\mathbb{F}}_{\ell}$
$\left.(0 \neq) \mathscr{M}_{\ell}^{\prime} \subset \mathscr{M}_{\ell}\right|_{X}$ maximal $\overline{\mathbb{F}}_{\ell}$ semisimple sub local system on X

$$
\begin{aligned}
0 \rightarrow \mathscr{M}_{\ell, x}^{\prime} & \rightarrow \mathscr{M}_{\ell, x} \rightarrow \mathscr{M}_{\ell, x}^{\prime \prime} \rightarrow 0 \text { as } \pi_{1}\left(X_{0}\right) \text {-modules } \\
& \longleftrightarrow \alpha_{\ell} \in H^{1}\left(X, \mathscr{M}_{\ell}^{\prime} \otimes \mathscr{M}_{\ell}^{\prime \prime \vee}\right)^{\varphi=1}
\end{aligned}
$$

For $\ell \gg 0 H^{1}\left(X, \mathscr{M}_{\ell}^{\prime} \otimes \mathscr{M}_{\ell}^{\prime \prime \vee}\right)^{\varphi=1}=0$

A prototypical example

$\mathscr{F}_{\ell}, \ell \neq p$: compatible family of pure $\overline{\mathbb{Q}}_{\ell}$-local systems on X_{0}

For $\ell \gg 0 H^{1}\left(X, \mathscr{M}_{\ell}^{\prime} \otimes \mathscr{M}_{\ell}^{\prime \prime \vee}\right)^{\varphi=1}=0$

$$
\begin{gathered}
H_{\mathfrak{u}}^{1}\left(X, \underline{\mathscr{M}}^{\prime} \otimes \underline{\mathscr{M}}^{\prime \prime}\right):=\left(\prod_{\ell \in \mathscr{L}} H^{1}\left(X, \mathscr{M}_{\ell}^{\prime} \otimes \mathscr{M}_{\ell}^{\prime \prime}\right)\right) \otimes_{\underline{E}} \overline{\mathbb{Q}}_{\mathfrak{u}} \\
\underline{\mathscr{M}}_{x, \mathfrak{u}}:=\underline{\mathscr{M}}_{x} \otimes_{\underline{\mathbb{E}}} \overline{\mathbb{Q}}_{\mathfrak{u}}
\end{gathered}
$$

A prototypical example

$\mathscr{F}_{\ell}, \ell \neq p$: compatible family of pure $\overline{\mathbb{Q}}_{\ell}$-local systems on X_{0}

For $\ell \gg 0 H^{1}\left(X, \mathscr{M}_{\ell}^{\prime} \otimes \mathscr{M}_{\ell}^{\prime \prime \vee}\right)^{\varphi=1}=0$

$$
\begin{gathered}
H_{\mathfrak{u}}^{1}\left(X, \underline{\mathscr{M}}^{\prime} \otimes \underline{\mathscr{M}}^{\prime \prime}\right):=\left(\prod_{\ell \in \mathscr{L}} H^{1}\left(X, \mathscr{M}_{\ell}^{\prime} \otimes \mathscr{M}_{\ell}^{\prime \prime}\right)\right) \otimes_{\underline{E}} \overline{\mathbb{Q}}_{\mathfrak{u}} \\
\underline{\mathscr{M}}_{x, \mathfrak{u}}:=\underline{\mathscr{M}}_{x} \otimes_{\underline{\mathbb{E}}} \overline{\mathbb{Q}}_{\mathfrak{u}}
\end{gathered}
$$

- $\operatorname{dim}\left(H_{\mathfrak{u}}^{1}\left(X, \underline{\mathscr{M}}^{\prime} \otimes \underline{\mathscr{M}}^{\prime \prime}\right)\right)<+\infty$
- $\operatorname{det}\left(I d-T \varphi_{x_{0}} \mid \mathscr{F}_{\ell, x}\right)=\operatorname{det}\left(I d-T \varphi_{x_{0}} \mid \underline{\mathscr{M}}_{x, \mathfrak{u}}\right), x_{0} \in\left|X_{0}\right|$ $m \rightarrow \varphi_{x_{0}}$ acting on $\underline{\mathscr{M}}_{x, u}$ pure $\Rightarrow \varphi_{x_{0}}$ acting on $\underline{\mathscr{M}}_{x, u}^{\prime} \otimes \underline{\mathscr{M}}_{x, \mathfrak{u}}^{\prime \prime}$ pure of weight 0

A prototypical example

$\mathscr{F}_{\ell}, \ell \neq p$: compatible family of pure $\overline{\mathbb{Q}}_{\ell}$-local systems on X_{0}

For $\ell \gg 0 H^{1}\left(X, \mathscr{M}_{\ell}^{\prime} \otimes \mathscr{M}_{\ell}^{\prime \prime \vee}\right)^{\varphi=1}=0$

$$
\begin{gathered}
H_{\mathfrak{u}}^{1}\left(X, \underline{\mathscr{M}}^{\prime} \otimes \underline{\mathscr{M}}^{\prime \prime}\right):=\left(\prod_{\ell \in \mathscr{L}} H^{1}\left(X, \mathscr{M}_{\ell}^{\prime} \otimes \mathscr{M}_{\ell}^{\prime \prime}\right)\right) \otimes_{\underline{E}} \overline{\mathbb{Q}}_{\mathfrak{u}} \\
\underline{\mathscr{M}}_{x, \mathfrak{u}}:=\underline{\mathscr{M}}_{x} \otimes_{\underline{\mathbb{E}}} \overline{\mathbb{Q}}_{\mathfrak{u}}
\end{gathered}
$$

- $\operatorname{dim}\left(H_{\mathfrak{u}}^{1}\left(X, \underline{\mathscr{M}}^{\prime} \otimes \underline{\mathscr{M}}^{\prime \prime}\right)\right)<+\infty$
- $\operatorname{det}\left(I d-T \varphi_{x_{0}} \mid \mathscr{F}_{\ell, x}\right)=\operatorname{det}\left(I d-T \varphi_{x_{0}} \mid \underline{\mathscr{M}}_{x, u}\right), x_{0} \in\left|X_{0}\right|$ $m \varphi_{x_{0}}$ acting on $\underline{\mathscr{M}}_{x, \mathfrak{u}}$ pure $\Rightarrow \varphi_{x_{0}}$ acting on $\underline{\mathscr{M}}_{x, \mathfrak{u}}^{\prime} \otimes \underline{\mathscr{M}}_{x, \mathfrak{u}}^{\prime \prime}$ pure of weight 0

Weil II ultraproduct $\Longrightarrow H_{\mathfrak{u}}^{1}\left(X, \underline{\mathscr{M}}^{\prime} \otimes \underline{\mathscr{M}}^{\prime \prime}\right)$ of weights $\geqslant 1$

A prototypical example

$\mathscr{F}_{\ell}, \ell \neq p$: compatible family of pure $\overline{\mathbb{Q}}_{\ell}$-local systems on X_{0}

For $\ell \gg 0 H^{1}\left(X, \mathscr{M}_{\ell}^{\prime} \otimes \mathscr{M}_{\ell}^{\prime \prime \vee}\right)^{\varphi=1}=0$

$$
\begin{gathered}
H_{\mathfrak{u}}^{1}\left(X, \underline{\mathscr{M}}^{\prime} \otimes \underline{\mathscr{M}}^{\prime \prime}\right):=\left(\prod_{\ell \in \mathscr{L}} H^{1}\left(X, \mathscr{M}_{\ell}^{\prime} \otimes \mathscr{M}_{\ell}^{\prime \prime}\right)\right) \otimes_{\underline{E}} \overline{\mathbb{Q}}_{\mathfrak{u}} \\
\underline{\mathscr{M}}_{x, \mathfrak{u}}:=\underline{\mathscr{M}}_{x} \otimes_{\underline{\mathbb{E}}} \overline{\mathbb{Q}}_{\mathfrak{u}}
\end{gathered}
$$

- $\operatorname{dim}\left(H_{\mathfrak{u}}^{1}\left(X, \underline{\mathscr{M}}^{\prime} \otimes \underline{\mathscr{M}}^{\prime \vee}\right)\right)<+\infty$
- $\operatorname{det}\left(I d-T \varphi_{x_{0}} \mid \mathscr{F}_{\ell, x}\right)=\operatorname{det}\left(I d-T \varphi_{x_{0}} \mid \underline{\mathscr{M}}_{x, u}\right), x_{0} \in\left|X_{0}\right|$ $\leadsto \varphi_{x_{0}}$ acting on $\underline{\mathscr{M}}_{x, \mathfrak{u}}$ pure $\Rightarrow \varphi_{x_{0}}$ acting on $\underline{\mathscr{M}}_{x, \mathfrak{u}}^{\prime} \otimes \underline{\mathscr{M}}_{x, \mathfrak{u}}^{\prime \prime}$ pure of weight 0

Weil II ultraproduct $\Longrightarrow H_{\mathfrak{u}}^{1}\left(X,{\underline{\mathcal{M}^{\prime}}}^{\otimes} \underline{\mathcal{M}}^{\prime \prime} \vee\right)$ of weights $\geqslant 1$

$$
\Longrightarrow H_{\mathfrak{u}}^{1}\left(X, \underline{\mathscr{M}}^{\prime} \otimes \underline{\mathscr{M}}^{\prime \prime} \vee\right)^{\varphi}=0
$$

A prototypical example

$\mathscr{F}_{\ell}, \ell \neq p$: compatible family of pure $\overline{\mathbb{Q}}_{\ell}$-local systems on X_{0}

For $\ell \gg 0 H^{1}\left(X, \mathscr{M}_{\ell}^{\prime} \otimes \mathscr{M}_{\ell}^{\prime \prime \vee}\right)^{\varphi=1}=0$

$$
\begin{gathered}
H_{\mathfrak{u}}^{1}\left(X, \underline{\mathscr{M}}^{\prime} \otimes \underline{\mathscr{M}}^{\prime \prime}\right):=\left(\prod_{\ell \in \mathscr{L}} H^{1}\left(X, \mathscr{M}_{\ell}^{\prime} \otimes \mathscr{M}_{\ell}^{\prime \prime}\right)\right) \otimes_{\underline{E}} \overline{\mathbb{Q}}_{\mathfrak{u}} \\
\underline{\mathscr{M}}_{x, \mathfrak{u}}:=\underline{\mathscr{M}}_{x} \otimes_{\underline{\mathbb{E}}} \overline{\mathbb{Q}}_{\mathfrak{u}}
\end{gathered}
$$

- $\operatorname{dim}\left(H_{\mathfrak{u}}^{1}\left(X, \underline{\mathscr{M}}^{\prime} \otimes \underline{\mathscr{M}}^{\prime \vee}\right)\right)<+\infty$
- $\operatorname{det}\left(I d-T \varphi_{x_{0}} \mid \mathscr{F}_{\ell, x}\right)=\operatorname{det}\left(I d-T \varphi_{x_{0}} \mid \underline{\mathscr{M}}_{x, u}\right), x_{0} \in\left|X_{0}\right|$ $\rightsquigarrow \varphi_{x_{0}}$ acting on $\underline{\mathscr{M}}_{x, \mathfrak{u}}$ pure $\Rightarrow \varphi_{x_{0}}$ acting on $\underline{\mathscr{M}}_{x, \mathfrak{u}}^{\prime} \otimes \underline{\mathscr{M}}_{x, \mathfrak{u}}^{\prime \prime}$ pure of weight 0

$$
\begin{aligned}
\text { Weil II ultraproduct } & \Longrightarrow H_{\mathfrak{u}}^{1}\left(X, \underline{\mathscr{M}}^{\prime} \otimes \mathscr{\mathscr { M }}^{\prime \prime} \vee\right) \text { of weights } \geqslant 1 \\
& \Longrightarrow H_{\mathfrak{u}}^{1}\left(X, \underline{\mathscr{M}}^{\prime} \otimes \underline{\mathscr{M}}^{\prime \prime}\right)^{\varphi}=0
\end{aligned}
$$

As this holds for every $\mathfrak{u} \in \mathscr{U}, H^{1}\left(X, \mathscr{M}_{\ell}^{\prime} \otimes \mathscr{M}_{\ell}^{\prime \prime}\right)^{\varphi=1}=0, \ell \gg 0$

Almost \mathfrak{u}-tame local systems

Almost \mathfrak{u}-tame local systems

$S_{\ell}\left(X_{0}\right)$: category of $\overline{\mathbb{F}}_{\ell}$-local systems $S\left(X_{0}\right):={ }^{\prime} \prod_{\ell \in \mathscr{L}} S_{\ell}\left(X_{0}, \overline{\mathbb{F}}_{\ell}\right)^{\prime}$

Almost \mathfrak{u}-tame local systems

$S_{\ell}\left(X_{0}\right)$: category of $\overline{\mathbb{F}}_{\ell}$-local systems
$S\left(X_{0}\right):=\prod_{\ell \in \mathscr{L}} S_{\ell}\left(X_{0}, \overline{\mathbb{F}}_{\ell}\right)^{\prime}$
$\underline{\mathscr{M}}=\left(\mathscr{M}_{\ell}\right)_{\ell \in \mathscr{L}} \in S\left(X_{0}\right)$

Almost \mathfrak{u}-tame local systems

$$
\begin{aligned}
& S_{\ell}\left(X_{0}\right): \text { category of } \overline{\mathbb{F}}_{\ell} \text {-local systems } \\
& S\left(X_{0}\right):=\prod_{\ell \in \mathscr{L}} S_{\ell}\left(X_{0}, \overline{\mathbb{F}}_{\ell}\right)^{\prime} \\
& \underline{\mathscr{M}}=\left(\mathscr{M}_{\ell}\right)_{\ell \in \mathscr{L}} \in S\left(X_{0}\right)
\end{aligned}
$$

Two main issues to make the ultra product coefficients machinery works

Almost \mathfrak{u}-tame local systems

$S_{\ell}\left(X_{0}\right)$: category of $\overline{\mathbb{F}}_{\ell}$-local systems
$S\left(X_{0}\right):=\prod_{\ell \in \mathscr{L}} S_{\ell}\left(X_{0}, \overline{\mathbb{F}}_{\ell}\right)^{\prime}$
$\underline{\mathscr{M}}=\left(\mathscr{M}_{\ell}\right)_{\ell \in \mathscr{L}} \in S\left(X_{0}\right)$
Two main issues to make the ultra product coefficients machinery works

- Even if $\operatorname{rank}\left(\mathscr{M}_{\ell}\right)$ is bounded, $\operatorname{dim}\left(H^{i}\left(X, \mathscr{M}_{\ell}\right)\right)$ might be unbounded (e.g. Grothendieck-Ogg-Shafarevich)

Almost \mathfrak{u}-tame local systems

$S_{\ell}\left(X_{0}\right)$: category of $\overline{\mathbb{F}}_{\ell}$-local systems
$S\left(X_{0}\right):={ }^{\prime} \prod_{\ell \in \mathscr{L}} S_{\ell}\left(X_{0}, \overline{\mathbb{F}}_{\ell}\right)^{\prime}$
$\underline{\mathscr{M}}=\left(\mathscr{M}_{\ell}\right)_{\ell \in \mathscr{L}} \in S\left(X_{0}\right)$
Two main issues to make the ultra product coefficients machinery works

- Even if $\operatorname{rank}\left(\mathscr{M}_{\ell}\right)$ is bounded, $\operatorname{dim}\left(H^{i}\left(X, \mathscr{M}_{\ell}\right)\right)$ might be unbounded (e.g. Grothendieck-Ogg-Shafarevich)
- $\pi_{1}\left(X_{0}\right)$ might not act on $\underline{\mathscr{M}}_{x}$ through a topologically finitely generated quotient

Almost \mathfrak{u}-tame local systems

$S_{\ell}\left(X_{0}\right)$: category of $\overline{\mathbb{F}}_{\ell}$-local systems
$S\left(X_{0}\right):=\prod_{\ell \in \mathscr{L}} S_{\ell}\left(X_{0}, \overline{\mathbb{F}}_{\ell}\right)^{\prime}$
$\underline{\mathscr{M}}=\left(\mathscr{M}_{\ell}\right)_{\ell \in \mathscr{L}} \in S\left(X_{0}\right)$
Two main issues to make the ultra product coefficients machinery works

- Even if $\operatorname{rank}\left(\mathscr{M}_{\ell}\right)$ is bounded, $\operatorname{dim}\left(H^{i}\left(X, \mathscr{M}_{\ell}\right)\right)$ might be unbounded (e.g. Grothendieck-Ogg-Shafarevich)
- $\pi_{1}\left(X_{0}\right)$ might not act on $\underline{\mathscr{M}}_{x}$ through a topologically finitely generated quotient
One has to force these properties by imposing tameness condition

Almost \mathfrak{u}-tame local systems

$S\left(X_{0}\right):=\prod_{\ell \in \mathscr{L}} S_{\ell}\left(X_{0}, \overline{\mathbb{F}}_{\ell}\right)^{\prime}$
Almost \mathfrak{u}-tame local systems : $S_{\mathfrak{u}}^{t}\left(X_{0}\right) \subset S\left(X_{0}\right)$ full subcategory of those $\underline{\mathscr{M}}$ such that

Almost \mathfrak{u}-tame local systems

$S\left(X_{0}\right):=\prod_{\ell \in \mathscr{L}} S_{\ell}\left(X_{0}, \overline{\mathbb{F}}_{\ell}\right)^{\prime}$
Almost \mathfrak{u}-tame local systems : $S_{\mathfrak{u}}^{t}\left(X_{0}\right) \subset S\left(X_{0}\right)$ full subcategory of those $\underline{\mathscr{M}}$ such that

- $\operatorname{dim}\left(\underline{\mathscr{M}}_{x, \mathfrak{u}}\right)<+\infty$

Almost \mathfrak{u}-tame local systems

$S\left(X_{0}\right):=\prod_{\ell \in \mathscr{L}} S_{\ell}\left(X_{0}, \overline{\mathbb{F}}_{\ell}\right)^{\prime}$
Almost \mathfrak{u}-tame local systems : $S_{\mathfrak{u}}^{t}\left(X_{0}\right) \subset S\left(X_{0}\right)$ full subcategory of those $\underline{\mathscr{M}}$ such that

- $\operatorname{dim}\left(\underline{\mathscr{M}}_{x, \mathfrak{u}}\right)<+\infty$
- \exists a connected étale cover $X_{0}^{\prime} \rightarrow X_{0}$ such that $\underline{\mathscr{M}} X_{X^{\prime}}$ is \mathfrak{u}-tame :

Almost \mathfrak{u}-tame local systems

$S\left(X_{0}\right):={ }^{‘} \prod_{\ell \in \mathscr{L}} S_{\ell}\left(X_{0}, \overline{\mathbb{F}}_{\ell}\right)^{\prime}$
Almost \mathfrak{u}-tame local systems : $S_{\mathfrak{u}}^{t}\left(X_{0}\right) \subset S\left(X_{0}\right)$ full subcategory of those $\underline{\mathscr{M}}$ such that

- $\operatorname{dim}\left(\underline{\mathscr{M}}_{x, \mathfrak{u}}\right)<+\infty$
- \exists a connected étale cover $X_{0}^{\prime} \rightarrow X_{0}$ such that $\mathscr{M} \mid X^{\prime}$ is \mathfrak{u}-tame :
\mathcal{M}_{ℓ} is tame if
- (C) For every $C \rightarrow X$ with C a smooth, separated, connected curve over k, $\mathcal{M}_{\ell} \mid C$ is tame
- (D) For every normal compactification $X \hookrightarrow \bar{X}, \mathscr{M}_{\ell} \mid x$ is tamely ramified at every generic points of $\bar{X} \backslash X$
$(\mathrm{C}) \Leftrightarrow(\mathrm{D})$ if X_{0} smooth

Almost \mathfrak{u}-tame local systems

$S\left(X_{0}\right):={ }^{\prime} \prod_{\ell \in \mathscr{L}} S_{\ell}\left(X_{0}, \overline{\mathbb{F}}_{\ell}\right)^{\prime}$
Almost \mathfrak{u}-tame local systems : $S_{\mathfrak{u}}^{t}\left(X_{0}\right) \subset S\left(X_{0}\right)$ full subcategory of those $\underline{\mathscr{M}}$ such that

- $\operatorname{dim}\left(\underline{\mathscr{M}}_{x, \mathfrak{u}}\right)<+\infty$
- \exists a connected étale cover $X_{0}^{\prime} \rightarrow X_{0}$ such that $\left.\underline{\mathscr{M}}\right|_{X^{\prime}}$ is \mathfrak{u}-tame :
\mathscr{M}_{ℓ} is tame if
- (C) For every $C \rightarrow X$ with C a smooth, separated, connected curve over k, $\left.\mathcal{M}_{\ell}\right|_{C}$ is tame
- (D) For every normal compactification $X \hookrightarrow \bar{X},\left.\mathscr{M}_{\ell}\right|_{X}$ is tamely ramified at every generic points of $\bar{X} \backslash X$
$(\mathrm{C}) \Leftrightarrow(\mathrm{D})$ if X_{0} smooth
$\underline{\mathscr{M}}$ is \mathfrak{u}-tame if the set of all $\ell \in \mathscr{L}$ such that \mathscr{M}_{ℓ} is tame is in \mathfrak{u}

Almost \mathfrak{u}-tame local systems : properties

Almost \mathfrak{u}-tame local systems : properties

$\underline{\mathscr{M}} \in S_{\mathfrak{u}}^{t}\left(X_{0}\right)$,

Almost \mathfrak{u}-tame local systems : properties

$\underline{\mathscr{M}} \in S_{\mathfrak{u}}^{t}\left(X_{0}\right)$,
(1) (de Jong, Orgogozo) $\operatorname{dim}\left(H_{?, \mathfrak{u}}^{i}(X, \underline{\mathscr{M}})\right)<+\infty, ?=\varnothing, c, i \geqslant 0$

Almost \mathfrak{u}-tame local systems : properties

$\underline{\mathscr{M}} \in S_{\mathfrak{u}}^{t}\left(X_{0}\right)$,
(1) (de Jong, Orgogozo) $\operatorname{dim}\left(H_{?, \mathfrak{u}}^{i}(X, \underline{\mathcal{M}})\right)<+\infty, ?=\varnothing, c, i \geqslant 0$ \Rightarrow cohomological interpretation of L-function

$$
\prod_{x_{0} \in\left|X_{0}\right|} \operatorname{det}\left(I d-T \varphi_{x_{0}} \mid \underline{\mathscr{M}}_{x, \mathfrak{u}}\right)=\prod_{i \geqslant 0} \operatorname{det}\left(I d-T \varphi \mid H_{c, \mathfrak{u}}^{i}(X, \underline{\mathscr{M}})\right)^{(-1)^{i+1}}
$$

Almost \mathfrak{u}-tame local systems : properties

$\underline{\mathcal{M}} \in S_{\mathfrak{u}}^{t}\left(X_{0}\right)$,
(1) (de Jong, Orgogozo) $\operatorname{dim}\left(H_{?, \mathfrak{u}}^{i}(X, \underline{\mathscr{M}})\right)<+\infty, ?=\varnothing, c, i \geqslant 0$ \Rightarrow cohomological interpretation of L-function
(2) \exists a connected étale cover $X_{0}^{\prime} \rightarrow X_{0}$ such that the action of $\pi_{1}\left(X_{0}\right)$ on $\underline{\mathscr{M}}_{x}$ factors through

$$
\pi_{1}\left(X_{0}\right) \rightarrow \Pi:=\pi_{1}\left(X_{0}\right) / \operatorname{ker}\left(\pi_{1}\left(X_{0}^{\prime}\right) \rightarrow \pi_{1}^{t}\left(X_{0}^{\prime}\right)\right)
$$

Almost \mathfrak{u}-tame local systems : properties

$\underline{\mathcal{M}} \in S_{\mathfrak{u}}^{t}\left(X_{0}\right)$,
(1) (de Jong, Orgogozo) $\operatorname{dim}\left(H_{?, \mathfrak{u}}^{i}(X, \underline{\mathscr{M}})\right)<+\infty, ?=\varnothing, c, i \geqslant 0$ \Rightarrow cohomological interpretation of L-function
(2) \exists a connected étale cover $X_{0}^{\prime} \rightarrow X_{0}$ such that the action of $\pi_{1}\left(X_{0}\right)$ on $\underline{\mathscr{M}}_{x}$ factors through

$$
\pi_{1}\left(X_{0}\right) \rightarrow \Pi:=\pi_{1}\left(X_{0}\right) / \operatorname{ker}\left(\pi_{1}\left(X_{0}^{\prime}\right) \rightarrow \pi_{1}^{t}\left(X_{0}^{\prime}\right)\right)
$$

- П topologically finitely generated

Almost \mathfrak{u}-tame local systems : properties

$\underline{\mathcal{M}} \in S_{\mathfrak{u}}^{t}\left(X_{0}\right)$,
(1) (de Jong, Orgogozo) $\operatorname{dim}\left(H_{?, \mathfrak{u}}^{i}(X, \underline{\mathscr{M}})\right)<+\infty, ?=\varnothing, c, i \geqslant 0$ \Rightarrow cohomological interpretation of L-function
(2) \exists a connected étale cover $X_{0}^{\prime} \rightarrow X_{0}$ such that the action of $\pi_{1}\left(X_{0}\right)$ on $\underline{\mathscr{M}}_{x}$ factors through

$$
\pi_{1}\left(X_{0}\right) \rightarrow \Pi:=\pi_{1}\left(X_{0}\right) / \operatorname{ker}\left(\pi_{1}\left(X_{0}^{\prime}\right) \rightarrow \pi_{1}^{t}\left(X_{0}^{\prime}\right)\right)
$$

- П topologically finitely generated
'Good dictionary' almost \mathfrak{u}-tame local systems in ' $\langle\underline{\mathcal{M}}\rangle^{\otimes}$ '
\leftrightarrow finite dim. $\overline{\mathbb{Q}}_{\mathfrak{u}}$ rep. of $\pi_{1}\left(X_{0}\right)$ in $\left\langle\underline{\mathcal{M}}_{x, \mathfrak{u}}\right\rangle{ }^{\otimes}$

Almost \mathfrak{u}-tame local systems : properties

$\underline{\mathscr{M}} \in S_{\mathfrak{u}}^{t}\left(X_{0}\right)$,
(1) (de Jong, Orgogozo) $\operatorname{dim}\left(H_{?, \mathfrak{u}}^{i}(X, \underline{\mathcal{M}})\right)<+\infty, ?=\varnothing, c, i \geqslant 0$ \Rightarrow cohomological interpretation of L-function
(2) \exists a connected étale cover $X_{0}^{\prime} \rightarrow X_{0}$ such that the action of $\pi_{1}\left(X_{0}\right)$ on $\underline{\mathscr{M}}_{x}$ factors through

$$
\pi_{1}\left(X_{0}\right) \rightarrow \Pi:=\pi_{1}\left(X_{0}\right) / \operatorname{ker}\left(\pi_{1}\left(X_{0}^{\prime}\right) \rightarrow \pi_{1}^{t}\left(X_{0}^{\prime}\right)\right)
$$

- П topologically finitely generated
'Good dictionary' almost \mathfrak{u}-tame local systems in ' $\langle\underline{\mathcal{M}}\rangle^{\otimes}$ '
\leftrightarrow finite dim. $\overline{\mathbb{Q}}_{\mathfrak{u}}$ rep. of $\pi_{1}\left(X_{0}\right)$ in $\left\langle\underline{\mathscr{M}}_{x, \mathfrak{u}}\right\rangle^{\otimes}$
(Nikolov-Segal) Every finite index subgroup $\Pi^{\prime} \subset \Pi$ is open hence corresponds to a connected étale cover of X_{0}

Almost \mathfrak{u}-tame local systems : properties

$\underline{\mathcal{M}} \in S_{\mathfrak{u}}^{t}\left(X_{0}\right)$,
(1) (de Jong, Orgogozo) $\operatorname{dim}\left(H_{?, \mathfrak{u}}^{i}(X, \underline{\mathcal{M}})\right)<+\infty, ?=\varnothing, c, i \geqslant 0$ \Rightarrow cohomological interpretation of L-function
(2) \exists a connected étale cover $X_{0}^{\prime} \rightarrow X_{0}$ such that the action of $\pi_{1}\left(X_{0}\right)$ on $\underline{\mathscr{M}}_{x}$ factors through

$$
\pi_{1}\left(X_{0}\right) \rightarrow \Pi:=\pi_{1}\left(X_{0}\right) / \operatorname{ker}\left(\pi_{1}\left(X_{0}^{\prime}\right) \rightarrow \pi_{1}^{t}\left(X_{0}^{\prime}\right)\right)
$$

- П topologically finitely generated
'Good dictionary' almost \mathfrak{u}-tame local systems in ' $\langle\underline{\mathcal{M}}\rangle^{\otimes}$ '
\leftrightarrow finite dim. $\overline{\mathbb{Q}}_{\mathfrak{u}}$ rep. of $\pi_{1}\left(X_{0}\right)$ in $\left\langle\underline{\mathscr{M}}_{x, \mathfrak{u}}\right\rangle \otimes$
(Nikolov-Segal) Every finite index subgroup $\Pi^{\prime} \subset \Pi$ is open hence corresponds to a connected étale cover of X_{0}
- if X_{0} is a curve the wild inertia groups in Π are finite

Almost \mathfrak{u}-tame local systems : properties

$\underline{\mathcal{M}} \in S_{\mathfrak{u}}^{t}\left(X_{0}\right)$,
(1) (de Jong, Orgogozo) $\operatorname{dim}\left(H_{?, \mathfrak{u}}^{i}(X, \underline{\mathscr{M}})\right)<+\infty, ?=\varnothing, c, i \geqslant 0$ \Rightarrow cohomological interpretation of L-function
(2) \exists a connected étale cover $X_{0}^{\prime} \rightarrow X_{0}$ such that the action of $\pi_{1}\left(X_{0}\right)$ on $\underline{\mathscr{M}}_{x}$ factors through

$$
\pi_{1}\left(X_{0}\right) \rightarrow \Pi:=\pi_{1}\left(X_{0}\right) / \operatorname{ker}\left(\pi_{1}\left(X_{0}^{\prime}\right) \rightarrow \pi_{1}^{t}\left(X_{0}^{\prime}\right)\right)
$$

Consequences :

Almost \mathfrak{u}-tame local systems : properties

$\underline{\mathcal{M}} \in S_{\mathfrak{u}}^{t}\left(X_{0}\right)$,
(1) (de Jong, Orgogozo) $\operatorname{dim}\left(H_{?, \mathfrak{u}}^{i}(X, \underline{\mathcal{M}})\right)<+\infty, ?=\varnothing, c, i \geqslant 0$ \Rightarrow cohomological interpretation of L-function
(2) \exists a connected étale cover $X_{0}^{\prime} \rightarrow X_{0}$ such that the action of $\pi_{1}\left(X_{0}\right)$ on $\underline{\mathscr{M}}_{x}$ factors through

$$
\pi_{1}\left(X_{0}\right) \rightarrow \Pi:=\pi_{1}\left(X_{0}\right) / \operatorname{ker}\left(\pi_{1}\left(X_{0}^{\prime}\right) \rightarrow \pi_{1}^{t}\left(X_{0}^{\prime}\right)\right)
$$

Consequences :

- Global monodromy : The Zariski closure of $\pi_{1}(X)$ acting on $\underline{\mathscr{M}}_{x, \mathfrak{u}}$ has unipotent (solvable) radical

Almost \mathfrak{u}-tame local systems : properties

$\underline{\mathscr{M}} \in S_{\mathfrak{u}}^{t}\left(X_{0}\right)$,
(1) (de Jong, Orgogozo) $\operatorname{dim}\left(H_{?, \mathfrak{u}}^{i}(X, \underline{\mathcal{M}})\right)<+\infty, ?=\varnothing, c, i \geqslant 0$ \Rightarrow cohomological interpretation of L-function
(2) \exists a connected étale cover $X_{0}^{\prime} \rightarrow X_{0}$ such that the action of $\pi_{1}\left(X_{0}\right)$ on $\underline{\mathscr{M}}_{x}$ factors through

$$
\pi_{1}\left(X_{0}\right) \rightarrow \Pi:=\pi_{1}\left(X_{0}\right) / \operatorname{ker}\left(\pi_{1}\left(X_{0}^{\prime}\right) \rightarrow \pi_{1}^{t}\left(X_{0}^{\prime}\right)\right)
$$

Consequences :

- Global monodromy : The Zariski closure of $\pi_{1}(X)$ acting on $\underline{\mathscr{M}}_{x, \mathfrak{u}}$ has unipotent (solvable) radical
- Local monodromy : if X_{0} is a curve with smooth compactification $X_{0} \hookrightarrow \bar{X}_{0}$, the monodromy at $x_{0} \in \bar{X}_{0} \backslash X_{0}$ acts quasi-unipotently on $\underline{\mathscr{M}}_{x, u}$

Almost \mathfrak{u}-tame local systems : the fundamental example

Almost \mathfrak{u}-tame local systems: the fundamental example

$\mathscr{F}_{\ell}, \ell \in \mathscr{L}$ compatible family of pure $\overline{\mathbb{Q}}_{\ell}$-local systems on X_{0}

Almost \mathfrak{u}-tame local systems: the fundamental example

$\mathscr{F}_{\ell}, \ell \in \mathscr{L}$ compatible family of pure $\overline{\mathbb{Q}}_{\ell}$-local systems on X_{0}
$\leadsto \mathscr{H}_{\ell}, \ell \in \mathscr{L}$ family of torsion-free $\overline{\mathbb{Z}}_{\ell}$-models

Almost \mathfrak{u}-tame local systems: the fundamental example

$\mathscr{F}_{\ell}, \ell \in \mathscr{L}$ compatible family of pure $\overline{\mathbb{Q}}_{\ell}$-local systems on X_{0}
$\leadsto \mathscr{H}_{\ell}, \ell \in \mathscr{L}$ family of torsion-free $\overline{\mathbb{Z}}_{\ell}$-models
$m \mathscr{M}_{\ell}:=\mathscr{H}_{\ell} \otimes \overline{\mathbb{F}}_{\ell}, \ell \in \mathscr{L}$

Almost \mathfrak{u}-tame local systems: the fundamental example

$\mathscr{F}_{\ell}, \ell \in \mathscr{L}$ compatible family of pure $\overline{\mathbb{Q}}_{\ell}$-local systems on X_{0}
$\leadsto \mathscr{H}_{\ell}, \ell \in \mathscr{L}$ family of torsion-free $\overline{\mathbb{Z}}_{\ell}$-models
$\leadsto \mathscr{M}_{\ell}:=\mathscr{H}_{\ell} \otimes \overline{\mathbb{F}}_{\ell}, \ell \in \mathscr{L}$

For every $\mathfrak{u} \in \mathscr{U}, \underline{\mathscr{M}}=\left(\mathscr{M}_{\ell}\right)_{\ell \in \mathscr{L}} \in S_{\mathfrak{u}}^{t}\left(X_{0}\right)$ and

$$
\operatorname{det}\left(I d-T \varphi_{x_{0}} \mid \underline{\mathscr{M}}_{x, \mathfrak{u}}\right)=\operatorname{det}\left(I d-T \varphi_{x_{0}} \mid \mathscr{F}_{\ell, x}\right), x_{0} \in\left|X_{0}\right| .
$$

Almost \mathfrak{u}-tame local systems: the fundamental example

$\mathscr{F}_{\ell}, \ell \in \mathscr{L}$ compatible family of pure $\overline{\mathbb{Q}}_{\ell}$-local systems on X_{0}
$\leadsto \mathscr{H}_{\ell}, \ell \in \mathscr{L}$ family of torsion-free $\overline{\mathbb{Z}}_{\ell}$-models
$\leadsto \mathscr{M}_{\ell}:=\mathscr{H}_{\ell} \otimes \overline{\mathbb{F}}_{\ell}, \ell \in \mathscr{L}$

For every $\mathfrak{u} \in \mathscr{U}, \underline{\mathscr{M}}=\left(\mathscr{M}_{\ell}\right)_{\ell \in \mathscr{L}} \in S_{\mathfrak{u}}^{t}\left(X_{0}\right)$ and

$$
\operatorname{det}\left(I d-T \varphi_{x_{0}} \mid \underline{\mathscr{M}}_{x, \mathfrak{u}}\right)=\operatorname{det}\left(I d-T \varphi_{x_{0}} \mid \mathscr{F}_{\ell, x}\right), x_{0} \in\left|X_{0}\right| .
$$

Proof: $\operatorname{im}\left(\pi_{1}\left(X_{0}\right) \triangleleft \mathscr{F}_{\ell, x}\right)$ quasi-pro- $\ell+$ Grothendieck-Ogg-Shafarevich + cohomological interpretation of L function

Almost \mathfrak{u}-tame local systems: the fundamental example

$\mathscr{F}_{\ell}, \ell \in \mathscr{L}$ compatible family of pure $\overline{\mathbb{Q}}_{\ell}$-local systems on X_{0}
$\leadsto \mathscr{H}_{\ell}, \ell \in \mathscr{L}$ family of torsion-free $\overline{\mathbb{Z}}_{\ell}$-models
$\leadsto \mathscr{M}_{\ell}:=\mathscr{H}_{\ell} \otimes \overline{\mathbb{F}}_{\ell}, \ell \in \mathscr{L}$

For every $\mathfrak{u} \in \mathscr{U}, \underline{\mathscr{M}}=\left(\mathscr{M}_{\ell}\right)_{\ell \in \mathscr{L}} \in S_{\mathfrak{u}}^{t}\left(X_{0}\right)$ and

$$
\operatorname{det}\left(I d-T \varphi_{x_{0}} \mid \underline{\mathscr{M}}_{x, u}\right)=\operatorname{det}\left(I d-T \varphi_{x_{0}} \mid \mathscr{F}_{\ell, x}\right), x_{0} \in\left|X_{0}\right| .
$$

Proof: $\operatorname{im}\left(\pi_{1}\left(X_{0}\right) \triangleleft \mathscr{F}_{\ell, x}\right)$ quasi-pro- $\ell+$ Grothendieck-Ogg-Shafarevich + cohomological interpretation of L function

In particular

$$
\prod_{i \geqslant 0} \operatorname{det}\left(I d-T \varphi \mid H_{c, \mathfrak{u}}^{i}(X, \underline{\mathscr{M}})\right)^{(-1)^{i+1}}=\prod_{i \geqslant 0} \operatorname{det}\left(I d-T \varphi \mid H_{c}^{i}(X, \mathscr{F} \ell)\right)^{(-1)^{i+1}}
$$

Almost \mathfrak{u}-tame local systems : the fundamental example

$\mathscr{F}_{\ell}, \ell \in \mathscr{L}$ compatible family of pure $\overline{\mathbb{Q}}_{\ell}$-local systems on X_{0}
$\leadsto \mathscr{H}_{\ell}, \ell \in \mathscr{L}$ family of torsion-free $\overline{\mathbb{Z}}_{\ell}$-models
$\leadsto \mathscr{M}_{\ell}:=\mathscr{H}_{\ell} \otimes \overline{\mathbb{F}}_{\ell}, \ell \in \mathscr{L}$

For every $\mathfrak{u} \in \mathscr{U}, \underline{\mathscr{M}}=\left(\mathscr{M}_{\ell}\right)_{\ell \in \mathscr{L}} \in S_{\mathfrak{u}}^{t}\left(X_{0}\right)$ and

$$
\operatorname{det}\left(I d-T \varphi_{x_{0}} \mid \underline{\mathscr{M}}_{x, \mathfrak{u}}\right)=\operatorname{det}\left(I d-T \varphi_{x_{0}} \mid \mathscr{F}_{\ell, x}\right), x_{0} \in\left|X_{0}\right| .
$$

Examples:

- (Deligne, Weil I) $\mathscr{F}_{\ell}=R^{i} f_{0, *} \mathbb{Q}_{\ell}, \ell \neq p$ for $f_{0}: Y_{0} \rightarrow X_{0}$ smooth proper
- (L. Lafforgue, Deligne, Drinfeld) \mathscr{F}_{ℓ} irreducible with finite determinant $m s$ automatically algebraic, pure of weight 0 and lies in a unique compatible family of semisimple $\overline{\mathbb{Q}}_{\ell^{\text {- }}}$-local systems

Weil II ultraproduct for curves

Weil II ultraproduct for curves

X_{0} curve, $\underline{\mathscr{M}}=\left(\mathscr{M}_{\ell}\right)_{\ell \in \mathscr{L}} \in S_{\mathfrak{u}}^{t}\left(X_{0}\right)$

Weil II ultraproduct for curves

X_{0} curve, $\underline{\mathscr{M}}=\left(\mathscr{M}_{\ell}\right)_{\ell \in \mathscr{L}} \in S_{\mathfrak{u}}^{t}\left(X_{0}\right)$
$\iota: \overline{\mathbb{Q}}_{\mathfrak{u}} \stackrel{\simeq}{\rightrightarrows} \mathbb{C}$
Assume $\mathscr{\mathscr { M }} \iota$-pure of weight w : for every $x_{0} \in\left|X_{0}\right|$ and every eigenvalue α of $\varphi_{x_{0}}$ acting on $\underline{\mathscr{M}}_{x, \mathfrak{u}},|\iota(\alpha)|=\left|k\left(x_{0}\right)\right|^{w / 2}$

Weil II ultraproduct for curves

X_{0} curve, $\underline{\mathscr{M}}=\left(\mathscr{M}_{\ell}\right)_{\ell \in \mathscr{L}} \in S_{\mathfrak{u}}^{t}\left(X_{0}\right)$
$\iota: \overline{\mathbb{Q}}_{\mathfrak{u}} \stackrel{\simeq}{\leftrightarrows} \mathbb{C}$
Assume $\underline{\mathscr{M}} \iota$-pure of weight w : for every $x_{0} \in\left|X_{0}\right|$ and every eigenvalue α of $\varphi_{x_{0}}$ acting on $\underline{\mathscr{M}}_{x, \mathfrak{u}},|\iota(\alpha)|=\left|k\left(x_{0}\right)\right|^{w / 2}$

Thm. A (Weil II ultraproduct for curves - C., 2018)

For $i \geqslant 0 \quad H_{c, u}^{i}(X, \mathscr{M})$ is ι-mixed of weights $\leqslant w+i$

$$
\stackrel{\text { Poinc.Dual.) }}{\Longleftrightarrow} H_{\mathfrak{u}}^{i}(X, \underline{\mathscr{M}}) \text { is } \iota \text {-mixed of weights } \geqslant w+i
$$

Weil II ultraproduct for curves

X_{0} curve, $\underline{\mathscr{M}}=\left(\mathscr{M}_{\ell}\right)_{\ell \in \mathscr{L}} \in S_{\mathfrak{u}}^{t}\left(X_{0}\right)$
$\iota: \overline{\mathbb{Q}}_{\mathfrak{u}} \stackrel{\simeq}{\leftrightarrows} \mathbb{C}$
Assume $\underline{\mathscr{M}} \iota$-pure of weight w : for every $x_{0} \in\left|X_{0}\right|$ and every eigenvalue α of $\varphi_{x_{0}}$ acting on $\underline{\mathscr{M}}_{x, \mathfrak{u}},|\iota(\alpha)|=\left|k\left(x_{0}\right)\right|^{w / 2}$

Thm. A (Weil II ultraproduct for curves - C., 2018)

For $i \geqslant 0 \quad H_{c, \mathfrak{u}}^{i}(X, \mathscr{M})$ is ι-mixed of weights $\leqslant w+i$
$\stackrel{\text { Poinc.Dual.) }}{\Longleftrightarrow} H_{u}^{i}(X, \underline{\mathcal{M}})$ is ι-mixed of weights $\geqslant w+i$

- (Current) lack of a good notion of almost \mathfrak{u}-tame 'constructible sheaves' (Orgogozo's uniform stratification theorems?) hence no general theory of weights 'à la Weil II'

Weil II ultraproduct for curves

X_{0} curve, $\underline{\mathscr{M}}=\left(\mathscr{M}_{\ell}\right)_{\ell \in \mathscr{L}} \in S_{\mathfrak{u}}^{t}\left(X_{0}\right)$
$\iota: \overline{\mathbb{Q}}_{\mathfrak{u}} \stackrel{\simeq}{\leftrightarrows} \mathbb{C}$
Assume $\underline{\mathscr{M}} t$-pure of weight w : for every $x_{0} \in\left|X_{0}\right|$ and every eigenvalue α of $\varphi_{x_{0}}$ acting on $\underline{\mathscr{M}}_{x, \mathfrak{u}},|\iota(\alpha)|=\left|k\left(x_{0}\right)\right|^{w / 2}$

Thm. A (Weil II ultraproduct for curves - C., 2018)

For $i \geqslant 0 \quad H_{c, u}^{i}(X, \mathscr{M})$ is ι-mixed of weights $\leqslant w+i$
$\stackrel{\text { Poinc.Dual.) }}{\Longleftrightarrow} H_{u}^{i}(X, \underline{\mathcal{M}})$ is ι-mixed of weights $\geqslant w+i$

- (Current) lack of a good notion of almost \mathfrak{u}-tame 'constructible sheaves' (Orgogozo's uniform stratification theorems?) hence no general theory of weights 'à la Weil II'
- For most applications, one can reduce to the case of curves via geometric arguments : Lefschetz pencils, elementary fibrations, Bertini theorem etc.

Weil II ultraproduct for curves

X_{0} curve, $\underline{\mathscr{M}}=\left(\mathscr{M}_{\ell}\right)_{\ell \in \mathscr{L}} \in S_{\mathfrak{u}}^{t}\left(X_{0}\right)$
$\iota: \overline{\mathbb{Q}}_{\mathfrak{u}} \stackrel{\simeq}{\leftrightarrows} \mathbb{C}$
Assume $\underline{\mathscr{M}} \iota$-pure of weight w : for every $x_{0} \in\left|X_{0}\right|$ and every eigenvalue α of $\varphi_{x_{0}}$ acting on $\underline{\mathscr{M}}_{x, \mathfrak{u}},|\iota(\alpha)|=\left|k\left(x_{0}\right)\right|^{w / 2}$

Thm. A (Weil II ultraproduct for curves - C., 2018)

For $i \geqslant 0 \quad H_{c, u}^{i}(X, \underline{\mathscr{M}})$ is ι-mixed of weights $\leqslant w+i$
(Poinc.Dual.)

$$
H_{\mathfrak{u}}^{i}(X, \underline{\mathscr{M}}) \text { is } \iota \text {-mixed of weights } \geqslant w+i
$$

(Almost tame Bertini theorem, Drinfeld, Tamagawa 2018)

$X_{0}^{\prime} \rightarrow X_{0}$ connected étale cover, $K\left(X_{0}^{\prime}\right):=\operatorname{ker}\left(\pi_{1}\left(X_{0}^{\prime}\right) \rightarrow \pi_{1}^{t}\left(X_{0}^{\prime}\right)\right)$. There exists a smooth, separated, geo. connected curve C_{0} over k_{0} and a morphism $C_{0} \rightarrow X_{0}$ such that $\pi_{1}\left(C_{0}\right) \rightarrow \pi_{1}\left(X_{0}\right) / K\left(X_{0}^{\prime}\right)$ is surjective and factors through $\pi_{1}\left(C_{0}\right) \rightarrow \pi_{1}^{t}\left(C_{0}\right)$. Furthermore, given any finite set $S \subset\left|X_{0}\right|$, one may assume $C_{0} \rightarrow X_{0}$ admits a section $S \rightarrow C_{0}$

Corollaries 'à la Weil II'

Corollaries 'à la Weil II'

X_{0} of arbitrary dimension, $\underline{\mathscr{M}}=\left(\mathscr{M}_{\ell}\right)_{\ell \in \mathscr{L}} \in S_{\mathfrak{u}}^{t}\left(X_{0}\right)$

Corollaries 'à la Weil II'

X_{0} of arbitrary dimension, $\underline{\mathscr{M}}=\left(\mathscr{M}_{\ell}\right)_{\ell \in \mathscr{L}} \in S_{\mathfrak{u}}^{t}\left(X_{0}\right)$ $\iota: \overline{\mathbb{Q}}_{\mathfrak{u}} \stackrel{\cong}{\rightrightarrows} \mathbb{C}$

Corollaries 'à la Weil II'

X_{0} of arbitrary dimension, $\underline{\mathscr{M}}=\left(\mathscr{M}_{\ell}\right)_{\ell \in \mathscr{L}} \in S_{\mathfrak{u}}^{t}\left(X_{0}\right)$
$\iota: \overline{\mathbb{Q}}_{\mathfrak{u}} \stackrel{\simeq}{\leftrightarrows} \mathbb{C}$
(1) (Purity) If X_{0} is proper and $\underline{\mathscr{M}}$ is ι-pure of weight $w, H_{\mathfrak{u}}^{i}(X, \underline{\mathscr{M}})$ is ι-pure of weights $w+i, i \geqslant 0$.
(2) (Geometric semisimplicity) If \mathscr{M} is ι-pure, $\pi_{1}(X, x)$ acts semisimply on $\mathscr{M}_{x, \mathfrak{u}}$ (equivalently, the set of primes $\ell \in \mathscr{L}$ such that $\left.\mathscr{M}_{\ell}\right|_{X}$ is semisimple is in \mathfrak{u}).
(3) (Weak Cebotarev) Let $\underline{\mathscr{M}}^{\prime}$ such that

$$
\operatorname{det}\left(I d-T \varphi_{x_{0}} \mid \underline{\mathscr{M}}_{x, \mathfrak{u}}\right)=\operatorname{det}\left(I d-T \varphi_{x_{0}} \mid \underline{\mathscr{M}}_{x, \mathfrak{u}}^{\prime}\right), x_{0} \in\left|X_{0}\right|
$$

Then $\underline{\mathscr{M}}_{x, \mathfrak{u}}^{s s} \simeq \underline{\mathscr{M}}_{x, \mathfrak{u}}^{\prime s s}$ as $\pi_{1}\left(X_{0}\right)$-modules (equivalently, the set of primes $\ell \in \mathscr{L}$ such that \mathscr{M}_{ℓ} and $\mathscr{M}_{\ell}^{\prime}$ have isomorphic semisimplifications is in \mathfrak{u}).

Langlands correspondance

Langlands correspondance

X_{0} projective curve, η_{0} : generic point \mathscr{L} set of all primes $\neq p$

Langlands correspondance

X_{0} projective curve, η_{0} : generic point
\mathscr{L} set of all primes $\neq p$

- \mathscr{A}_{r} : isom. classes of complex irreducible cuspidal automorphic rep. of $\mathrm{GL}_{r}(\mathrm{~A})$ whose central character is of finite order.
- $\mathscr{I}_{r, \ell}\left(\eta_{0}\right)$: isom. classes of irreducible rank- $r \overline{\mathbb{Q}}_{\ell}$-rep. of $\pi_{1}\left(\eta_{0}\right)$ with finite determinant attached to a $\overline{\mathbb{Q}}_{\ell}$-local system on some non-empty open subscheme $U_{0} \hookrightarrow X_{0}$.
- $\mathscr{I}_{r, \mathfrak{u}}\left(\eta_{0}\right)$: isom. classes of irreducible rank- $r \overline{\mathbb{Q}}_{\mathfrak{u}}$-rep. of $\pi_{1}\left(\eta_{0}\right)$ with finite determinant attached to an almost \mathfrak{u}-tame local system on some non-empty open subscheme $U_{0} \hookrightarrow X_{0}$.

Langlands correspondance

X_{0} projective curve, η_{0} : generic point
\mathscr{L} set of all primes $\neq p$

- \mathscr{A}_{r} : isom. classes of complex irreducible cuspidal automorphic rep. of $\mathrm{GL}_{r}(\mathrm{~A})$ whose central character is of finite order.
- $\mathscr{I}_{r, \ell}\left(\eta_{0}\right)$: isom. classes of irreducible rank- $r \overline{\mathbb{Q}}_{\ell}$-rep. of $\pi_{1}\left(\eta_{0}\right)$ with finite determinant attached to a $\overline{\mathbb{Q}}_{\ell}$-local system on some non-empty open subscheme $U_{0} \hookrightarrow X_{0}$.
- $\mathscr{I}_{r, \mathfrak{u}}\left(\eta_{0}\right)$: isom. classes of irreducible rank- $r \overline{\mathbb{Q}}_{\mathfrak{u}}$-rep. of $\pi_{1}\left(\eta_{0}\right)$ with finite determinant attached to an almost \mathfrak{u}-tame local system on some non-empty open subscheme $U_{0} \hookrightarrow X_{0}$.

	Local L factor at $x_{0} \in\left\|X_{0}\right\|$	Local ϵ-factor at $x_{0} \in\left\|X_{0}\right\|$	Largest unramified open subset
$V \in \mathscr{I}_{r, \dagger}\left(\eta_{0}\right)$ $\pi \in \mathscr{A}_{r}$	$L_{x_{0}}(V)$ $L_{x_{0}}(\pi)$	$\epsilon_{x_{0}}(V)$ $\epsilon_{x_{0}}(\pi)$	$U_{V, 0}$

Langlands correspondance

X_{0} projective curve, η_{0} : generic point
\mathscr{L} set of all primes $\neq p$

- \mathscr{A}_{r} : isom. classes of complex irreducible cuspidal automorphic rep. of $\mathrm{GL}_{r}(\mathrm{~A})$ whose central character is of finite order.
- $\mathscr{I}_{r, \ell}\left(\eta_{0}\right)$: isom. classes of irreducible rank- $r \overline{\mathbb{Q}}_{\ell}$-rep. of $\pi_{1}\left(\eta_{0}\right)$ with finite determinant attached to a $\overline{\mathbb{Q}}_{\ell}$-local system on some non-empty open subscheme $U_{0} \hookrightarrow X_{0}$.
- $\mathscr{I}_{r, \mathfrak{u}}\left(\eta_{0}\right)$: isom. classes of irreducible rank- $r \overline{\mathbb{Q}}_{\mathfrak{u}}$-rep. of $\pi_{1}\left(\eta_{0}\right)$ with finite determinant attached to an almost \mathfrak{u}-tame local system on some non-empty open subscheme $U_{0} \hookrightarrow X_{0}$.

	Local L factor $\text { at } x_{0} \in\left\|X_{0}\right\|$	Local ϵ-factor $\text { at } x_{0} \in\left\|X_{0}\right\|$	Largest unramified open subset
$\begin{gathered} V \in \mathscr{A}_{r, t}\left(\eta_{0}\right) \\ \pi \in \mathscr{A}_{r} \end{gathered}$	$\begin{aligned} & L_{x_{0}}(V) \\ & L_{x_{0}}(\pi) \end{aligned}$	$\begin{aligned} & \epsilon_{x_{0}}(V) \\ & \epsilon_{x_{0}}(\pi) \end{aligned}$	$\begin{aligned} & U_{V, 0} \\ & U_{\pi, 0} \end{aligned}$

? $\sim ? ?$ if $L_{x_{0}}(?)=L_{x_{0}}(? ?), x_{0} \in U_{?, 0} \cap U_{? ?, 0}$

Langlands correspondance

Conj. (Langlands correspondance ($L, r, \dagger)$)

There exists maps

$$
\mathscr{A}_{r} \stackrel{V_{\dagger,-}}{\underset{\pi_{\dagger,-}}{\rightleftarrows}} \mathscr{I}_{r, \dagger}\left(\eta_{0}\right)
$$

such that $V_{\dagger,-} \circ \pi_{\dagger,-}=i d, \pi_{\dagger,-} \circ V_{\dagger,-}=I d$ and

- For every $\pi \in \mathscr{A}_{r}, U_{\pi, 0}=U_{V_{\mathrm{f}, \pi}, 0}$ and $\pi \sim V_{\dagger, \pi}$
- For every $V \in \mathscr{I}_{r, \dagger}\left(\eta_{0}\right), U_{V, 0}=U_{\pi_{\dagger, V, 0}}$ and $\pi_{\dagger, V} \sim V$

Langlands correspondance

Conj. (Langlands correspondance (L, r, \dagger))

There exists maps

$$
\mathscr{A}_{r} \stackrel{V_{\dagger,-}}{\underset{\pi_{\dagger,-}}{\gtrless}} \mathscr{I}_{r, \dagger}\left(\eta_{0}\right)
$$

such that $V_{\dagger,-} \circ \pi_{\dagger,-}=i d, \pi_{\dagger,-} \circ V_{\dagger,-}=l d$ and

- For every $\pi \in \mathscr{A}_{r}, U_{\pi, 0}=U_{V_{\uparrow, \pi}, 0}$ and $\pi \sim V_{\dagger, \pi}$
- For every $V \in \mathscr{I}_{r, \dagger}\left(\eta_{0}\right), U_{V, 0}=U_{\pi_{\dagger, V, 0}}$ and $\pi_{\dagger, V} \sim V$
- For $\dagger=\ell$ L. Lafforgue 2002 (Drinfeld, Deligne, Laumon etc.) + Ramanujan-Peterson conjecture every $\mathscr{F}_{\ell} \in \mathscr{I}_{r, \ell}\left(\eta_{0}\right)$ is pure of weight 0 with field of coefficients a number field.
- For $\dagger=\mathfrak{u}$ C., 2018

Langlands correspondance

The map $V_{\mathfrak{u},-}: \mathscr{A}_{r} \rightarrow \mathscr{I}_{r, \mathfrak{u}}\left(\eta_{0}\right):$

Langlands correspondance

The map $V_{\mathfrak{u},-}: \mathscr{A}_{r} \rightarrow \mathscr{I}_{r, \mathfrak{u}}\left(\eta_{0}\right):$ Fix $\pi \in \mathscr{A}_{r}$

Langlands correspondance

The map $V_{\mathfrak{u},-}: \mathscr{A}_{r} \rightarrow \mathscr{I}_{r, \mathfrak{u}}\left(\eta_{0}\right):$ Fix $\pi \in \mathscr{A}_{r}$

- By Lafforgue, get $\mathscr{F}_{\ell, \pi}, \ell \in \mathscr{L}$ compatible family of irreducible $\overline{\mathbb{Q}}$-local systems with finite determinant and pure of weight 0 on $U_{\pi, 0}$

Langlands correspondance

The map $V_{\mathfrak{u},-}: \mathscr{A}_{r} \rightarrow \mathscr{I}_{r, \mathfrak{u}}\left(\eta_{0}\right):$ Fix $\pi \in \mathscr{A}_{r}$

- By Lafforgue, get $\mathscr{F}_{\ell, \pi}, \ell \in \mathscr{L}$ compatible family of irreducible $\overline{\mathbb{Q}}$-local systems with finite determinant and pure of weight 0 on $U_{\pi, 0}$
- $m \mathscr{H}_{\ell, \pi}, \ell \in \mathscr{L}$ family of torsion-free $\overline{\mathbb{Z}}_{\ell}$-models $\leadsto \mathscr{M}_{\ell, \pi}:=\mathscr{H}_{\ell, \pi} \otimes \overline{\mathbb{F}}_{\ell}, \ell \in \mathscr{L}$

By fundamental example, gets $\underline{\mathscr{M}}_{\pi}$ almost \mathfrak{u}-tame local system on $U_{\pi, 0}$ such that $\mathscr{F}_{\ell, \pi, \chi} \sim \underline{\mathscr{M}}_{\pi, x, u}$

Langlands correspondance

The map $V_{\mathfrak{u},-}: \mathscr{A}_{r} \rightarrow \mathscr{I}_{r, \mathfrak{u}}\left(\eta_{0}\right):$ Fix $\pi \in \mathscr{A}_{r}$

- By Lafforgue, get $\mathscr{F}_{\ell, \pi}, \ell \in \mathscr{L}$ compatible family of irreducible $\overline{\mathbb{Q}}$-local systems with finite determinant and pure of weight 0 on $U_{\pi, 0}$
- $m \mathscr{H}_{\ell, \pi}, \ell \in \mathscr{L}$ family of torsion-free $\overline{\mathbb{Z}}_{\ell}$-models $\leadsto \mathscr{M}_{\ell, \pi}:=\mathscr{H}_{\ell, \pi} \otimes \overline{\mathbb{F}}_{\ell}, \ell \in \mathscr{L}$

By fundamental example, gets $\underline{\mathscr{M}}_{\pi}$ almost \mathfrak{u}-tame local system on $U_{\pi, 0}$ such that $\mathscr{F}_{\ell, \pi, \chi} \sim \underline{\mathscr{M}}_{\pi, x, u}$

- By Thm B, $\underline{\mathscr{M}}_{\pi, x, \mathfrak{u}} \in \mathscr{I}_{r, \mathfrak{u}}\left(\eta_{0}\right)$

Langlands correspondance

The map $V_{\mathfrak{u},-}: \mathscr{A}_{r} \rightarrow \mathscr{I}_{r, \mathfrak{u}}\left(\eta_{0}\right):$
The map $\pi_{\mathfrak{u},-}: \mathscr{I}_{r, \mathfrak{u}}\left(\eta_{0}\right) \rightarrow \mathscr{A}_{r}:$

Langlands correspondance

The map $V_{\mathfrak{u},-}: \mathscr{A}_{r} \rightarrow \mathscr{I}_{r, \mathfrak{u}}\left(\eta_{0}\right):$
The map $\pi_{\mathfrak{u},-}: \mathscr{I}_{r, \mathfrak{u}}\left(\eta_{0}\right) \rightarrow \mathscr{A}_{r}:$ Principe de récurrence (Deligne),

Langlands correspondance

The map $V_{\mathfrak{u},-}: \mathscr{A}_{r} \rightarrow \mathscr{I}_{r, \mathfrak{u}}\left(\eta_{0}\right):$
The map $\pi_{\mathfrak{u},-}: \mathscr{I}_{r, \mathfrak{u}}\left(\eta_{0}\right) \rightarrow \mathscr{A}_{r}:$ Principe de récurrence (Deligne), by induction on r using

Langlands correspondance

The map $V_{\mathfrak{u},-}: \mathscr{A}_{r} \rightarrow \mathscr{I}_{r, \mathfrak{u}}\left(\eta_{0}\right):$
The map $\pi_{\mathfrak{u},-}: \mathscr{I}_{r, \mathfrak{u}}\left(\eta_{0}\right) \rightarrow \mathscr{A}_{r}:$ Principe de récurrence (Deligne), by induction on r using

- Reciprocity theorem of Piatetski-Shapiro

Langlands correspondance

The map $V_{\mathfrak{u},-}: \mathscr{A}_{r} \rightarrow \mathscr{I}_{r, \mathfrak{u}}\left(\eta_{0}\right):$
The map $\pi_{\mathfrak{u},-}: \mathscr{I}_{r, \mathfrak{u}}\left(\eta_{0}\right) \rightarrow \mathscr{A}_{r}:$ Principe de récurrence (Deligne), by induction on r using

- Reciprocity theorem of Piatetski-Shapiro
- Existence of $V_{\mathfrak{u},-}: \mathscr{A}_{r} \rightarrow \mathscr{I}_{r, \mathfrak{u}}\left(\eta_{0}\right)$

Langlands correspondance

The map $V_{\mathfrak{u},-}: \mathscr{A}_{r} \rightarrow \mathscr{I}_{r, \mathfrak{u}}\left(\eta_{0}\right):$
The map $\pi_{\mathfrak{u},-}: \mathscr{I}_{r, \mathfrak{u}}\left(\eta_{0}\right) \rightarrow \mathscr{A}_{r}:$ Principe de récurrence (Deligne), by induction on r using

- Reciprocity theorem of Piatetski-Shapiro
- Existence of $V_{\mathfrak{u},-}: \mathscr{A}_{r} \rightarrow \mathscr{I}_{r, \mathfrak{u}}\left(\eta_{0}\right)$
- Product formula for ϵ-factors (Deligne)

Langlands correspondance

The map $V_{\mathfrak{u},-}: \mathscr{A}_{r} \rightarrow \mathscr{I}_{r, \mathfrak{u}}\left(\eta_{0}\right):$
The map $\pi_{\mathfrak{u},-}: \mathscr{I}_{r, \mathfrak{u}}\left(\eta_{0}\right) \rightarrow \mathscr{A}_{r}:$ Principe de récurrence (Deligne), by induction on r using

- Reciprocity theorem of Piatetski-Shapiro
- Existence of $V_{\mathfrak{u},-}: \mathscr{A}_{r} \rightarrow \mathscr{I}_{r, \mathfrak{u}}\left(\eta_{0}\right)$
- Product formula for ϵ-factors (Deligne)
- Objects in $\mathscr{I}_{r^{\prime}, \mathfrak{u}}\left(\eta_{0}\right), r^{\prime}<r$ are pure of weight 0 (Ramanujan-Peterson conjecture)+Weak Cebotarev

Langlands correspondance

The map $V_{\mathfrak{u},-}: \mathscr{A}_{r} \rightarrow \mathscr{I}_{r, \mathfrak{u}}\left(\eta_{0}\right):$
The map $\pi_{\mathfrak{u},-}: \mathscr{I}_{r, \mathfrak{u}}\left(\eta_{0}\right) \rightarrow \mathscr{A}_{r}:$
Unicity :

Langlands correspondance

The map $V_{\mathfrak{u},-}: \mathscr{A}_{r} \rightarrow \mathscr{I}_{r, \mathfrak{u}}\left(\eta_{0}\right):$
The map $\pi_{\mathfrak{u},-}: \mathscr{I}_{r, \mathfrak{u}}\left(\eta_{0}\right) \rightarrow \mathscr{A}_{r}:$

Unicity :

- Weak Cebotarev
- Strong multiplicity one theorem of Piatetski-Shapiro

Applications

Applications

- Compagnons
- Mixity
- Finiteness (with ramification constraints)
- Lifting (asymptotic de Jong's conjecture)
- (Strong) Tannakian Cebotarev

Applications

Applications

- Lifting (asymptotic de Jong's conjecture)

Applications

- Lifting (asymptotic de Jong's conjecture) $\chi: \pi_{1}\left(X_{0}\right) \rightarrow \overline{\mathbb{Q}}^{\times}$, finite character inducing characters $\chi_{\ell}: \pi_{1}\left(X_{0}\right) \rightarrow \overline{\mathbb{Z}}_{\ell}^{\times}$, $\bar{\chi}_{\ell}: \pi_{1}\left(X_{0}\right) \rightarrow \overline{\mathbb{F}}_{\ell}^{\times}$

Applications

- Lifting (asymptotic de Jong's conjecture) $\chi: \pi_{1}\left(X_{0}\right) \rightarrow \overline{\mathbb{Q}}^{\times}$, finite character inducing characters $\chi_{\ell}: \pi_{1}\left(X_{0}\right) \rightarrow \overline{\mathbb{Z}}_{\ell}^{\times}$, $\bar{\chi}_{\ell}: \pi_{1}\left(X_{0}\right) \rightarrow \overline{\mathbb{F}}_{\ell}^{\times}$
For $\alpha: X_{0}^{\prime} \rightarrow X_{0}$ connected étale cover, define :

Applications

- Lifting (asymptotic de Jong's conjecture) $\chi: \pi_{1}\left(X_{0}\right) \rightarrow \overline{\mathbb{Q}}^{\times}$, finite character inducing characters $\chi_{\ell}: \pi_{1}\left(X_{0}\right) \rightarrow \overline{\mathbb{Z}}_{\ell}^{\times}$, $\bar{\chi}_{\ell}: \pi_{1}\left(X_{0}\right) \rightarrow \overline{\mathbb{F}}_{\ell}^{\times}$
For $\alpha: X_{0}^{\prime} \rightarrow X_{0}$ connected étale cover, define :
$\mathscr{I}_{r, \ell}(\leqslant \alpha, \chi)$: rank- r irreducible $\overline{\mathbb{Q}}_{\ell}$-local systems \mathscr{F}_{ℓ} on X_{0} with determinant χ_{ℓ} and such that $\mathscr{F}_{\ell} \mid X^{\prime}$ tamely ramified

Applications

- Lifting (asymptotic de Jong's conjecture) $\chi: \pi_{1}\left(X_{0}\right) \rightarrow \overline{\mathbb{Q}}^{\times}$, finite character inducing characters $\chi_{\ell}: \pi_{1}\left(X_{0}\right) \rightarrow \overline{\mathbb{Z}}_{\ell}^{\times}$, $\bar{\chi}_{\ell}: \pi_{1}\left(X_{0}\right) \rightarrow \overline{\mathbb{F}}_{\ell}^{\times}$ For $\alpha: X_{0}^{\prime} \rightarrow X_{0}$ connected étale cover, define :
$\mathscr{I}_{r, \ell}(\leqslant \alpha, \chi)$: rank- r irreducible $\overline{\mathbb{Q}}_{\ell}$-local systems \mathscr{F}_{ℓ} on X_{0} with determinant χ_{ℓ} and such that $\left.\mathscr{F}_{\ell}\right|_{X^{\prime}}$ tamely ramified $\overline{\mathscr{I}}_{r, \ell}(\leqslant \alpha, \chi)$: rank- irreducible $\overline{\mathbb{F}}_{\ell}$-local systems \mathscr{M}_{ℓ} on X_{0} with determinant $\bar{\chi}_{\ell}$ and such that $\left.\mathscr{M}_{\ell}\right|_{x_{0}^{\prime}}$ is tame

Applications

- Lifting (asymptotic de Jong's conjecture) $\chi: \pi_{1}\left(X_{0}\right) \rightarrow \overline{\mathbb{Q}}^{\times}$, finite character inducing characters $\chi_{\ell}: \pi_{1}\left(X_{0}\right) \rightarrow \overline{\mathbb{Z}}_{\ell}^{\times}$, $\bar{\chi}_{\ell}: \pi_{1}\left(X_{0}\right) \rightarrow \overline{\mathbb{F}}_{\ell}^{\times}$ For $\alpha: X_{0}^{\prime} \rightarrow X_{0}$ connected étale cover, define :
$\mathscr{I}_{r, \ell}(\leqslant \alpha, \chi)$: rank- r irreducible $\overline{\mathbb{Q}}_{\ell}$-local systems \mathscr{F}_{ℓ} on X_{0} with determinant χ_{ℓ} and such that $\left.\mathscr{F}_{\ell}\right|_{X^{\prime}}$ tamely ramified $\overline{\mathscr{I}}_{r, \ell}(\leqslant \alpha, \chi)$: rank- r irreducible $\overline{\mathbb{F}}_{\ell}$-local systems \mathscr{M}_{ℓ} on X_{0} with determinant $\bar{\chi}_{\ell}$ and such that $\left.\mathscr{M}_{\ell}\right|_{X_{0}^{\prime}}$ is tame

(Finiteness and asymptotic de Jong conjecture)

For $\ell \gg 0$, the reduction modulo- ℓ map $\mathscr{I}_{r, \ell}(\leqslant \alpha, \chi) \rightarrow \overline{\mathscr{I}}_{r, \ell}(\leqslant \alpha, \chi)$ is bijective. In particular, $\overline{\mathscr{I}}_{r, \ell}(\leqslant \alpha, \chi)$ is finite and every $\mathscr{M}_{\ell} \in \overline{\mathscr{I}}_{r, \ell}(\leqslant \alpha, \chi)$ lifts uniquely to a $\overline{\mathbb{Z}}_{\ell}$-model of some $\mathscr{F}_{\ell} \in \mathscr{I}_{r, \ell}(\leqslant \alpha, \chi)$.

Thank you!

