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1. Introduction. Analytic number theory has made considerable strides in 
the past few years. Let me begin by citing two of the most striking recent results. 

Fouvry [9] has shown that there exist infinitely many primes p such that p — 1 
has a prime factor larger than p2 / 3 . This, in conjunction with a theorem of 
L. M. Adleman and D. R. Heath-Brown [1] (extensions of Sophie Germaine's 
criterion), enables one to show that Fermât's equation 

xp + yp = zp (p\%yz) 

has no positive integral solutions for infinitely many primes p. 
Another major breakthrough has been the work of Deshouillers-Iwaniec [8] 

which has led to many spectacular results. For example, Bombieri-Friedlander-
Iwaniec [2, 3] have recently obtained an averaged form of the prime number 
theorem for arithmetic progressions (of Bombieri-Vinogradov type). In the case 
of the distribution of primes < x with respect to moduli > y/x, their results 
go beyond what can be obtained upon assumption of the generalized Riemann 
hypothesis. 

The proofs of the above theorems have a new common ingredient; uniform 
estimates (of the type first proved by Kuznietsov [16]) for the distribution of 
Kloosterman sums. For other applications of this innovative idea, the excellent 
survey article of Iwaniec [13] is to be commended. Accordingly, our attention is 
turned to a general theory of Kloosterman sums, hyper-Kloosterman sums, and 
their zeta functions. 

Let M, N G Z and s G C. The Kloosterman zeta function for GL(2, Z) is 
defined to be 

oo 
Z(M, N;s) = Y, S(M, JV; c)C-2 s (1.1) 

c = l 

where 
c 

S(M,N;c)= ] T f*HaM+üN)/c (aä = lmodc) (1.2) 
a=l 

(a,c) = l 
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is the classical Kloosterman sum. The bound S(M, N; c) = 0 (c 1 / 2 + e ) of A. Weil 
[22] shows that (1.1) converges absolutely for Re(s) > | . 

The function (1.1) was first introduced by A. Selberg [19] who obtained its 
meromorphic continuation to the whole complex s-plane. In [12], by use of 
bounds for the resolvent operator, Goldfeld and Sarnak have shown that 

Z(M,N;s) = 0(\s\1/2+e) (1.3) 

for Re(s) > ^ + e and |Im(s)| > e. The bound (1.3) leads to a simple proof of 
Kuznietsov's theorem [16] 

J2S{Mf>C)=0(x^) (1.4) 
c<x 

which we discussed before. Other generalizations of (1.4) have been obtained 
by Deshouillers and Iwaniec [8] and Proskurin [18]. Also, Bruggeman [4] has 
developed a Kuznietsov trace formula which also leads to (1.4). 

We shall now consider Kloosterman zeta functions for higher rank groups, 
focussing on GL(n, Z) with n > 2. Uniform estimates for the distribution of 
hyper-Kloosterman sums and products of classical Kloosterman sums should be 
the outcome of this endeaver. 

2. Notation. For n = 2 , 3 , . . . let G = GL(n, R), T = GL(n, Z), X c G be 
the set of all upper triangular matrices with ones on the diagonal, and Y C G 
the set of diagonal matrices of type 

/i • • • 2/n-i,2/1 • • • 2M-2, -..,2/1,1) (2.1) 

with yi > 0. We consider the homogeneous space H = G/0(rc,R) • R where 
0 ( n , R ) is the orthogonal group. By the Iwasawa decomposition, every z G H 
has a unique decomposition z = xy (modO(n,R) • R) with x G X and y G Y. 
The discrete group T acts on H by left matrix multiplication. Let £ 2 ( r \ / f ) 
denote the Hilbert space with inner product 

./r 
f(z)g(z)d*z 

T\H 

where both / , g:H-+C are left-invariant under T and the invariant volume 
element d*z satisfies 

d*z= n dxi/fly-^-^dyi 
Ki<j<n i=l 

where x = (XìJ) G X, y G Y is given by (2.1) and z = xy. 
Henceforth M = (Mt,...,Mn_i), N = (Nx,..., Nn-i) are in Z71"1 and s = 

( s i , . . . , s n _ i ) , u = (ui,...,un-i), v = (vi,...,vn-i), and fc = (*i , . . . ,* n _i ) 
are in C n _ 1 . By 0 M , 0JV, we mean characters of X given by 

0M(X) = e(M±xii2 + • • • + Mn-ixn-iiU) 

with x = (XìJ) G AT and e(0) = e2"ie. 
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3. Kloosterman sums associated to double coset decompositions of 
GL(n,Z). Let W denote the Weyl group of G. If D c G is the subgroup of 
diagonal matrices, then we have the Bruhat decomposition G = LLeW XDwX. 
This induces the decomposition Y = Uu/ew ^w where Tw = (XDwX) Pi T are 
termed Bruhat cells. The cell corresponding to the so called long element 

w = 

( 

V 

±1\ 

J 

(3.1) 

is called the big cell. 
Consider the minimal parabolic subgroup P = X fl T of T, and the various 

subgroups Pw = ((w~1)tPw) HP indexed by w G W. Let (c i , . . . ,cn_i) be 
nonzero integers and set 

c = diag( l /c„_i ,cn _i /c„_2i . . . , c2/ci,d). (3.2) 

For M, N G Z n _ 1 , the generalized Kloosterman sum SW(M, N\ c) is defined as 

Sw(M,N-c)= J2 °M(bi)6N(b2) (3.3) 
ieP\rw/pw 

1=b\cwb2 

where 0 M , #JV are characters of X. This reduces to the classical sum (1.2) for 
n — 2 and w = (1~1). 

The sum (3.3) was first considered in Bump-Friedberg-Goldfeld [6, 7] for 
n = 3, and somewhat later for n > 3 by Friedberg [10], Stevens [21] and 
Piatetski-Shapiro. As shown in [10], the Kloosterman sums are multiplicative 
in c, nonzero only if w G W is of the form 

(modSL(n,Z)nD), w = 

( 

u 

h \ 

J 
where the Ij are identity matrices; and factor into nondegenerate classical Kloost-
erman sums of type (1.2) if c i , . . . , cn_i are pairwise coprirne and w is the long 
element (3.1). If c is given by (3.2) and C{ are suitable powers of a fixed prime p, 
then (3.3) will be associated to an algebraic variety over F p . In the special case 

c = (p1 n , p , . . . , p ) , w = 
±1 

In-

[10] has shown that SW(M, N; c) is a power of p times 

]T e((xi + --- + xn-i)/p) 
Xi-'-Xn-i^Mf-Mn-iNn-! (mod p) 
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and is, therefore, associated to a Kloosterman hypersurface. In general (see 
[21]), the associated varieties are not smooth and their classification is still an 
open problem. 

4. Kloosterman zeta functions. Let M, N G Z n _ 1 , 

c = d i ag ( l / c n _ i , c n _ i / c n _ 2 , . . . , c 2 / c i , c i ) , 

w G W, and s G C n _ 1 . The Kloosterman zeta function associated to the Bruhat 
cell Tw is defined to be 

oo oo 

ZW{M,N;8)=^2- £ Sw(M,N;c)e^-e-yrl- (4-1) 
Ci = l C„_i = l 

For n > 2, little is known about this function at present. We expect, however, 
that (4.1) has a meromorphic continuation in s, and that the polar divisors of 
(4.1) may be a subset of the polar divisors of the global zeta function 

Z(M,N;s) = ] T Zw(M,N\s). (4.2) 
wEW 

If this were the case for n = 3, then by the arguments of [6, 7] the generalized 
Ramanujan conjecture would follow for n = 3, and by the Gelbart-Jacquet lift 
[11], also for n = 2. 

The meromorphic continuation of (4.2) has been obtained for n = 3 in [6, 7] 
by considering the inner product of two Poincaré series. We indicate an approach 
to generalizing our results to n > 3. 

For v G C n _ 1 , define Iv: H —> C by the formula 

/ .w = n n » } w " i , (4-3) 
t = l 3=1 

13 {{n- 3)h i<j<n~ h 

where z = xy with x G X and y G Y given by (2.1). Let D denote the polynomial 
ring of differential operators defined on T\H. Every d G D determines a character 
Xv(d) given by dlv = Xv(d)Iv. 

A Maass form of type fc G C n _ 1 is a smooth function (p G C2(F\H) satisfy-
ing d(p = Xk(d)(p for all d G D. If it is "cuspidal", it has a Whittaker expansion 
[17, 20] 

oo oo n—1 / / n \ \ 

*«= E - E E aMJ\M^-^Wk (M) h °)Z) 
Mi = l Mn_i = l-7€An_i i=l \ V / / 

(4.4) 
where M = ( M i , . . . , Mn-i), 

(M) = diag(Mi • • • M n _ 1 } Mi • • • M n _ 2 , . . . , M i , 1), 
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au £ C, An_i = C/n_i\GL(n - 1, Z), L/n_i C SL(n - 1, Z) is the subgroup of 
upper triangular matrices with ones on the diagonal, and Wk (z) is the Whittaker 
function given by 

• • • / Ik(w0uz)e - J2 u3\3+i • I l duiò 
-°° J-°° V ^,=i / K«i<»» 

where w0 is the long element (3.1) and u = (UìJ) G X. Although we have not 
defined "cuspidal," we may take (4.4) as a definition, 

The meromorphic continuation in s G C n - 1 of the Mellin transform of the 
Whittaker function 

/•oo /»oo n_~} Am 
Mk(s)= • • • / y^...y^Wk(y)l[^ 

Jo Jo i=1 yi 

is still unknown except for n = 2,3 (see Bump [5]). A heuristic argument of 
Ka-Lam Kueh suggests that Mk(s) has its first simple poles at 

(4.5) 
L J 

with bij given by (4.3). 
Let N G Z n _ 1 and ON be a character of X. An e-function is a bounded 

function ejv: H —• C satisfying ejs[(uz) = 0^(u)eN(z) for all u G X and z G H. 
Let v G C n " 1 . We consider the Poincaré series 

PN(z;v) = Y^j Iv(lz)eN(^z). 
ieP\T 

For u, v G C™"1, M, N G Z n _ 1 , the inner product of PM(Z,V) and PN(Z,U) 
satisfies 

cnv 
wew c 

/» /»OO /»OO 

• / / • • • / Iv(wz)eM(cwz)Iu(z)eN(z)d*z 
JxwJy1=0 Jyn-i=0 

(4.6) 
where Xw = ((w'^Xw) f) X, cnv = c^1 • • • c™^{1, and the sum on the 
right side of (4.6) goes over all N = (eiNi,... ,en-iNn-i) with Ei = ±1 and 
S\ '-'Sn-i = 1. 

For fixed u, the integrals on the dexter side of (4.6) can be continued as 
analytic functions of v. The polar set of Z(M,N\ v) can then be obtained from 
the polar set of (PM,PN)- Let <p be a Maass form of type fc G C™"1. The 
projection of PM , PN onto (p yields a contribution {PM , <p) • (P^, <p) to ( P M , P.w) • 
Some formal calculations in conjunction with (4.4) give 

(PM,<P) =a>M 
i = l 

•M*(0 



422 DORIAN GOLDFELD 

with t = (ti,.. .,tn-i) and U = (Z)y=i bn-i,jVj) - i(n - i). Since PM(Z,V) 
is orthogonal to the residual spectrum of D, we do not obtain residual polar 
divisors. By (4.5), we are led to expect that Z(M,N;s) has a meromorphic 
continuation in s with simple polar divisors which contain the hyperplanes 

n—1 n—1 
E bn-ijSj = Y2 büh (i = 1,..., n - 1). 
J=l 3=1 

5. Kloosterman decompositions of Selberg's kernel function. An-
other approach to the distribution of Kloosterman sums is based on a double 
coset decomposition of Selberg's kernel function. This method was used by 
Zagier (see Iwaniec [14]) to give an alternate proof of Kuznietsov's sum formula, 
and more recently by Ye [23] to give a new proof of quadratic base change. We 
consider generalizations to G = GL (ri, R) with n > 2 which lead to new types 
of trace formulae. 

Consider the Cartan decomposition G = KAK where K = 0(n ,R) and A C 
G is the subgroup of diagonal matrices with positive entries. Let <p; K\G/K —> C 
be a if-biinvariant function. 

Formally, the Selberg kernel function for T is 

K(z,z') = J2<P(*-1l*') (5.1) 

where z, z' G H. For suitably chosen (p the dexter side of (5.1) converges 
absolutely and uniformly on compact subsets of H x H. 

Now (5.1) can be rewritten 

KM= J2 E P(((m)*rV) (5.2) 
(m)€P-YeP\r 

with (m) = (rriij). For fixed (m) G P, the inner sum on the dexter side of (5.2), 
denoted K(m) (z, zf) is an automorphic form for T\H. It has a Fourier expansion 
in x with ATth Fourier coefficient (here N G Z n _ 1 ) given by 

/ , 
K{m)(z,z')eN(x)dx (5.3) 

p\x 
which is itself a Poincaré series in z1. For M G Z n _ 1 , the Mth Fourier coefficient 
in x1 of (5.3) is 

f f YI <p(z-1lz,)eN(x)eM(xf)dxdxf, 
Jp\xJxl€PV 

which is just 

] T J2Sw(M,N)c) f f (p(z~1cwzf)0N(x)0M(x')dxdx' (5.4) 
wew c J**» ^x 

with the notation of (4.6). 
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For a: G C, z G H, and P0 the maximal parabolic subgroup (0..*oi) °f SL(n, Z), 
let E(z,s) — XLGjp0\r(det7£)a denote the maximal parabolic Eisenstein series 
which converges absolutely and uniformly on compact subsets of H for Re(s) > 1. 
Now, if K0(z, z1) is the projection of K(z, z1) onto the space of cuspidal Maass 
forms, we are interested in computing the trace 

R e s / K0(z,z)E(z,s)d*z. (5.5) 
5=1 Jr\H 

After some formal computations (see Jacquet [15]), it follows from (5.4) that the 
essential contribution to the trace (5.5) is given by 

Eff E E E Sw(N,N;c)Fw(N,c,s) (5.6) 
wew c JV^(O) 

where 
/»OO /»OO /» r 

Fw = " / / <p(y~1x~1cwx,y)0N(x-\- x')dxdx' 
Jy1=0 Jyn-i=0 Jxw JX 

ì = l 
In the special case n = 2, (5.6) takes the form 

N^0c=l 
where 

ais:£^'(?..) 

^-r£0((i.)('^)( 1 a/ 

• e(—By(x + a:'))2/a ̂  ^ 2̂/ 
decays rapidly to zero as B —• oo. 

To compute the above residue we use a method of Kuznietsov. Let 

S(N,N;c)= J2 « M « ( — ) 
-c /2<Kc/2 

where v(c, I) denotes the number of solutions a (mod c) of a2 — al+1 = 0 (mod c). 
By Poisson summation 

where the integral on the right is bounded by (he) m for ft ^ 0 and bounded by 
l~m for ft = 0, / ^ 0 (after integrating by parts m > 2 times). Consequently, 
the residue (5.7) is given by 

v(c,l) 
Res 
a = l 

Z-/ Z—• c« 
c= l / = - o o /

oo 

-oo 

We have, therefore, expressed the principal cuspidal contribution to the Selberg 
trace formula in terms of special values of quadratic L-functions. 
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