Problem 1: (Uniqueness of Dirichlet series) For \(n = 1, 2, 3, \ldots \), let \(a_n, b_n \) be complex numbers with absolute values at most one. Assume that

\[
\sum_{n=1}^{\infty} \frac{a_n}{n^s} = \sum_{n=1}^{\infty} \frac{b_n}{n^s}
\]

for all complex values of \(s \) with \(\Re(s) > 1 \). Prove that we must have \(a_n = b_n \) for all \(n = 1, 2, 3, \ldots \)

Problem 2: Explicitly construct all Dirichlet characters (mod 15). Each such character is a completely multiplicative function \(\chi : \mathbb{Z} \to \mathbb{C} \) satisfying \(\chi(n + 15) = \chi(n) \) for all \(n \in \mathbb{Z} \).

Problem 3: Let \(q \) be an integer which has the property that every Dirichlet character \(\chi \) (mod \(q \)) is real valued (takes on only the values 0, \(\pm 1 \)). Show that \(q \) must divide 24.

Problem 4: Let \(\chi_0 \) be the trivial character (mod \(q \)), and let \(q_1 \) be some factor of \(q \). For any character \(\chi_1 \) (mod \(q_1 \)) there is a character \(\chi \) (mod \(q \)) defined by \(\chi = \chi_0 \chi_1 \). Express \(L(s, \chi) \) in terms of \(L(s, \chi_1) \). Conclude that \(L(1, \chi) \neq 0 \) if and only if \(L(1, \chi_1) \neq 0 \).

Problem 5: Calculate the mean value

\[
\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |\zeta(\sigma + it)|^2 \, dt
\]

provided \(\sigma > 1 \).
Problem 6: By the functional equation for
\[\xi(s) = \pi^{-\frac{s}{2}} \Gamma \left(\frac{s}{2} \right) \zeta(s), \]
the function \(s(1-s)\xi(s) \) can be regarded as an entire function of \(s^2-s \); what is the order of this function? Use this to obtain the alternative infinite product
\[\xi(s) = \frac{\xi(1/2)}{4(s - s^2)} \prod_{\rho} \left(1 - \left(\frac{s - \frac{1}{2}}{\rho - \frac{1}{2}} \right)^2 \right) \]
the product extending over zeros \(\rho \) of \(\xi(s) \) whose imaginary part is positive. [This symmetrical form eliminates the exponential factors \(e^{A+Bs} \) and \(e^{s/\rho} \) occurring in the usual Hadamard factorization of \(\xi(s) \).]

Problem 7: Use the partial fraction decomposition of \(\zeta'/\zeta \) to obtain the following exact formula:
\[\psi(x) = \sum_{p^k \leq x} \log p = x - \sum_{\zeta(\rho) = 0} \frac{x^\rho}{\rho} - \frac{\zeta'(0)}{\zeta(0)} - \frac{1}{2} \log \left(1 - x^{-2} \right). \]
Here \(\sum_{\rho} \) is taken to mean \(\lim_{T \to \infty} \sum_{|\rho| < T} \). If \(x = p^k \) is a prime power, so that \(\psi(x) \) is discontinuous at \(x \), then we interpret \(\psi(x) \) as \(\left(\psi(x - \epsilon) + \psi(x + \epsilon) \right) / 2 \).

Hint: You may view \(\frac{1}{2} \log \left(1 - x^{-2} \right) \) as the sum \(-x^r/r \) over the trivial zeros \(r = -2, -4, -6, \ldots \).