ON AUTOMORPHIC FUNCTIONS OF HALF-INTEGRAL WEIGHT
WITH APPLICATIONS TO ELLIPTIC CURVES

D. Goldfeld, J. Hoffstein, and S.J. Patterson

1. Introcuction

The theory of automorphic forms of 1/2-integral weight has attracted
a considerable amount of attention in recent years, The striking
difference between the case of integral and 1/2-integral weight is the
fact that the Fourier coefficients of 1/2-integral weight forms are
expressible in terms of the values of L-functions. |In fact, Waldspurger

W] in answering a question of Shimura [Sh] has recently shown that if

a(n)eZWan

Ms

f(z) =

3
1]

is a holomorphic cusp form (normalized new form of weight k) for a

congruence subgroup of SLZCE), then there exists a cusp form
[e] 2 .
F(z) = 2: cln)e”m'ne

of weight (k+1)/2 whose D-th Fourier coefficient (where D is a
fundamental discriminant of a quadratic field subject to certain con-

gruence conditions) is given by

Here, x(n) = (2) is Xronecker's symbol,

Le(s,x) = > alnx(n)n™®
n=)
and Q is a fixed constant indepencent ot ©D.
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It seems likely that an analogue of Ramanujan's conjecture on the
growth ot the Fourier coefficients of cusp forms also holds in the 1/2-
integral weight case. We propose the following

k-1 . e
Conjecture. For every €>0, C(|D]) = 0(|D| ) where the 0-

£

constant depends only on € and E£.

in view of Waldspurger's results, this conjecture is entirely con-

sistent with the generalized Lindeldf hypothesis which states that
k . €1n]E
Lelz + 1tux )l = o+ [e)7|p]")

for every €>0. At present, the best bound we can obtain is

Kye
c(n]y) = o(]n[" )

In this paper, we obtain results similar to Yaldspurger. The
essential difference is that we deal with the continuous spectrum instead
of the cuspidal spectrum. Also we work over an algebraic number field
k of degree N over Q. In order to simplify the proofs, we assume
k is totally imaginary with class number one. Let Lk(s,w) =
T ek P(a)H(a) " be an arbitrary Hecke L-function for k formed with a
Grossencharakter Y. Our main result states (see Propositions (2.2),
(4.3)) that there exists an automorphic form for a congruence subgroup
of SLZ(O(k)) (0O (k) denotes the ring of integers of k) lying in the
continuous spectrum of the Laplacian whose «a-th Fourier coefficient

(for 0 €0(k)) is given by
(Whittaker function) x Lk(s,wx) R

where X s a primitive quadratic character with conductor dividing o.

The Whittaker function is given explicitly in Section 3.

We assume all our Hecke L-series are normalized to have functional
equations s~1-s. An immediate consequence of our main theorem is
that for any complex s with Re(s)>1/2, there exist infinitely many

gquadratic twists by X where
L (s,ux) # 0
In the special case when k is an imaginary quadratic field of class

number one and E is an elliptic curve with complex multiplication by

k it is known that for suitable 1V, Lk(s,w) is the Hasse-teil
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L-function of E over 0. Using the deep theorem of Coates-Wiles
[c.w.], Arthaud [A], our results imply that there exist infinitely many

quadratic extensions Q(vd) where the rank of the iordell-VWeil group
rank (E/Q(Vd)) = rank(E/Q)

In Section 5 we consider certain dellin transforms of our auto-
morphic form. V\e obtain the analytic continuation of a family of
Dirichlet series whose Dirichlet coefficients are given by quadratic
twists of Lk(s,w). These Dirichlet series can be used to obtain mean
value estimates c.f. [G.V.]. It also follows from this that the

generalized Lindeldf hypothesis holds on the average.

An important open problem that still remains is to construct an
automorphic form whose Fourier coefficients is given by twists of higher

order characters. At present, we do not know how to attack this problem.
2. Eisenstein Series

Let k be a totally imaginary field of degree N and define S_

to be the set of infinite (complex) places of k. Let

2
H o= 1T W
v€Soo

>

where H3 is the hyperbolic 3-space, which we regard as the set of
quaternions {x+ iy +kt;t>0,x,y €R}., Recall that SLZ(C) acts on IH3
by

gw = (aw+b)(cw+d)-], g =(a b

3
c d)ESLz(Z), wEH

where the multiplication is as quaternions, and where we regard C as
the subfield {x+iy; x, y€ER} of the quaternions. This action can be
extended to 6L,(C) if we let Al (for AECT, 1= ldentity in

SLZ(

iV:k*>C be an embedding. Let

C)) act trivially (i.e., (Al)-w=w). For each vE€S_ let

G = 1 GLZ(C).
vES
[e0)

I f Ok denotes the ring of integers of k, we map SLZ(Ok), SLZ(k),
GLZ(k), etc. into & by
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(a b ) R ( iv(a) iv(b) )
c d iv(c) iv(d)

Let T = SLZ(O(k)); it acts discontinuously on H=H(k). If a is an
ideal of k, put

I“O(a) = {Y€I‘;y5(; :‘:)(mod a)}.

For each v€&S_, let P, be a representation of SU2, and set, for

[ d v
\ \"
Jo(g,w) = @ o, (lew, +d )lecw, +d ),
v€SOO
Wo= ® w
P ves V7
(e}

where we have identified the group of unit quaternions with SUZ' Here
I I denotes the quaternionic norm. An elementary calculation shows
that

j h = j ,hw) < j (h,w) .

j,(gh,w) i (g tw) - (h,w)

Ve shall next introduce the ''theta multiplier system' or Kubota

symbols [KZ]. Let (-) be the Legendre symbol in k [B.M.S.]. HNow,
let v be a place of k. There exists a function g, on {xE.ki;

|x|v= 1} so that if (, )v is the quadratic Hilbert symbol,

2) -1

(x,y), = g, (xy)/e (x)e (y),e (x

For d€ Ok’ (d,2) =1, set
e > (d) = ﬂev(d)

Although € is not uniquely characterized by the above formula, € can
be determined by the fact that the equation [K]]
1

> (g) e(%) = (isdﬁ)e (d)N(d)7

x (mod d)



holds, where 6k is a generator of the different ot k, d is coprime

to 26k, N(d) is the norm of d, and e(x)=exp(2mi(x+x)), x =

complex conjugate of x.

Now, define for g€ F0(8), g = (a b) R

cd
o) - (%) e(d)™! (c#0)
e ()7 (c=0) .

flote, however, that e{u)=1 if u is a unit of k. We now have the

following extension of Kubota's Theorem.
Proposition 2.1. K(g])K(gz) = K(g]gz) for g, gZEFO(S).

Proof. We need the following facts which are an immediate con-

sequence of the reciprocity law and our previous discussion:

(i) (%):(5» if d=d' (mod 8) and (mod c).
(ii) (é#)(%})_] = ETgég%é;T if d, d' coprime to 2.
(1i1) e(d) = e(d') if d=zd' (mod 8).
Let

so that

9,9. =

1°2 (c]a2 + d]c2 dle + c]b2 )
Then if c]a2+d]c2#0, c]#O, CZ#O it follows that
c.,a, +d,c
172 172 -1
<lgy9,) = (d]d +‘c]b2>' e(dydy +c;by)
2

. _ s -1
Since d‘dz-l-c]b2 _d]dz(mod 8), E(d]dz-l-cI 2) = €(d]d2) . Then,
multiplying through by ((dz)/d]dz-Fc]bz), (assuming (dz,c])=1), we

have
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<(o.0.) (c (I+b )+d|c2d2)) d2 )
1°2 d d + c]b2 dldz-i-c’b2
d,d,+c,b
172 172 =1 -1
= e(d,) 'e(d,)
(d'd2+c b ) d2 ) 2 1
- |5 " e(d,) ed)”!
] 2
c c
= )(di (2)
2 2
= QI)K(QZ)
If (dz,c])# 1, then we can replace 9, by gz(é ?) for suitable

£. Then (g‘ gz(é ])) = K(g])K(gz-(é %)). One easily verifies, how-

ever, that K(gz'((]) ]g)) = K(gz). The remaining cases are simple to

check, and we leave them to the reader.
Now, we can define the Eisenstein series in which we are interested.

Let a be an ideal of k where 8|a. Then we set

a b
r_ = {(0 d)E Fo(a) cl“o(a)

Let w=(wv)€H, wv=xv+|yv+ktv, and let e€®v€smwv’ For a unit

u in k, let TV(VESOO) be a set of real numbers such that

[ lzirv

m u = 1

vES v ’
[e]

and let us define for 1= (TV), s€eC

DSw) = 1 ot Vo,

VES

Also, let X be a Dirichlet character (not necessarily primitive) on
. _,ab
Ok/aOk, and define for g = (2 d) EFO(a)
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Finally, we define the Eisenstein series

E(w,s;T,X,0,e) = p E(Y))?(v)tT’s(Yw)jp(Y,w)"-e
yeFoo\l“o(a)

Recall that p is a representation of the unit quanternions into SL2.

This series converges absolutely for Re(s| >2.

Our main results involve the Fourier expansions of the Eisenstein
series about the ''cuspsi'. The remainder of this section will be

devoted to the computation of these Fourier coefficients.

We shall first of all give a group-theoretic description of the
cusps. If we assume (for simplicity) that k has class number one,

the set of cusps can be identified with the set

{g(w); g€T}

and we can make this correspond to T _\I' by g+g(®). Two cusps 9 (),
gZ(OO) are equivalent under Fo(a) if there exists Y€I‘O(a) so that
yg](OO)=gz(°°), i.e., 9y, 9, represent the same coset in P(a) =

T @\I/T,.

1o (IOL
01 01

A(g) be the image under p of the subgroup g"]l‘o(a)gﬂl”c:O of 1}

Let T!={{ );OL€Ok}, and define p:1"0'0—>0k by )>o. Let

0?

Thus A(g) is a ful! submodule of Ok. I f y&l“o(a), g€ET
_] .

IRPTIAE
6—(0 u) then

AMygs) = uzl\(g).

For g€T, c€k, define

T(a,g,c) = {y€r (a)gsely)=cl,

where c(y) 1is the 2,1 entry of Yy. Let

&(a,x,g9,c,u) = 2 Q(Yg_])i(\(g_l)e(u?d(%l> ,
YEr AT (a,9,¢)/ () 4490

for u€A(g) ={x€k;elxy)=1 for all y€A(g)}, where d(y) is the
2,2 entry of v and e(x)=exp(2lli{x+x)). The sum is a finite one
and is essentially a quadratic CGauss sum. It will be evaluated in

Section 4.
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MNext let

¥(s,T,X,0,9,1,8) = 2 &(a,%,9,c,m)uwlc)en(c) ™,
c€0k

c(mod units)

vES
(e o]
be a Dirichlet series (matrix valued) tormed with the Gauss sum defined
above.

Our results also depend on the following generalized Bessel

function (see Section 3). Put for u€C, s€C

-1
z+k ) dm(z)

oo _ !
K Wi,s,0) = fe(—uz) TARGE p<||z+kﬂ

C
where e(g) =exp(2mi(g+Z)) and m is the Lebesque measure. Further-

more, if p=®pv, u= (uv), T = (Tv), we set

K(u,s,1,0) = & K](uv,s+i1v,pv)
vES

o

We now state our main result here as

Proposition 2.2. Wwith the notations above

(g,w) ]E(gw,s,T,x,o,e) = 8(g,0)t W) +

Ip

selit@)™ L TS W)(s,T,x00,0, 1 e)K(ut,s, T, p)e (u2)
ueEn(g)
the series being absolutely and Locally uniformly convergent when
Re(s) >2. Here
x(g)k(g)! g€r (a)

§(g,x,0) =
0 g€Fo(u) ,

c(n) = m(z(A)CN) (A a full module in k
(deg(k) =1)).
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Proof. That the Eisenstein series converges in Re(s)>2 s
well known. Also, the series represents a real analytic function in w.
Horeover, the function on the left of the equation above is invariant
under {(é ?); X€A(g)}. Thus it can be expanded in a Fourier series
which has the described qualities of convergence. The Fourier series
is obtained by considering the function as a function of 2z, z= (Zv)
when w= ((ZV,tV)) and the t, are held fixed. It, therefore, only

remains to make this series explicit. Let p€ K(g) and we see that

Jp<g,w)“s<gw,s,T,x,p>e> = ¥ x(u,t)e (pz)

where t= (tv) and

xt) = ey J 3y ez ) s m0e)

i (A (@)t

e(uz) dm(z)

Here we have suppressed most of the variables on which x depends.
Into this, we substitute the series expansion for E{(g((z,t)),s,T,X,p,e),

namely

X r@Ox e ((z,0))5 gz ) e
yETw\Fo

and then we interchange the order of summation and integration.

One term plays a peculiar role. If g€ To(a) then in the series

of E above, the term y= g-l yields 0 if p#0 and

<(g)x(g) 1t7*° (w)e
otherwise. This yields the first term in Proposition 2.2.

For the other terms, we observe if g# Fo(a), nyIb(a)g then the

(x A
Iy ) X € A(g)
“ \o 1

are distinct from one another. Thus the integral representing x(u,t)

cosets

can be written as

c(h(g)) ™! > Tlvg e g™
Yer \r_(aa/ () Mol

f JQ(Y(z,t))_le-tT’s(Y(z,t))e(-UZ) dm(z)
N
C
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For all the <y appearing here, the 2,1 entry is nonzero. Let

Y = (2513 Z§¥;) and replace z by z(d(y)/c(y)). The integral then

becomes
c(i(g)”’ )> xtra™Delva e ud(y) /e ()
ver\r, /() 1(9))
. Tosf(* -
f iy ,(z,t)> et ’ (z,t)
N c - ¢ ©
c

ce(-uz) dm(z)

It is clear that in neither of the two terms where the 1,1 entry appears
is 1t relevant. V\e now separate vy according to the different values
of ¢ by regarding Fo(a)g as UT(a,g,c) (u<{1} if g Elb(a)). Thus,

in view of the notations we have already established this is

-1 -
0 -c
A(g)"] 2 G(a,x,g,c,u)[ J (( ),(z,t)) e
) o P\¢ o

c(mod units
-1

tT’S 0 -c (
. z,t) ) e(-uz) dm(z)
(4 0

Then, on replacing z by tz(=tvzv) and using the homogeneity properties

of the functions we get

0 -1 -1
C(/\(g))_l > G(a,x,g,C,u)[ jp(( ) ,(z,l)) .
c{mod units) N 1 0

C

-iT -5
\

Q1 +|zV|2) e(-utz) dm(z) -

\

c -1 2—iTv—s s -iT,
s (ﬂ?ﬂr) e U t *N(c)” T [p,(c)]

which is

cli(g) ™ 2 £ (WK (ut,s,7,0)6(a,%,g,c,mH(c) Sulc)e .
c(mod units)

This is the result which we quoted once we introduce the definitions of

¥(s,T,X,0,9,H,e).
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3. Bessel Functions

We shall now describe the representations of SUZ(C) and the

associated functions K](u,s,T,o). The irreducible p form a family

parametrized by an integral &20. 1his representation acts on CQ+I,
and with respect to the standard basis of C£+], numbered
ey = (1,0,...,0), e = (0,1,0,...,0),...e2= (0,0,...,0,%); Gy has

coefficients < J.(g) determined by
14

2 oo (V¥ o (axseby) B ean)
o<jsg Y

ab
if g= (_5 5). This is the %-th symmetric power of the standard repre-
sentation; it extends to SLZ(C). Recall that

K](u,s,p) = fe(-UZ)

~1
z+k ) dm(2)
C

1
(1+|ZI2)S e (Hz+k”

The folltowing proposition evaluates those coefficients of

K}(u,s,pl) with respect to the basis e that we shall need.

RRRELIE

We shall also write
M (s,0) = K (0,s,p,)

Proposition 3.1. With the notations above

e

L e
I‘(s + 7) Ky (u,s,00)
can be analytically continuedas analytic fumctions in s, not iden-
tically zero in w for any s, such that

l -

; +5-1 - H M
F(S + &)'K(u,s,p) ~ 7 ¥/2ehml] (ZFIUUS ? Jul o ’ ’
2 b 1wl

where o* is an (4+1) x (8+1) matriz which depends polynomially on
its arguments.
0 i+j#10

(a) ", (5’%);]
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(b) The following evaluations hold:

2
0 S+\‘2—"|
I’(s+7)K](u,s,p£)0J- = 2m(2w|ul)
o 2-j !
(-2u/ [u]) WKS—&+'—] ([4mlu),
7]
%
s+5-1
F(S*‘%)K]m,s,og)u = on(ealu)) 2
) %
. 1(-1)
UUMUDJ% — K (am|u])
J!UZ/_]! S+.§L—j—] | ] >
2
s+5-1 .
F(”%)Kl(“’s’%)jo = artenlu]) 2 GuupFent
K {(wr|ul)
s—%+j-l
9 s+%-l .
F(s+§)K](u,s,oz)j£ = 2m(zw|u]) (=in/ |u))?
K (bm|ul)
s+x-j-1

Here Kv(x) is the usual Bessel function, which we shall take as being

def ‘med by

Proof. Recall that

-1
K(i,s,p) =fp (ﬁT) e(-1z) 1+ 2137 dn(2) ,

and we are identifying SUZ(C) with the unit quaternions through

s - e (07)
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z -1
h—i:—tﬂ- corresponds to ( _)(|z[2+l) /2
1Tz

The inverse of this matrix is (% 1)([z[2+1)7/2. Thus the ij-th
coefficient of pQ((z+k)/||z+k||)—1 is pej(z) where

Zy 20T o G (xe P (224 Y2
and we can write

v, . (2) = ) d..(a,b)zaib-(Izl2+1)_2/2
0<a<g-i 7
0<b<i

and dij(a’b) are certain integers. As examples

j 24 2-] 2 2/2
YOJ(Z) = ('])J jTTE:FTT‘ z J/(lll +1) / s

-1 2/2
z

/2% + ) ,

YJ-O(Z)

v = DR (2P

Hence the ij-th entry of K (u,s,pQ) is

w0 [ EE )

flow, as

o 2 2

s+--l s +5
j —ul1+]z|? ), du = r(s+%)/(l+1z{2) Z
0

2 P .
I‘(s +7) K, (u,s,pz)u, is given by

2
2,2 s+=-1
E dij(a’b) .[[zagb e-u(l+\z| ) e(uz)u 2 du dm(z)
a,b
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If we now let 9=253/0y, 3=23/31 this is

s+
Z g, (a b) (zmi) 3" b 123 bff I+[z[ -2mi (pz+uz) " 2 du dm(z).

The integral in 2z can now be evaluated by the usual method. This

yields

duem .

> d..(a,b) (2mi) 27P5%5
a,b H

L
-a-b,ag b! -u-lmzlu|2/u u5+-2— 2
It is now straightforward to derive Proposition 3.3(a) from this. We
can obtain the analytic continuation at once. To obtain the asymptotic
estimate, carry out the differentiations and then replace u by
2m{u|u. One obtains expressions of the form

r o] (™) s+E-N- L
e ¥ u du|u] TR
0

(m+m'<N<a+b) with equality achieved for one term with m=a, m=b.

The asymptotic estimates now follow by Watson's lemma [W.Y.].

If a=0 (or b=0) then it is easy to write down the derivative

explicitly. Suppose b=0, then we find

o %
2, 2 s+3-2
@ je—u-hﬂ ul™a 7727y,

0 - .
2 2 s+3x-a-2
. fe—u—un [u]“/u u 2 du
0
2 %Q 2
s+z-1 Iy s+5-a- 2
- -2
= (/) erfu) 2 I mlul (ura™) du
0
- a S+§_l 1
= (-w/ [u])"@rlu]) L) (4 uf)
s+—2—-a—l

With this result, the corresponding result for a=0.

Finally, we prove the formula of Proposition 2.2(b). The j-th

coefficient is
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3
Zd..(a,b) ]zagb(]+|z|2) T2 dm(z)
C

All the terms here vanish except for those with a=b. One has

0 (i+j #2)

i) . , -
(T=a)Tal (J-;;!a! (077 Gi+i=9)

If we convert to polar coordinates (finally x= |z]2),

2a r a
f £ dn(z) = ”f = d;@(/z
s+5L/2 S+
T (1+]z I 0 (1+x)
T(a+1)T ( +&-a-l)

ST

2
. IT{s+5x-a-1
! .! a ( 7 a )
.’41(5,0)." =Tr§:(i_' I —J

ra)Tal F(H&) (-ni7

2

n

Z TS+—'a-]) j-a
”'T(“') "It e BREniel
i
0<asj

It is a consequence of Bauss' theorem on F(a,b',c,1) that this latter
sum is (cf. [W.V.1)

] o e
s - 7 -

Alternatively, this may be proved by the method of partial functions;
but we shall leave this as an exercise for the reader. The proof of

Proposition 3.1 is now complete.



168

4, Gauss Sums

In this section, we shall discuss the 5auss sums G(a,g,c,u). The
dependence on ¢ is nearly multiplicative and we shall make this
precise. iloreover, the dependence on primes not dividing a is com-
paratively simple; the dependence on primes dividing a 1Is complicated,
and in this case we shall content ourselves with partial results, which

suffice for our purposes.

Before we begin, we recall the definition of the function e(d),

which satisfies

(i) e(dd') = e(d)e(d') 1 (d,d')V (d coprime to 2)
v]2
(ii) e(d)lrl(d)”2 = 2: ElelZ- (d sq. free)
d 8§, d
x{(d) K
where 6k is a generator of the difference of k, d coprime to Zék.

The particular & depends on the choice of Gk’ but once it is chosen

€ is entirely determined (it depends on d modulo 4).

As a consequence of this, if d,d' are coorimes ,

d)(a) o _eldd)
d’ d e(d)e(d")’
and, by the law of quadratic reciprocity, the left-hand side is

m (d,d")
v|2 v
and, by (i), this is also the right-hand side.

How let

glu,c) = 2:) (%) e(iQL) (c coprime to 2).

x(c dkC

Then, a standard argument using the Chinese Remainder Theorem shows
that if c¢= € 5CpsC Gy coprime, then
‘1 (2
glu,c) = (c—)(c—) (u,c)g(u,c))
2 |
Thus for ¢ coprime to 2, gf{u,c)/elc) is multiplicative. The

foliowing lemma will be of use to us.
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t

Lemma 4.1. Let u='nmp| (u] coprime to W), c=m". Then
t';_ |
g(u,c)/ec) = H(m - t odd, m=t-1
= —N(W)t—] t even, m=t-~]
t ~
= ¢(m) t even, m>t
= 0 0 otherwise

where ¢ is the kuler totient function.

Proof. This is entirely elementary and we sketch the proof. If
t s odd then the character is nontrivial and so the sum vanishes if
m<t. If m<t-1 the sum also vanishes as (;) has conductor .
This leaves only m=t-1. This only depends on x(mod w) and is then
(apart from the factor My which is extracted by replacing by x/u]
(mod c)) the Gaussian in (ii). The other cases are analogous but
simpler.

Now recall that

G(a,X,Q,C,]J) = K(Yg )X(Yg'])e(llcd(Y ) ,

= Y
YET AT (a,g,¢)/ (] Aﬁg))

where g is fixed. Let

() )

Then

Yg_] =( % % )
cD-d(y)C  -cB+d(y)A

and d(y) runs through all possibilities which satisfy

d(y)C = cb (mod a)
d(y) (mod ¢ A(g))

d(y), ¢ coprime.

It is moreover easy to see that A€ A(g) if and only if
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Thus
Acz = a
and hence if C#0
Ag) = ¢ Zano
and, if C=0 A(q) =0
Now
E(Yg'l) = (_SEB-+3»§)€(—CB+dA) ,
X(a™") = X(-cB+dn)

To effect the summation we let, if A#0,

4

]

~cB + dA ,

and,if A=0,

4

cD-dC

In the first case the range of summation of d] is

cD-dC = %—(c—dlC)

d]C = ¢ (aA)

d] mod cA A(g)

d] coprime to A_](c -d]C) ,

and in the second case, in which -cB is coprime to a,
d, =0 (a)
| mod C A(g)

d‘ coprime to cB.
In the first case the sum is
A (c-d,©) ) ud, 8
) —— ) eld)xld)e| 7= e(T)
d] 1 c

and in the second

{dZ (Z—l)e (— —S%)%e(%—”) e(-Bc)  (~Bc)
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Now, these can be evaluated in general, but we shall not need

this. We shall, in fact, only make use of these when g=1 and
_ /0 -1

g=( -

Case I: g=1I. Now the upper formula simplifies to

ud

c - 1

(& )eta ki) o) .

4

where we require c¢=0(a) and d] satisfies

d] mod.c, d] coprime to c.

To evaluate this we let

c = CICZ N (Cz,a) = (]), C]

Then there exist U],U2 so that

Ulc2+~U2c] = 1, U, = 0(a)
Also let
d] = U}c26]-+U2C]52
6} runs mod.c], 62 mod.c, and (6],c])= (n, (62,c2)= (1).
How

(&) - (2)&)

d 4/ \4y

and, if we use the law of quadratic reciprocity and the symbol ( , )
defined by

a

,8) = 1 (0,8),,

a
via

°1
(a) = (cl’él)a s

1
= (E;)'(Czyél)a >

and thus the sum becomes

here

a
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- us. U 50 us. U
{g: (crczﬁle(%)xwlk( :1])}§%;<z§)8((i2);
2

1

and, making use of the usual substitution, this becomes

- ué U
(c],cz)a{%," (c],cz,Gl)aE(Gl)x(él)e< c‘l ])}g(éku,cz) .
1

Horeover, replacing 6] by 5‘c2 in the term in brackets we obtain

- - _ ud
x(cz)e(cz) (8, 1,c, :E (c)»8,)e(8,)(8))e (_1)}

€1

The term in braces is complicated and there is no point in investigating

it more closely here; but simply denote it by F(X,u,c]). Thus

- -1
G(a,9,¢/cp,1) = x(ey) selcy) g(éku,cz)P(x,u,c]) .
Case 2: g= (? _é). In this case the formula simplifies to

(b

1

where d] =0(a), d] mod ¢, (d‘,c)= (1) in particular c is coprime

to a and we obtain
E(-C)i(-C)g(Gku,-C)
Vle write this finally as

e(-c) g8, ,-0)+ (-1,¢) X (-¢)

a
We summarize the results of these computations in the following.

Proposition 4.2. With the notations above

Ga,)x, 1,cycm) = x(cy)ele,y) g(5ku,c2)F(x,u,c|),

where

(a) e

-

» (eya) = (1), and

Phome,) =. 2 (c,8)e(®x(d)e (K&
1 6(C1) 1
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0 unless (c,a) = (1)
G ofax(S D)oen) = et a,mm0), (1,500 (-0
if (c,a) = (1).

ow, let Wy be a Grossencharakter of k. We define

-1
w, (p)
L(e,w],a) = (1 - )
pla (wp)°

Proposition 4.3. With the notation of Section 2, recall that

c -1 -ZiTV
(L)(C) = D(m) VEHS !Civ .

](c)e where w, is a Grossen-

charakter of k. Then if u#0, and fu is the conductor of the

Grdssencharakter associated with c-> (—Sku/c), we have

Now, suppose e satisfies xl(clw(cle=w

¥(s,T,X,0,1,1,8) = 32: TOoue) ) ()
C
}

e M P (s,w,u)L(s-1/2,0,n ,af )L(Zs-l,wz,a)—]e s
T 1 | VAART! 1

7| us

Tta

0 -1
W(s,f,x,o,(] 0),e) = x(-1) H{Ld P (s,0,W)L(s-1/2,0 ”u’afu)
m}a L(Zs—l,w%,a)_]e s
and

{ 2 2 -l
¥(s,T,x,0,!,0,e) l; F(X,O,c])w](c]) L(2s Z,w],a)L(s l,w],a) e,

1

\‘P(S,T,X,D,(? _é)’ O,E) = X(-l)L(Zs-Z,w?,a)L(s—l,w%,a)_]e

Let m=ordﬂ(u-6k). Then
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P(s,o,m) = (=820 mA) 7 a-nm 0 @)

Q1 +nu(ﬂ)N(w)‘/2'5w](ﬂ)_FN(ﬂ)m+l/2-(m+1)s
‘wl(“)m+l(”u(“) +N(“)g/z-swl(ﬂ)))e (m=0(2),m>0)
= (]‘N(ﬂ)z—zsw](ﬂ)z)-‘(]-N(ﬂ)(m+])(]‘5)w](ﬂ)m+])e
(m=1(2))

Proof. These result from combining Lemma 4.1 and Proposition 4.2.

We begin with

¥(s,T,x,0,1,1,8) = (Z (X, 1,eq)w (c)(E g(dku,cz)w] (CZ)) e .
1 “2

Likewise

ofsstin (S T)mee) x(-\)(z;e(c)"gwku,c)(—l,c)w,<c)>e

C

In the first sum the second factor is up to (-1, )a the same as
the main term in the second sum. Thus we can treat these together.
Horeover by Lemma 4.1, the terms in these sums are multiplicative and
so reduce to Euler products over the primes not dividing a. There are

three cases to consider (if u#0).

(1) m a prime, m/u. Then the Euler factor is

{8, u _ H -
e /2 S(Tk)wl (e = (=N 2% (M1 - N(r )”2( k )w] (m 7 e.

(2) ™ a prime, m==ordw(6ku) £0(2), m|u. Then the Euler factor is

-8 u/m"
T olhe, rOumt) S enm M (__kfl) oy (™)

T
t<m

t=0(2) _ -8/ _
= (-n(m P, (m?)! (1 -(_kﬂ——)m)'/z %, (n)).

'Sp“/ﬁm 1/2-s m+1/2-(m+1)s m+1
. (1 + ("T“)“m w, (1) + () w, (m) )

-8 p/m o
. ((._J%;:L.)+ N(ﬂ)D/Z_sw](ﬂ))) e
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(3) 7™ a prime, m==ordﬂ(6ku) =1(2). Then the Euler factor is

E (b('ﬂ't)w.' (ﬂ_t)”(ﬂ_t)_s _ ”(W)m'(ITH'])Sw' (_’Tm+l ))
t<m
t=0(2)

(1-1(m) 2725,

](WZ))—I(]_N(W)I-st](W)Z_N(ﬁ)m+](l-s)

wl(ﬂ)m+](I+N(W)]_zsw](ﬂ2)))e

(=82 2% ()™ (=) 2 (1) (-n ) (M 079)

w](ﬂ)m+]) e

How consider u=0. One has

0 c # square
E(C)-]g(O,C) =
¢ (c) c = square
Then
i(cz)F(x,O,c])¢(cz) c, = square
G(a,x,!,c]cz,o) =
0 otherwise ,
x(=c)(c) (-c) = square
I 0 -1 0) -
afd,x, 1 0 »Cs -
0 otherwise .
Thus
¥(s,T,x,0,1,0,e) = ‘}:F(x,O,c])w](c])N(c])'S;
12
'L(2—25,w$,a)L(2—l,w?,a)_‘ e,
2 -1
¥(s,T,x,p,1,0,e) = X(—I)L(Zs-z,w],a)L(Zs-I,a) e

which completes the proof of the Proposition.

Before we leave this section, it is probably worthwhile to add a
few further remarks about the e-function. The theory of theta-functions

yields the formula [Kz].
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2
c) - w2 X (_dx )
x{mod 2) ¢ E?ﬁ:

Now € depends on d(mod 4). Thus we can expand it in terms of multi-

plicative characters on (O/h))x. Let

y(8) =2 8(d)e(d)

for any such character 6. Let 80 be such that y(eo)¢ 0. Then

v(0(8,4) ) = 258,(d)(5,d) e(d)

e(8)"' Y 0(d)e(ds)

8(8) Te(s) -y (o)

Thus consider
-1 -1 -1 =
$(v) y(@o)‘%: 8,(6) €(8)7 (8,d) By ()

which is, a priori,a partial sum of the Fourier expansion. MWriting
(8,d) =€(8)e(d)/c(8d) we obtain

s v (0) 2 6 (d9) M e(as) T e ()
§
Hence this must be the complete sum, and
Y0, (-1, ) +v(8) = b(v)

Rewrite this

(0,9) (@) = ¢ X0 (®) 7 (5,0)

where -
e 1T 6!
l's" ©
The character 80 is, in general, unknown. As
eldx?) = e(d)

it is of order 2, and hence is of the form

6,0 = (y,¢)

for some vy, not necessarily coprime to 2, However, observe that the
prime decomposition over 2, by the considerations above, is entirely

determined by €. Then one can also note that
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2
@ = n2) VY e(— - )
X k

and also

]
D
M
—_
a
~
[}

2
N(Z)_]/zzk Ldv': ENE) e<+ l‘fg‘—k)

ENOINEED Go(d)e(hg—k)
d

Thus there exists one 60 having the property that this Gauss sum is
nonzero; also all others are of the form 90(6,-)a. To obtain more
precise results would involve an examination of the local reciprocity
law and we shall not go into this more deeply at present. One should
observe that these essentially evaluate T(x,O,c]); this is nonzero
when (c],-)ax= 90(6,-). Thus F(X,O,c])= 0 unless Xz is of order 2;
in this case we see that the sum is over a set = ch where c? is

n n
fixed and x turns through {ﬂ]]...ﬂkr; ﬂj|2,nj2=0}.

5. Dirichlet Series

In this section we shall construct and study two families of
Dirichlet series which are derived from the Eisenstein series of
Section 2. The first is essentially the L-series associated by Hecke
to such a form, and Hecke's methods are applicable here. The second
are associated with a subfield kOCZk. [k:k0]= 2, and we shall suppose
that kO is real, as this simplifies the discussion and is also the
case which arises in the cases in which we apply our results to L-series

of Diophantine interest.

First of all, we shall let W be a Grossencharakter of k which
has conductor dividing & and which satisfies
-iT

“m
wg((0)) = 1) a (i @i @) Y|l Yx@  (aa)=1.

We shall write this as ws(u), the m  and x(u)=1 (ue€ Uk). Now let
2V= ]mv| and we shall assume for simplicity that
2,50 (VES) ;

this is a restriction on w, which is also justified by the applications.

It is not essential. ilow let



i(v) = 0 (mv<0)
= JLV (mv>0)
and
itv) = Qv— i(v)
Then if
° 7 Jgg AR ¢ - vgz eJ(V)

one has, in the notations of Section 2
ws(c)e = N(c)—si(c)w(c)e ,

if p=®pl(v), and so also e€l(y,T).
Let
Plug,u) = F Py(ws,u) ;
y
yta
where Py(ws,u) is defined as in Proposition 4.3 and a is fixed as

before. Let

Fluw) = 25 PlagmLlsg_y,n af NG,
1 (mod Ui)

ne a-lr-l

where Ui= {uz:uE Uk}, it is of finite index in U,.

Theorem 5.1. The series defining F(u,ws) converges if
Re(s) > 1/2 (Re(s) +1) and can be continued to a meromorphic function
of finite order in C, It has no poles unless there exists T such
that t =71 (all vE€S,) (in which case we may assume that T1=0,
without any loss of generality). In this case there are simple poles

at u=0,1; the one at u=1 has residue

;-[uk:uﬁ]nke;‘x(-w)w(a)|ok1‘/2L(Nw§,a) I (2T (142.(v)/2)}

Here Rk’ Dk are the regulator and discuminant of Kk, Ui= :uzzue Uk:

and e 1s the number of roots of unity in k. For every e>0 one

has that 1
7 [k-Q](1+e-Re(u))
[P | << 1 (0]
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Proof. As we indicated above this will be carried out by a
suitable modification of the Hecke method. Let us first observe that

V_ carries a Hermitian inner product, which we denote by (, ), and
1/2
Ixl = (x,x) .
z€ﬂvES C}. Then F(L acts on X .. Write E(w) for E(w,s,T,X,0,e).
Then let for a cusp y(). CY(A) be the homosphere Y{(z,t)HtV>A},

tet us fix s and consider the set X = {(z,t)

and A is some fiwed real number. From reduction theory one knows that
I‘\H-UyEF CY(A) is compact. Thus on H_'JyEF CY(A),IIE(w) I is bounded.

On the other hand, on CI(A) one has from Propositions 2.2 and 3.1 that

Re (s Re(2-s)

Pl << [eRe(8) 4 g
and
[t]= 1 t .
VES | v

Thus on CY(A) one has

NE@) I << ey Tw) [ Re(8) 4 oGy Ny |2 Re(s)

For simplicity let us assume now that Re(s)>1, so that only the first
term matters. Then let Y_] = (i z); if w€Xtﬂ CY(A) then one verifies
easily that N(c) <A-] |t1_]. Let us restrict our considerations to

such TI'. Then one has

2 Re(s) -2 Re(s)

IE ()12 << |t T (edw, + i (d)

e consider YE FOL\I‘/FOO. Thus one sees that by regarding TJO\Xt as split

into the images of C_(A) nXx, and the test, Jl !lE(w)H2 dm(z) is

. v T\
bounded by w0t
o) +o(e)? Rels)) ] Jui @z, @1

-
<l @126 g
_ O(])+O([t|2 2 Re(s) (N (e) 2 Re(s))
u(c)<|t|"A"

From this one obtains that, for any €>0, generally

PEG) 12 dn(z) << 1+ [¢] 1272 Re(s)[+2

AV
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if ]Re(s)— I|> e the "¢ in the estimate may be dropped. ilote that
if s has a certain value, we may have in CI(A) that IE(w)Il << |t|
log|t|, but this makes no difference to our final estimate. MNow if we
use Proposition Z.z we see that if Re(s)>1

2 00(s,7,% 0,9,1,e) 12 << N(u) '*E

if we sum over u such that 27 < IZ(p)V!tv< 2 (ves,) for fixed t.

Now consider

£.0) = Y(e,E®)
) = Yle' i () T W e Tow)
where
Y = m T(S+iT(v)+2(v)/2)
VES

Then, as p(k)_]e= (—])Le', where L==Em(0)<o m(V), one has

0,67 = (nbr 0,0

[

1
where t = (tv )

On the other hand, by Propositions 2.2 and 3.1 one sees that
f =@+ (W) where (as L) >0 (veESs,))

Dy = v on t3+2T(V)
vES
and
fi?)(t) = c(v_‘)-] 3
ey
1£0
‘2 iT(v) . +iT(v)+I(v)/2-1
vEns |tv T L’W.(zmvl'v(ml)S I
OV 1,00 D7) a0 G, B )
-(e,lP(s,T,X,U, ,p’eyl)) >
and

(1) (2)
0,t) = fo (t) + fo (t)
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where
fé])(t) = C(a_]\)_))_](_‘)L m 21T(S+iT(V)+'%'Q/(V)-I)_]
vES
0 -1 .
'(e’W(S,T,X,O,a,p,( ) m tZ‘S'lT(V)))
11/ ves, VY
and

(@ = cw@VhHTent X
=

u€a v

u#0

- {ts—s_iT(V)W'(2“1iV(U)ltv)s+iT(V)+R(v)/2—I
VES

o

. 0 -1
KS+iTV',Q(V)/2-] CLIRI Y ItV)}(e,w(s,T,X,u,a,e(] o)))
One should observe here that ([ 1, p. 91)
c(a_])_] - IDkI]/ZN(a)-]

Now, in view of the formula

fx Ka(hﬂt)t-HS dt = I‘;(zﬂ)'sr(s—?‘-)r(s—;ﬁ)

Rt
one has
i(Ui)\nv€SJR:

and this converges if Re(u)>1. Here

cw = xCNeE VT En Ll o
c o e g T s it - )|
VES
Now 1 = X, =
ow let v {tEHVESmIRt.TIV€Sw t, 1} and let v be an
invariant form on nvES Rt such that, with a fixed order on S_, and

v, €S
[e2)

0



At e o= ¢ hde A

ves VY v Yo Yo
o

Let |v[ be the corresponding measure. Then, on the quotient space,

|v|<i(Ui)\ m m: ) = [Uk:Ui]-Rk-Z_]/Z[k:Q] e;]

VES
[ee]
The rest of the proof is now clear. In the traditional fashion one
divides
X o, X
m IRt into V+=1t€ m R m tv>l ,
VES S, VES |

vV =1 RS
=m R -V,

Then one writes the integral above, on V_ as
- 2 -
R e = e D e ente®

These show that

C(u)F(u,wS) - (_])L fél)(t) m t\-/(s+]T(V)+2u—2) &t
T 2 VES
|(uk)\V+ [
_ f f(])(t) m t\S/+iT(v)+2u-2 ot
i (u2)\V_ V€S
+ f(z)(t) n t3+iT(v)+2u-2 &t
i(uz)\v veES
k +
_ f(z)(t) m t-(s+iT(v)+2u-2) >t
W)\ ves Y
k? T+
The first term is O unless for all vE€S_,7(v) =T, when it is

L 2 X 1 -1
(1) |vl(z<uk)\ & |R+)Y'§"(u-l) :

and the second is
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@V HEnt m 2n(stitv)+ 1 2(vy-1)"!
VvES

© 1 -l 0 -1
7+ (e,w<s,1.x,0,a,p,e,(, 0)))

The quoted results follow from the functional equation implicit
here, the Phragmén-Lindel&f principle and the fact that the residue of

F(u,ws) at u=1 s

L .2 x -
xv(=1) |v!(|(uk)\ m lRt)-C(l)]
VES
[o0)

Our second result requires an additional assumption, namely, that
there is a totally real subfield koSk with [k:k0]=2. This always
occurs in the applications we have in mind. Let Xo be the character
of k, associated by class-field theory to the extension k/ko. Let

0
now B€k and set

- ~u/2
FB(u,ws) = :Z: , P(ws,u)L(ws_l/an,afu)N(u)
u(mod U7 )
k
_1 0
uB €k,
uEa_]v_]
. /2 .
Observe that if B=1 then neEky and N () is the norm of 1 in
ko.

We shall also write XB(X)= (Nk/ko(B)/xo)ko, where ( / )ko is
the Legendre symbol in k,. Suppose k can be represented as ko(/c?)

where 6€Ok ; then we shall write oa=R/8 and we shall assume that
0

-1 -1

o EOk, a€Ea

Observe that this is not a very strong restriction.

Theorem 5.2. The series defining FB(u,wS) converges in Re(u) > 1
and can be continued to a meronomorphic function in C. Suppose that
Re(s) 21 then the only poles in Re(u) >3/2-Re(s) are at u=1,2,
-(s+it) and (possibly) O or 3-2(s+it). Here, as before, the notation
means that there is no pole at "2-(s+iT)" or "3-2(s+it)" wunless all
the t(v) are equal, when T <ig the common value. These poles are
simple unless s+it=1 and We_1X*Xg congidered as a Grossencharakter

of ko) is trivial, when the pole may be of order 2. Moreover, for
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£>0. 3/2-Re(s)+e<Re(u)<l+e, and |lm(u)] >1+ I Im(s+iT)|
one has

[kO: ] (1+e-Re(u) )/ (Re(s)-1/2)
IFB(u,wS)I << | Im(u) |

Proof. The proof requires a number of preparations. Note that
S, can also be regarded by restriction as the set of infinite places

of ko. Let now

H0 = m H2 y
VES
2 . =
where H° is the usual upper half-plane. Let GO_HVESOO SLZ(IR).

Define, for ocEkx,

8, :Hg > H; (xv+ iyv) > (iv(a)xv+ |iv(oc) |yvk)
.o .o . _ (a0
Let IV.SLZ(OkO)—>SL2(0k) be the r_ulatural :nJecE;on. Let Doc—(O ‘).
Then, under the assumption that « EOk, o€a one has

Lemma 5.3. The stabilizer ea(Ho) in Fo(a) 18 D(Xl"(a,oc)D(;]

where
_ ab .
I(a,a) = 'Og(cd)ESLZ(Oko)'
(a,d,a) = (1), bekyna 0, c€k0noca§.
If Y€T(a,a) then
c 07y = () o= (25)
o' o u-l cd

Proof. Clearly 9q(z)=Da9](z). Thus, observing that the

stabilizer of GI(H in G is Go, we see that the required group is

-1 93
i (i(Fo( )) nDocGODoc ); a simple computation shows that this is
D T( ,a)0 !
a o

. (c#0)

K(DuyD(;]) = (cu_]/d)ke(d)
= e(a)! (c=0)

By well-known properties of the Hilbert norm-residue symbol (cf. [BMS]

(c/d), = 1, e(d,d,) = e(d)e(d,) (c,d,d,,dZEOkO)

and
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W0, - (Nk/ko(oc)/dko) = X (@ (d€0k0)

Thus it only remains to compute €(d). This is a character of
order 2 as E(d)2= (-l/d)k= 1, also e{(d)=1 if d=1 (mod 4). Recall
that

c@N@'2 = X (x/d)elx/ds))
x(d)
Note that e(du) =e(d) as we have already verified that e(u)=1 if

u€ Uk. Now suppose that 60 is the relative different of k/ko; then

A= Gk/do is such that (A)= conorm(vko) where Yko is the different
of k. (cf. [W1], p. 156). Suppose that k- k0 (/3;), then (60//37)

0
is a square and hence, by taking a suitable choice of 60 one has
_ 2
60—-/gT m”,
Now

c@N@'? = (6,/0), X (/d)elx/d)
x(d)

Let us assume that Xs(d)= -1, then there exists a prime 7 of ko so
that d=7 (mod 4), we may assume that 7 avoids a finite set of
primes. We can write x=<x+-/3?-8 where o,B are summed (mod ).
Since (a/d)k= 1 and e(x/d) =e(a/d) one can easily evaluate the Gauss
sum, which yields e(w) = (/g?ék/ﬂ)k e(d) is independent of the choice
of 6k. For if 6k is replaced by a § e(d) is replaced by

e(du Ny =e(d)e(u!) =e(d).

K’

Now we return to the theorem proper. Let Gu:T(a,u)-+FO(a)be the map
4_(u 0) (a 0)—1
Y7% 1Y ) -

factor of automorphy which extends to GO and so one sees that it can

Then consider Jp(ea(y),ea(z)). This is itself a

be written as

. . . . miv,i), -1
x A, diag(((z (c)z + |V(d))/| i (c)z, + i, (] A,
vESoo
where m(v,i)€zZ (1 <i <dim(pv)) and diag(ci) is the diagonal
matrix with entries dijci’ and AV is some matrix which depends on
P, It is easy to determine that A, m(v,i) explicitly given oy

Now let E(w) be as before with Re(s)=>1 and let

@ = {070 e@) e o)

Then
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FL) = X (8, (0,8, (2))F () (Yer' (s,0) ,

where

e kel

T'(a,a) = (? _é) T(a,a) (_? é ).

For convenience, let

and

Jolr2) = 5(8,(1),6,(2)

As € is already known to be a character we see that
_ _ 2
e(d) = (/8§/d), = (°a/d) .

But since (A) = conorm(vko), and as k has class-number 1, Nk/k (A)
0
is a square. Thus e(d) =1, as required. This proves Lemma 5.3.

Now let us return to the theorem proper. Let eaf(a,u)—*Fo(a) be

-1
yv>Duybu .

automorphy extending to GO. It can be written as

Then consider jp(ea(y),eu(z)) which is itself a factor of

° A (diag(((z, )z, + iz, @)/, (z, + 1, @ )"V)al,

where m(v,i) €Z (i<i Sdim(pv)) and diag(@i) represents the
diagonal matrix with entries aiéij’ and Av is some matrix which

would be found explicitly. Note that if Py = pl(v) then

© A, (iagl(i, /)1, @D T = 1 san(i (e Y,
VES VES |

where sgn is the usual signum function (c€ kg). This observation
will later be reflected in a simplification in our study of Eisenstein
series.

Now let E(w) be as before, with Re(s)>1 and let
= (0@ (0 L)oo
o W o) Y% E 1 0/«

fa(vz) = XXOC(Y)Jp(ea(Y) ,eu(z))fa(z) (Y€T(a,0)),

o = @ (v (25))

Then

where
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and 1
_ {0 -1 0 -1

I'(a,0) = (] 0) T'(a,a) (] 0)
Let

iolrz) = jp(ea(Y)’ea(Z))’
and

¢:(2) = 0 \S/+'T(v)+u_‘ if Moy, <A z=(xv+iyv)

VES VES |
= 0 otherwise .

Furthermore, let

CO(A) :(xv+iyv)€Ho: ﬂy0>A§

and we shall choose A large enough that YCO(A)IWCO(A)= o if
YET' (a,0) - T (a,0), where If(a,0)={( D) er (a0l
Now we shall consider the integral, whose convergence will soon be
clear,
(W) = vy (e',95(2)f (2)) dolz) ,
A T (a,0) \Hy AT

where do=Q dov, do, = ]de/\dyV|/u3. Then we can treat this in two
different ways. First of all let

A z,0) = 2 X, M) ol e,
YeFé(a,a)F'(a,u)

so that, by the usual Rankin transformation,

W =y [ e, fe) s

HO

In view of the usual estimates one can easily verify that this
converges of Re(u) >1; this will become clear from our subsequent
discussion. On the other hand, on making use of Proposition 2.3, we

see that In(u) is the sum of
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yc(a—]\)—])—](-])l‘ n j(]i (o) |y )2—s-i'r(\))
€s l v A
T (a,0)\(Hy=Co (A)) V&5

-1

ys+iT(V)+”"]}8 v ldx ndy + T {an(ssit(v)+ 5 (w17

v VES 2
[ee]

iy )

Y @Vt

and

uEa;lv-l I (3,0) \(Hy=C i (R))

u#0
e (i, (@) |y ) 27smimystiThlret
°(2wliv(ocu)IYV)SHT(v)”(\))/Z_] s+ir(v)-l(v)/2-1(lm|i"(amy")}

e(aUX)dO(e»W(S’T’X’“’ '€ ((') —‘]J)))

The point of our method is now that fe(uotx)@dxv=0 unless
T (ap) =0, in which case it is m=m(i(k ﬂu_IO JNR), where m
Vk/kg 0 I
is the usual Lebesgue measure. |If now k=k0(/§) then Tr(au) =0
means that UEOL_]/S kg Hence if we take a=v8R this means that

BUE k ﬂa_]\)_'. The first integral can easily be evaluated and it is
0

mve(@ v 7Nt o ‘zﬂ(s«un(v) + 2 o)1) (a)]z_s_”(v)l
VES l v : j

u -1 2 2 2 -1
RpA™u “ex(=T)L(N ws,a)L(Nws,a) ,

where RO is the regulator of kO.

To deal with the second term we write

= Xe@VhTent
u

I, (@,a)\c, (A)
1l @y s
VES
] () [T

. -2)
.Ks+iT(v)-2(v)/2-] (k| 'v(au) |yv)yv f ®dyv (e,v)
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From the exponential decay of Ka(x) it follows easily that this
series is absolutely convergent and represents an entire function.
Then, i f

GO(U) = moc(a_]v_l)_](-|)LX(_1) n |iv(a)|2-u-s'iT(V)
VES
'”'(2“)_UF(§'+ &%}l) T(% +s+it(v) —1): L(Nwz,a)"' ,

one sees that the second term is Co(u)FB(u,wS)- JA(u). Thus, we have

W =y (£ (2,0),F,(2)) dol2)
F(a,a)\Ho
= G]Auu_‘+Go(u)FB(u,w) NN .
where
G, = moyROc(a",v")"(—1)"X(—l)L(Nzwi,a)L(ng,a)']
m Zﬂliv(ot)|2_S_iT(V)(s+i‘r(v)+;—l(v)—l)_li

VES

The series defining EA(z,u) converges in Re(u) >2-Re(s). To
analyze the integral further we have to examine the behavior of EA(z,u)
at all the cusps. Thus let P be the set of cusps of TI'(a,a) and
for each p€P we choose OEE SL2(kO) so that o _(») =p. Each of
0 "1y -1 0" -1

)7 1D () To(a)D(a)(] O). Let P =P be

1 0
. 0 -1,-1 -1 0 -1
the set of cusps equivalent under (| O) D(ax) Fo(a) D(at) (] 0)

to 0. Both T'(a,a)\P and P'(a,a)\PO are finite. Also assume that

these is also a cusp of (

if p=yp'(yY€T'(a,a)) then 0p =0y As in Proposition 2.3 one has
that

. -1 _A

Jo(op,Z) E (z,u)

has a Fourier expansion of the same type (apart from the difference
incurred from the "truncation''). We shall only need the ''constant term'

. . . -1 _ .
which is, if zE«Jp (CO(A))’ 2-'(XV'*lYV),

m yZ-u-(sTF(W)

n 3 y <¢(u,p),
V!

where the ¢(u,p) can_be computed as before. The only facts which we

need are that if A(t,wz_lxu) is the Hecke L-series with Grossencharakter,
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with the corresponding gamma-functions and w:_] is the restriction of

-0 -0 _
we_, to kg then A(2u,ws_lxu) ¢(u,p) has no poles unless W)X =
= Nat (where N0 is the norm in ko) and then the only poles in
Re(u) >1/2 Re(s)-1) are those at u=1-1/2 t and 1/2(1-t). More-

over, A(Zu,&g_lxa)E(z,u) is regular at u=1/2(1-t). These remarks,
as the conscientious reader will verify, follow from the observation

concerning jo made above.

Now we define EA(z,u) (cf. [Sel).

)2-u-(s+iTZV)}

T B S M {yv(o;‘z [ #0:)

VES |

(i z€0,((cy(A)

~A . . . . 2
Then E ' (+,u) is square-integrable and meromorphic in C (in the L
sense). Moreover, it decays exponentially at the cusps. We shall now

examine

T =y [@60.1,) o,

which exists wherever E(z,u) is anti-analytic. Let Fé(a,u) be the

stabilizer of o in O;]T'(a,u)op. Then

L) =T, =y > J[

pET' (a,a) \P I (a,0)\Co (A)

$yz-u-<s+n<v>>?
VvES ‘l v

[eo}

(8(5,0),3g(0,,2) 71 (0 (2)) do .

. - . -1
In the region CO(A) we apply Proposition 2.3 to JO(Op,Z) fu(op(z))

which can be written as a sum of

$yz-s-ir(v)lc ;yz-s-aT<v))c

m + T (if per,)
ves 1V Poves, Y Jp 0
or ‘ )
2‘S‘iT(V) * .
m ly c (if pepP-P,)
vESoo t 0 P 0

and a second term which we denote by fé])(z), and which decays

exponentially at . Write now
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L) = v m gyﬁ'”‘s‘”“)gfg‘Nz) do (2)
I a)cy () Ve

and one sees that this is an entire function. Thus

L(u) =T, (u) = > (6(,p),d%(u,p))
A At Y p€T"' (&,a)\P AT

+y 2 (¢(u,p)c )m'A]_u(u—l)']
pEF‘(a,u)\PO PP

+ty 2: (¢(a,p),c*)m'A3'”'2(5+iT)
p€ET' (a,a)\P PP
/(u=3+2(s+it)) ,

where the convention of the enumeration of the theorem applies to the

last term. This we rewrite as

6o (WF (uy0) = (B (2,0),F_(2)) dol2) - 6 A%
F'(a,a)\HO
-y )Y (6(5,p) ,c )m'Al 7Y/ (u-1)
pEF'(a,a)\PO PP
-y 2 (6(3,p),c5)m A30U 2+ (i3s3 (sain))
p€T' (a,a)\P PP

Sy 2 (6(8,p),95(u,p)) + 9, ()
p€ET' (a,a)\P

Here the m'
p

are certain measures, analogous to Rom0 at the cusp o,
which are complicated to define and which will not be further used.
They can be computed by any reader desirous to know them. This tech-
nique, a generalization of the well-known Rankin-Selberg method, was
introduced in [P].

With this formula we have essentially reached our goal. The
assertions about the poles can now be read off directly. This leaves
only the assertion about the growth in the vertical strips. One observes
that the functional equation for the Eisenstein series gives a relation
between EA(z,u) and similar ones evaluated at 3-2s-u, in which
(t(v)) has been replaced by (-t(v)). This induces a functional

equation for
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A2u,000_y5X,)6g () Fg(u,0,)

relating it to a similar series evaluated at 3-2s-u. Then as our
integral expression (modulo some '"trivial'' poles) shows that this of
finite order, the assertion concerning the rate of growth folllows as

usual from the Phragmén-Lindelof principle.

Remark. It would be interesting to develop these methods to look
at
Fabow) = 2 Plombin,fax

where ¥ is also a Grdssencharakter. One suspects that if "Re (w) = 1/2"

then this has a double pole at X] if

XMk, T Y

and a similar statement vis-a-vis Theorem 5.1. This would subsume our

present picture in a satisfactory fashion.
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