
ON AUTOMO~HIC FUNCTIONS OF HALF-INTEGRAL HEIGHT 

\IHTH APPLICATIONS TO ELLIPTIC CURVES 

D. Goldfeld, J. Hoffstein, and S.J. Patterson 

1. Introduction 

The theory of automorphic forms of 1/2-integral weight has attracted 

a considerable amount of attention in recent years. The striking 

difference between the case of integral and 1/2-integral weight is the 

fact that the Fourier coefficients of 1/2-integral weight forms are 

expressible in terms of the values of L-functions. ln fact, Waldspurger 

[H] in answering a question of Shimura [Sh] has recently shown that if 

00 

f(z) L a(n)e211 inz 
n=l 

is a holomorphic cusp form (normal ized new form of weight k) for a 
congruence subgroup of s~2 (~), then there exists a cusp form 

!'"(z) L c(n)e21Tinz 
n=l 

of weight (k+l)/2 whose D-th Fourier coefficient (where D is a 

fundamental discriminant of a quadratic field subject to certain con­

gruence conditions) is given by 

Here, X (n) 

k-1 

S1l Dl_2_ Lf(~ .x) 

(Q) is :<ronecker's symbol, n 

00 

L a(nJx(n)n-5 

n=l 

and S1 is a fixed constant indepencient ot D. 
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lt seems likely that an analogue of Ramanujan's conjecture on the 

growth ot the Fourier coefficients of cusp forms also holds in the 1/2-

integral weight case. \~e propose the following 

k-1 

Conjecture. Far every E>O, C(IDI) 
eonstant depends only an E and f. 

-- + E: 
0( I Dl 4 ) where the 0-

ln view of Waldspurger's results, this conjecture is entirely con­

sistent with the generalized Lindelöf hypothesis which states that 

for every E > 0. At present, the best bound we can obtain is 

C( I ol) 

ln this paper, we obtain results similar to ~/aldspurger. The 

essential difference is that we deal with the continuous spectrum instead 

of the cuspidal spectrum. Also we work over an algebraic number field 

k of degree tl over Q. ln order to simplify the proofs, we assume 

k is totally imaginary with class number one. Let Lk(s,~) = 
IaEk ~(a)N(a)-s be an arbitrary Hecke L-function for k formed with a 

Grössencharakter ~. Our main result states (see Propositions (2.2), 

(4.3)) that there exists an automorphic form for a congruence subgroup 

of SL2 (0(k)) (O(k) denotes the ring of integers of k) lying in the 

continuous spectrum of the Laplacian whose a-th Fourier coefficient 

(for aEO(k)) is given by 

(Whittaker function) x Lk(s,~x) 

where X is a primitive quadratic character with conductor dividing a. 

The Whittaker function is given expl icitly in Section 3. 

We assume all our HeckeL-series arenormal ized to have functional 

equations s ->I- s. An immediate consequence of ou-r main theorem is 

that for any complex s with Re(s) ;;.1/2, there exist infinitely many 

quadratic twists by X where 

ln the special case when k i s an imaginary quadrat ic field of class 

number one and E i s an eil i pt i c curve wi th complex multipl ication by 

k i t i s known that for suitable ~. Lk(s,~) i s the f:asse-1,/e i l 
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L-function of E over Q. Using the deep theorem of Coates-Hiles 

(C.W.], Arthaud (A], our results imply that there exist infinitely many 

quadratic extensions Q(ld) where the rank of the i1ordell-\-leil group 

rank (E/Q( ld)) rank(E/Q) . 

ln Section 5 we consider certain i1ellin transforms of our auto­

morphic form. He obtain the analytic continuation of a family of 

Dirichlet series whose Dirichlet coefficients are given by quadratic 

twists of Lk(s,\j;). These Dirichlet series can be used to obtain mean 

value estimates c.f. (G.V.]. lt also follows from this that the 

general ized Lindelöf hypothesis holds on the average. 

An important openproblern that still remains is to construct an 

automorphic form whose Fourier coefficients is given by twists of higher 

order characters. At present, we do not know how to attack this problem. 

2. Eisenstein Series 

Let k be a total ly imaginary field of degree N and define 500 

to be the set of infinite (complex) places of k. Let 

< 
H n lW 

v€5 00 

where ~3 is the hyperhol ic 3-space, which we regard as the set of 

quaternions {x+ iy+kt; t>O,x, y Elf\}. F\ecall that acts on 

by 

g•w 
-1 

( aw + b) ( cw + d) , 

where the multipl ication is as quaternions, and where we regard C as 

the subfield {x+ iy; x, y EIR} of the quaternions. This action can be 

extended to SL2 (C) ifwe letAl (for AECx, l=ldentity in 

SL2 (C)) act trivially (i.e., (AI)•w=w). Foreach vES00 Jet 

iv:k-+C be an embedding. Let 

G n 
vES 

GL2 (C) • 

00 

lf Ok denotes the ring of integers of k, we map SL2 (0k)' SL 2 (k), 

GL2 (k), etc. into G by 
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Let r =SL2 (0(k)); it acts discontinuously on H=H(k). lf a is an 

ideal of k, put 

For each v E 500 , 1 et pv be a representat i on of su2 , and set, for 

9 ( acv dbv) 

V V 

H 
p 

E G, 

0 
vES 

00 

w 
V 

w = (w) EH , 

where we have identified the group of unit quaternions with su2 . Here 

~ U denotes the quaternionie norm. An elementary calculation shows 

that 

\le shall next introduce the "theta multi pl ier system" or Kubota 

symbols [K2], Let (-) be the Legendre symbol in k [B.i1, S.]. ~Jow, 

1 et V be a place of k. There exi sts a function E on {x E kx · 
V v' 

I X I = 1} so that i f ( 
' )V i s the quadratic Hilbert symbo 1, 

V 

2 
(x,y)v = Ev(xy)/E (x)E (y) ,E (x ) 1 . 

V V V 

For dEOk, (d,2}=1, set 

E -+ (d) = n E (d) 
V 

Although E is not uniquely characterized by the above formula, E can 

be determined by the fact that the equation [Kl] 

0 _!_ 

(~) e(~) = (f)E (d)N(d) 2 L 
x(mod d) 
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ho1ds, where ok is a generator of the different ot k, d is coprime 

to 2ok, N (d) is the norm of d, and e (x) = exp (2ni (x + x)), x = 

comp1ex conjugate of x. 

tlow, define for g E f 0 (8), g = (~ ~) , 

(c 'I 0) 
K (g) 

(c = 0) 

ilote, however, that t::(u)=1 if u is a unit of k. \~e now have the 

fo11owing extension of Kubota's Theorem. 

Proof. \~e need the fo1lowing facts which are an immediate con­

sequence of the reciprocity 1aw and our previous discussion: 

( i ) 

( i i ) 

( i i i ) 

Let 

so that 

(%)= U·) 
U· )(dd' t = 

E:(d) E:(d') 

t::(dd') 
(; (d) (; (d I) 

i f d=d' (mod 8) and (mod c). 

if d, d' coprime to 2. 

i f d = d' (mod 8). 

. - -1 -1 
S1nce d 1d2 +c1b2 =d 1d2 (mod 8), t::(d 1d2 +c 1b2) = t::(d 1d2 ) . Then, 

multiplying through by ((d2 )/d 1d2 +c 1b2), (assuming (d 2 ,c 1)=1), we 

have 
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(:~) (:~ )(:~) (:~) 

lf (d2 ,c 1)Fl, then we can replace 9z by 1 E; 
92(0 1J for suitable 

E;. Then 
I E; 

K(gl•g2(0 1)) 
1 E, 

K(gl)K(g2•(0 1)). One easily verifies, how-

ever, that 
1 E, 

K(gz·(o 1)) K ( g2 ) . The remaining cases aresimple to 

check, and we leave them to the reader. 

Now, we can define the Eisenstein series in which we are interested. 

Let a be an ideal of k where Sla. Then we set 

b) E r (a)} c r (a) 
d 0 0 

Let w=(wylEH, wv=xv+iyv+ktv, andlet eE0vES
00

Wv. Foraunit 

u in k, let Tv(vE S00 ) be a set of real numbers suchthat 

2iT 
I u I V 

V 
n 

and let us define for T= (Tyl, sEC 

n 
vES 

00 

s+iT 
t V 

V 

Also, let x be a Dirichlet character (not necessarily primitive) on 

Ok/aOk, and define for g = (~ ~) E f 0 (a) 

x(g) x(d) 
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Finally, we define the Eisenstein series 

E(w,s;T,X,P,e) 
- - T S -1 
K(YJx(yJt ' (ywJjP(y,w) •e 

Recall that p is a representation of the unit quanternions into SL2 . 

This series converges absolutely for Re(si >2. 

Our main results involve the Fourierexpansions of the Eisenstein 

series about the "cusps;'· The remainder of this section will be 

devoted to the computation of these Fourier coefficients. 

Weshall first of all give a group-theoretic description of the 

cusps. lf we assume (for simpl icity) that k has class number one, 

the set of cusps can be identified with the set 

{g(oo); g Er} 

and we can make this correspond to roo\r by g+g(=). Two cusps g 1 (oo), 

g2 (oo) are equivalent under f 0 (a) i f there exists y E f 0 (a) so that 

yg 1 (oo) = g2 (oo), i .e., g1 , g2 represent the same coset in P(a) = 

ro(a)\r/roo. 

A(g) 

Let f'={(la)·aEOk},anddefine 
00 0 1 ' p:r~ -+Ok by (b ~) +a. 

of the subgroup g -ll' (a)g n r' of be the image under p 
0 00 

eS 

Thus 1\(g) 
-1 

(u ,.,) then 
0 u 

is a ful I Submodule of Ok. 

1\(ygo) 2 u 1\(g) . 

For g Er, c E k, define 

lf 

T(a,g,c) {yE f 0 (a)g;c(y) = c} 

where c(y) is the 2,1 entry of y. Let 

G(a,x,g,c,u) 

!'' 
00 

Let 

for IJEI\(g)={xEk;e(xy)=l for all yEI\(g)}, where d(y) is the 

2,2 entry of y and e(x) = exp(2lli (x+ ~)). The sum is a finite one 

and is essentially a quadratic Gauss sum. lt will be evaluated in 

Sect ion 4. 
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~(s,1,x,p,g,~,e) 

w(c) 
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L G(a,x,g,c,~)w(c)eN(c)-s , 
cEOk 

c(mod units) 

n 
v€5 00 

-2i1 
I c I V 

V 

be a Dirichlet series (matrix valued) tormed with the Gauss sum defined 

above. 

Dur results also depend on the following generalized Bessel 

function (see Section 3). Put for ~EC, sEC 

fe(-~z) 1 . p (llzz++kkll )-1 dm(zJ 
C (l+lzf 2 )s 

where e(z;;) =exp(2Tii(z;;+~)) and m is the Lebesque measure. Further­

more, if p=@pv' ~= (~). 1 = (1), we set 

K(~,s,1,P) 0 
vES 

K1 (~ ,s+iT ,p ) 
V V V 

00 

We now state our main result here as 

Proposition 2.2. With the notations above 

-1 jp(g,w) E(gw,s,T,x,p,e) 

-1 + c(l\(g)) "" 1 2-s ~ t ' (w)~(s,1,x,p,g,~,e)K(~t,s,1,p)e(~z) , 
11Ei\.(g) 

the series being absolutely and &ocaZZy uniformly convergent when 

f\e(s)>2. Here 

C (I\) = m (2 (I\) CN) 

9 Er (a) 
0 

g Er (a) , 
0 

(1\ a full modulein k 

(deg(k)=rJ)). 
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Proof. That the Eisenstein series converges in Re(s) > 2 is 

weil known. Also, the series represents a real analytic function in w. 

1·1oreover, the function on the Jeft of the equation above is invariant 
I f-

under {(0 1); A E J\(g)}. Thus it can be expanded in a Fourier series 

which has the described qualities of convergence. The Fourier series 

is obtained by considering the function as a function of z, z= (z) 

when w= ((2v,t)) and the tv are held fixed. lt, therefore, only 

remains to make this series explicit. Let IJEK(g) and we see that 

j (g,w)- 1E(gw,s,<,x,p)e) = L x(IJ,t)e(IJz) 
where t = (t) and p 

X(\l,t) c(J\(g)) f -1 
, jp(g, (z,t)) E(g((z,t)) ,s,<,x,p,e) 

'(A( ) )\C 1~ 
1 9 e(IJz) dm(z) • 

Herewe have suppressed most of the variables on which x depends. 

lnto this, we substitute the series expansion for E(g((z,t)),s,T,x,P,e), 

namely 

- - T S K(yJx(y)t ' (yg((z,t)))jp(y,g(z,t))•e 

and then we interchange the order of summation and integration. 

One term plays a pecul iar roJe. lf g Er (a) 
0 

then in the series 

of 
-I 

E above, the term y=g yields 0 i f ll ;t! 0 and 

K(g)x(g) lt ,,s (lt)e 

otherwise. This yields the first term in Proposition 2.2. 

For the other terms, we observe if g~r0 (u), 

cosets 

HJ\(g) 

yE r (u)g 
0 

then the 

are distinct from one another. Thus the integral representing x(IJ,t) 

can be written as 

-1 
c(J\(g)) L 

yEr \r (u)g/(0
1 J\(gJ) 

oo o I 

·~ 
c 

- -1 - -1 
x(yg )K( g ) 
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For a 11 the y appea rl ng here, the 2,1 ent ry i s nonze ro. Let 
y = (a(y) b(y)) and replace z by z(d(y)/c(v)). The integral then c(y) d(y) ' 
becomes 

• e {-]Jz ) dm ( z) 

lt is clear that in neither of the two terms where the 1,1 entry appears 
is lt relevant. We now separate y accordlng to the different values 
of c by regarding r (tt)g as UT(tt,g,c) (u•{l} if gE:f (tt)). Thus, 

0 0 
in view of the notations we have already establ ished this is 

A(g)-l L 
c(mod units) 

-1) )-1 
-: ,(z,t) e 

e(-]Jz) dm(z) . 

Then, on replacing z by tz(=tvzv) and using the homogeneity properties 

of the functions we get 

c(ll(g))-l L G(tt,x,g,c,]J) ( jp((
0
1 c(mod uni ts) {tJ 

-1) )-1 
0 

, (z, 1) • 

which is 

-iT -s 
TI (1 + jz j 2) V e(-]Jtz) dm(z) ' 

V 
V 

c(A(gJ)-l .'E t-T,Z-s(w)K(]Jt,s,T,p)G(tt,x,g,c,]J)N(c( 5 w(c)e. 
c(mod units) 

This is the result which we quoted once we introduce the definitions of 

~(s,T,X,P,g,]J,e). 
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3. Bessel Functions 

Weshall now describe t~e representations of su2 (C) and the 

associated functions K1 (JJ,s,T,p). The irreducible p form a family 

parametrized by an integral Q,;;.O. lhis representation acts on CQ,+l, 
Q,+J 

and with respect to the standard basis of C , numbered 

e 0 = (1,0, •.. ,0), e 1 = (O,l,O, .•. ,O), .•. e,Q,= (O,O, ... ,O,t); p,Q, has 

coefficients c .. (g) determined by 
I ,j 

j Q,- j 
c .. (g):-: y 

I ,j 

i - - Q,- i 
(a~+bY) (-b::+aY) 

( a ~). 
i f 9 = -b a This is the 9,-th symmetric power of the standard repre-

sentation; it extends to SL2 (C). Reca\1 that 

The following proposition evaluates those coefficients of 

K1 (JJ,s,p,Q,) with respect to the basis e 0 , ••• ,e,Q,, that we shall need. 

We shall also write 

Prooosition 3.1. With the notations above 

can be analytically continuedas analytic functions in s, not iden­

tically zePo in JJ for any s, such that 

-'[ ( ]:i I ]J I P'' 
I ]J I 

where P'' is an (9-+l) x (t+l) matrix which depends polynomiaUy on 

its argwnents. 

0 

r (s +}- l - i) r (s +}- l - j ) 

r(s+})r (s-}-1) 

i+j;o!Q, 

i+j=Q, 
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(b) The following evaluations hold: 

- I I l9,- j 9,! 
( -2)1/ )l j! (9,- j)! K 9, 

5 - 2+ j - 1 

s+.&.-1 
2rr(2rrllll) 2 

. 9,! ( -1) 9, 
(i)l/l)ll )J j! (9,- j)! 

Here Kv(x) is the usual Bessel function, which weshall take as being 

dej ·"''ed by 

1 Ioo - ~(t+t -1) 

2 0 tve 2 
-1 

t dt 

Proof. Reca 11 t hat 

f ( z+k )- 1 2 -s 
K()l,s,p) = p llz+kll e(-)lz) (1 + lzl ) dm(z) , 

and we are identifying su2 (C) with the unit quaternions through 

1 ... ( 0
1 o). (i o) 

1 I + 0 -j ' 
• = ( 0 i ) k = ( 0 -1) 
J i 0 1 0 

and so 



165 

The inverse of this matrix is ( z 1 )([z[ 2 + 1)-1/2 . Thus the ij-th 
-11 z 

coefficient of Pz((z+k)/llz+kll) is p•j (z) where 

and we can write 

~ a-b 2 -Z/2 
y .. (z) ~ L.J d .. (a,b)z z ·([zl +1) 

IJ Q,;;a~,Q,- i IJ 

o.;;b,;;i 

and dij (a,b) are certain integers. As examp1es 

Yoj (z) (-1)j 9,! zl-j/([z[ 2 +1)9,/ 2 
j! (Z- j)! 

Z! zj 1 ( 1 z 12 + 1 l u 2 
j! (Z- j)! 

Hence the ij-th entry of K1 (IJ,s,p,Q,) is 

z z e(-wz) dm(z) f a-b 

C (1+[z[2)s+,Q,/2 

llow, as 

00 9, 
( -u(1+[z[2) s+z--1 l e u du 

0 

9, 

( 9,) 2 s +z-
r s+z-1(1+[z[) 

22 s+.&-1 
~ d ( b) rr a-b -u(1+[zl ) e(,,z)u 2 du dm(z) . 
L.J ij a, )) z z e ~ 
a,b 
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lfwe now let <l=<l/3~, :i=<l/30 this is 

The integral in z can now be evaluated by the usual method. This 

yields 

u 
s+B:.-2 

2 du•n . 

lt is now Straightforward to derive Proposition 3.3(a) from this. He 

can obtain the analytic continuation at once. To obtain the asymptotic 

estimate, carry out the differentiations and then replace u by 

2n!~lu. One obtains expressions of the form 

00 ~ f I I -1 s+--1~-1 l e-2n ~ (u+u ) u 2 

0 

(m+m'.;;;tJ.,;;a+b) with equality achieved for one term with m=a, m=b. 

The asymptotic estimates now follow by Watson's lemma [W.H.]. 

lf a=O (or b=O) then it is easy to write down the derivative 

expl icitly. Suppose b= 0, then we find 

0a I e-u-4il~l 2/u 
0 

~ s+ 2 -2 
u du 

u 
s+.B:.-a-2 

2 

With this result, the corresponding result for a=O. 

du 

Finally, we prove the formula of Proposition 2.3(b). The j-th 

coefficient is 
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IJ 
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All the terms here van i sh except for those wi th a = bo One has 

dij (a ,a) -I , , t -,.--:.-( i -a~)! a! 

0 (i+jf.Q,) 

0' 0 J o ( -l) J-a 
U-a) !a! 

( i + j = Q,) 0 

lf we convert to polar coordinates (finally x= lzl 2), 

Thus, if i+j=Q,, 

:11 (s 'p) i j 
01 01 

"" I o J o 

= Tr.t...J (i-a)!a! (j-a)!a! 

( 1 +x) sH/2 

r(s+~-a-1) (-l)j-a 
TI-a)! (j-a) !a! 

lt is a consequence of Sauss' theorem on F(a,b',c,l) that this latter 

s um i s ( c f. [~1. ~! o ]) 

+.8:. 
2 

)
-1 rH-~-zlr( .. r-jl 

r(s - ~- 1 ° 

Alternatively, this may be proved by the method of partial functions; 

but weshall leave this as an exercise for the readero The proof of 

Proposition 3.1 is now completeo 
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4. Gauss Sums 

ln this section, weshall discuss the Sauss sums S(a,g,c,~). The 

dependence on c is nearly multiplicative and we shal I make this 

precise. Horeover, the dependence on primes not dividing a is com­

paratively simple; the dependence on primes dividing a ls compl icated, 

andin this case weshall content ourselves with partial results, which 

suffice for our purposes. 

ßefore we begin, we recall the definition of the function E(d), 

which satisfies 

( i ) E(dd I) E(d)E(d 1 ) n (d,d 1 )V 
vj2 

\d coprime to 2) 

\ i i ) E(d)l!(d) 112 ~ (~) e(2-) 
x(d) d '\d 

(d sq. f ree) 

where '\ is a generator of the d i fference of k, d copr i me to 

The particular E depends on the choice of cSk, but once i t is 

E i s entirely determined ( i t depends on d modulo 4). 

As a consequence of this, if d,d 1 are coprimes , 

u.) ( ddl) 
E(dd I) 

and, by the law of quadratic reciprocity, the left-hand side is 

n 
vj2 

(d, d I) 
V 

and, by (i), this is also the right-hand side. 

r:ow 1 et 

2cSk. 

chosen 

g\~,c) (c coprime to 2). 

Then, a standard argument using the Chinese Remainder Theoremshows 

that if c=c 1,c2 ,c 1,c2 coprime, then 

g(~.c) 

Thus for c coprime to 2, g(~,c)/E\c) is multiplicative. The 

fol lowing Iemma wi 11 be ot use to us. 
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Lemma 4.1. Let m 
( 111 coprime to rr) , c = Tft. Then 11=TTI11 

1 

g(I1,C)/E(c} JJ (rr) t -2 (11TT1 ) t odd, m = t- 1 

-N(rr)t-1 t even, m=t-1 

Hrrt) t even, m)t 

0 0 otherwise , 

where cp is the 8uZer totient j"unction. 

Proof. This is entirely elementary and we sketch the proof. lf 

t is odd then the character is nontrivial and so the sum vanishes if 

m.;;t, lf m<t-1 the sum also vanishes as (iT) has conductor TT. 

This 1eaves on1y m= t- 1. This only depends on x(mod rr) and is then 

(apart from the factor 11 1, which is extracted by repfacing by x/11 1 
(mod c)) the Gaussian in (ii). The other cases are ana1ogous but 

s i mp 1 er. 

Now reca11 that 

G(a,x,g,c,l1) 

where g is fixed. 

Then 

:E 1 
yEf~\T(a,g,c)/(0 

Let 

g (~ ~ ). y 

-1 

CD-: (y) c 
yg 

i< ( yg -1 > x (yg -1 > e (11d ( r > ) , 

1\\g) CTYI 
1 ) 

(a~y) b(y)) 
d(y) 

-cB:d (y) J 
and d(y) runs through al1 possibi I ities which satisfy 

d(y)C = cD (mod a) 

d(y) (mod c A(g)) 

d(y), c coprime. 

I t i s moreover easy to see that A E 1\(g) i t and on I y i f 
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Thus 

- a 

and hence i f C ~ 0 

A (g) c-2a n 0 

and, if C=O A(q)=O. 

t~ow 

- -1 
K(yg ) 

- -1 
x(yg l 

( cD- dC ) ( ) -=cß+dA E -cß +dA 

x(-cB+dA) 

To effect the summation we Jet, if A~ 0, 

d1 -cB+dA 

and, if A= 0, 

dl cD- dC 

ln the fi rst case the range of summat ion of d 1 is 

cD- dC 
1 

= - (c-d C) 
A 1 

d1 mod cA A(g) 

copr i me to 

and in the second case, in which -cB i 5 coprime to 

dl - 0 (a) 

dl mod c A(g) 

dl copr ime to cB. 

ln the first case the sum is 

and in the second 

{~ (:! )e (- edel )}e(~~) e(-Bc)-(-Bc) 

a, 
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Now, these can be evaluated in general, but weshall not need 

this. 
0 

g = (I 

We shall, in fact, only make use of these when 
-I 
0). 

g=l 

Case I: g= I. Now the upper formula simpl ifies to 

where we require c = O(a) and d1 satisfies 

d1 mod.c, d1 coprime to c. 

To evaluate this we Jet 

(I ) ' 

Then there exist u1 ,u2 so that 

I' u2 - O(a) . 

Also Jet 

tlow 

c~:2) = (::)·(:~) 

and 

and, if we use the law of quadratic reciprocity and the symbol ( , ) 11 

def i ned by 

(a,ß) = n (a,ß) , 
a v[a v 

here 

(:~ ) 

and thus the sum becomes 
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l ~ lol· ,, • 'I I. d'l IX 1,1 1·("':1"1 )/-I~ C: ).("':',"' ) l 
and, making use of the usua1 substitution, this becomes 

1-loreover, rep1acing 01 by 01C2 in the term in brackets we obtain 

The term in braces is comp1 icated and there is no point in investigating 

it more c1ose1y here; but simp1y denote it by r(x.~,c 1 ). Thus 

Case 2: ln this case the formu1a simp1ifies to 

where d1 = O(u), d1 mod c, (d 1 ,c) = (1) in particu1ar c is coprime 

to u and we obtain 

~/e write this fina11y as 

We summarize the resu1ts of these computations in the fo11owing. 

Proposition 4.2. With the notations above 

where 

(a) (1), and 



173 

(b) ) 

0 unless (c,a) = (1) 

-1 -E(-c) 9 (l\]1,-c), (-1 ,-c) 11x(-c) 

if (c,a) = (1). 

ilow, Jet w1 be a Grössencharakter of k. We define 

( w, (p) )-1 
L(e,w 1 ,a) = n 1 - --5 

pla (Np) 

Proposition 4.3. With the notation of Section 2, recaZZ that 

-2iT 
w(c) fcl v 

V 

Now, suppose e satisfies x(c)w(c)e = w1 (c)e where w1 is a Grössen­
charakter of k. Then if u" 0, and f is the conductor of the 

].l 
Grössencharakter associated with c+ h\lllc), we have 

'l'(s,T,x,p,l,].l,e) = {L: r(x,].l,c 1)w1 (c 1)} 
Cl 

and 

'l'(s,T,X,P, I,O,e) ~" l 2 2 -1 t~ r(x,o,c 1)w1 (c 1)l L(2s-2,w1 ,a)L(s-l,w1 ,a) e, 

'l'(s,T,X,P,(~ -6), O,e) = x(-l)L(2s-2,w~,a)L(s-1 ,w~,a)-Je 
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(1-tl(rr)2-2s.w1 (rr)2)-1 (1-N(rr) 1-2sw1 (rr)2)-1 

·(1 +n (rr)N(rr) 1/2-sw (rr) +tl(rr)m+1/2-(m+1)s 
ll 1 

( ) m+1 3/2-s 
• w1 1T (n11 (rr) + rl(rr) w1 (rr) ))e (m:=0(2),m>O) 

(1-N(rr)2-2sw1 (rr)2)-1 (1-t·l(rr) (m+1) (1-s)w1 (rr)m+1)e 

(m = 1 (2)) 

Proof. These resu1t from combining Lemma 4.1 and Proposition 4.2. 

We begin with 

~(s,T,x,p, l,!l,e) 

Li kewi se 

ln the first sum the secend factor is up to (-1, )tt the same as 

the main term in the secend sum. Thus we can treat these together. 

i1oreover by Lemma 4.1, the terms in these sums are mu1tip1icative and 

so reduce to Eu1er products over the primes not dividing tt. There are 

three cases to cons i der ( i f ll'F 0). 

(1) 1T a prime, 1T ,{'11. Then the Eu1er factor is 

(2) 1T a prime, m=ord1T(Okll) :=0(2), rrlll· Then the Eu1er factor is 

L: cp('rrt)w1 (rrt)tl(rrt)-s + N(rr)-(m+1 )s ( -ok~/rrm) w1 (rrm+1 )e 

t~ 

t:=0(2) (1-tl(rr)2-2swl (rr)2)-1 (1 - cok~/rrm) N(rr) 1/2-sw1 (rr)) • 
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(3) 1T a prime, m= ord1T((\Jl) = 1 (2). Then the Eu1er factor is 

L 
t.;;m 

t"'O (2) 
( 1-rl(1T)2-2sw1 (i))-1 ( 1-N(TI) 1-2sw1 (1T)2-t!(1T)m+1 (1-s) 

w1 (1T)m+1 (1+i-1(1T) 1-2sw1 (1T2) ))e 

tlow cons i der )J = 0. One has 

c#square 
-1 

dc) g(O,c) 

c=square 

Then 

c2 = sq ua re 

otherwise , 

(-c) = square 

otherwise . 

Thus 

IJI(s,T,X,P, I ,O,e) 

2 2 -1 
·L(2-2s,w1 ,a)L(2-1,w1 ,a) e, 

IJI(s,T,x,P, I ,O,e) 
2 -1 

x(-1 )L(2s-2,w1 ,a)L(2s-1 ,a) e 

which comp1etes the proof of the Proposition. 

Before we 1eave this section, it is probab1y worthwhi1e to add a 

few further remarks about the E-function. The theory of theta-functions 

yie1ds the formu1a [:(2 ]. 
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E:(d) ~!(2)-1/2 x(m'E2) e(-~) 

tlow E: depends on d(mod 4). Thus we can expand it in terms of multi­

plicative characters on (0/4))x. Let 

y(e) = 2: e(d)r::(d) 

for any such character 8. Let e0 be such that y(e0) f. 0. Then 

y(e(o,·) ) 
u 

Thus cons i der 

L e0 (d) (o,d)ur::(d) 

r::(o) -l l:e (d)E:(d6) 

e (o) -l dof 1 ·y(e) 

which is, a priori,a partial sum of the Fourier expansion. Hriting 

(o,d) = r::(o)r::(d)/E:(üd) we obtain 

Hence this must be the complete sum, and 

Rewrite this 

where 

The character e0 is, in general, unknown. As 

it is of order 2, and hence is of the form 

for some y, not necessarily coprime to 2. However, observe that the 

prime decomposition over 2, by the considerations above, is entirely 

determined by E:. Then one can also note that 
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and also 

N(2)- 112 'L L m e(+ d/) 
k d 0 ~ 

N(2)-l/2 L e (d)e( d ) 
d 0 ~ 

Thus there exists one e0 having the property that this Gauss sum is 

nonzero; also all others are of the form e0 (o,·)a. To obtain more 

precise results would involve an examination of the local reciprocity 

law and weshall not go into this more deeply at present. One should 

is nonzero observe that these essentially evaluate r(x,o,c1); this 

when ( c 1 ' • ) tt X= e 0 ( 6' • ) . Th us r (X' 0' c 1 ) = 0 un 1 es s X 

in this case we see that the sum is over a set c = c1'x2 
is of order 2; 

n 1 n r 1 1 
fi xed and X turns through {'Tfl ... Tfk ; Tfj l2,nj:;;, 0}. 

where 

5. Dirichlet Series 

ln this section weshall construct and study two famil ies of 

Dirichlet series which are derived from the Eisenstein series of 

c* 1 

Section 2. The first is essentially the L-series associated by Hecke 

to such a form, and Hecke's methods are appl icable here. The second 

i s 

are associated with a subfield k0 ck. [k:k0 ] =2, and weshall suppose 

that k0 is real, as this simpl ifies the discussion and is also the 

case which arises in the cases in which we apply our results to L-series 

of Diophantine interest. 

First of all, weshall let ws be a Grössencharakter of k which 

has conductor dividing tt and which satisfies 

tl(a)-s 

We shall write this as 

9, = Im I and we shall 
V V 

-m -i'r 
n 

vES 
(i (a)li (alll vlal vx(a) 

V V V 

CO 

ws (a) , the m and X (u) = 1 
V 

asswne for simpl icity that 

9, > 0 (vE sJ ; 
V 

(a,a) = 1. 

this is a restriction on w, which is also justified by the appl ications. 

lt is not essential. ilow let 
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i (V) 0 (mv < 0) 

~ (mv > 0) V 
and 

j (V) ~ - i (v) 
V 

Then if 

e = ® t:. (v) , 
vES 1 

e' 

one has, in the notations of Section 2 

N(c)-sx(c)w(c)e 

if p=@p~(v)' and so also eE\'(X,T). 

Let 

n P (w , Jl) 
yi]lV y S 

yfa 

® e. ( ) 
vES J v 

00 

where P (w ,]1) is defined as in Proposition 4.3 and a is fixedas 
y s 

before. Let 

L:2 
]l(mod Uk) 

-u 
P(w ,]l)L(w 112n ,af )N(Jl) , 

s s- J1 J1 

-1 -1 
Jl E a r 

where 
2 2 

Uk= {u :uE l.Jk}' it is of finite index in 

Theorem 5. l. Theseries defining F(u,ws) converges if 

Re(s) > 1/2 (Re(s) + 1) and can be continued to a meromorphic function 

of finite order in C. It has no poles unless there exists T such 

that Tv=T (aZZ vES 00) (in which case we may assume that T=O, 

without any Zoss of generality). In this case there are simple poles 

at u = 0 , 1 ; the one at u = 1 has residue 

2 _ I 2. I 
Here Rk, Dk are the regulator and discuminant of k, Uk- 1 u . u E Uk 1 

and ek is the number of roots of unity in k. For every e > 0 one 

has that 
1 [k·Q] (l+t:-Re(u)) 

lF(u,w) I « /I (u) 1
2 

s m 
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Proof. As we indicated above this will be carried out by a 

suitable modification of the Hecke method. Let us first observe that 

V carries a Hermitian inner product, which we denote by (, ), and 
p 1/2 

llxll = (x,x) • Let us fix s and cons i der the set Xt = { (z, t) 

zEnvESoo C}. Then f~ acts on Xt. Hrite E(w) for E(w,s,T,X,P,e). 

Then Iet for a cusp y(oo). c1 (A) be the homosphere y{(z,t)IItv;;.A}, 

and A is some fixed real number. From reduction theory one knows that 

f\H- UyH c1 (A) is compact. Thus on H- UyH c1 (A),IIE(w)ll is bounded. 

On the other hand, on c1(A) one has from Propositions 2.2 and 3.1 that 

II E ( w) II « I t I Re ( s ) + I t I Re ( 2- s) 

and 

Thus on c1 (A) one has 

II E ( w) II « I t ( y- 1 w) I r.e ( s ) + I t ( y- 1 w) 12- Re ( s ) 

For simpl icity Iet us assume now that Re(s) :;.1, so that only the fi rst 
-1 a b 

term matters. Then Iet y = (c d); if wE \ n c1 (A) then one verifies 
-1 -1 

easily that N(c) '(A ltl Let us restriet our considerations to 

such r. Then one has 

II E ( v) 11 2 « I t 12 Re ( 5 ) rr II i ( c) w + i ( d) II - 2 Re ( s) . 
V V V 

He consider yE r~\f/f00• Thus one sees that by regarding r~\\ as spl it 

into the images of Cv(A) n Xt and the test, J IIE(w)l1 2 dm(z) is 
' rl\x 

bounded by oo t 

0 ( 1 ) + 0 ( I t 12 Re (s)) 

dm(z) 

0(1) +O(It12-2 Re(s) L ~(c)t·l(cf2 Re(s)) 
-1 -1 

ll(c)'(ltl A 

From this one obtains that, for any E > 0, generally 

f IIE(w)ll2 dm(z) « 1 + ltl-12-2 Re(s) 1+2 

r l\" 
00 J\t 
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i f j Re(s)- lj > E: the 11 E: 11 in the estimate may be dropped. iJote that 

if s has a certain value, we may have in c1 (A) that IIE(w)ll « ltl 

logjtj, but this makes no difference to our final estimate. Now if we 

use Proposition Z.<. we see that if Re(s) > 1 

" ( 2 l+E: L...JII1j! s,c,x,p,g,].l,e)ll « N(u) 

if we sumover J.l such that 

t~ow cons i der 

(v Es,"} for f i xed t. 

Y(e,E(w)) 

where 

Y TI f(s+iT(v) + Q,(v)/2) 
v€5 00 

Then, as p(k)- 1e= (-l)Le', where L=L:m(O}<O m(v), one has 

On the other hand, by Propositions 2.2 and 3.1 one sees that 

f00 (0)=f~l)(w)+f~2 )(w) where (as Q,(v)>O (vES 00)) 

and 

and 

f ( 1 ) ( t) 
00 

y n s+2T(v) 
t 

V 

f~2)(t) c(v-1)-1 L 
J.lE \)- 1 

l.l#O 

n !t2-s-i c(v) •411 ,( 2 nt I i (J.l) l)s+i c(v)+IT(v}/2-1 

vESoo \ V V V 

.jQ,(v) (i)l.l)li)Jl) 1)-m(v),Ks+ic(v)-Q,(v}/2_ 1 (4nli)l.l) lt)} 

.(e,1)!(s,T,X,Jl, ,P,e,l)), 

f(l) (t) + f( 2 ) (t) 
0 0 



where 

f(l) (t) 
0 

and 

f (2) (t) 
0 
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c(n-1\J-1)-1(-l)L :E 
lJE<t-1\J-1 

lJ;.!O 

n ltt2-s-iT(v}1T" (2rrl i (lJ) I t )s+iT(v}H(v}/2-1 

vES V V V 

Ks+~Tv -9,(v)/2 _ 1 (4rrl i)lJ) I t)} (e,\j!(s ,T ,x,lJ,n,e(~ -6))) 

One should observe here that ([ ], p. 91) 

Now, in view of the formula 

one has 

and th i s converges i f Re (u) > 1. Here 

C(u) 
-1 -1 -1 L 2 -1 x (- 1 ) c ( n \! ) (- 1 ) L ( Nw 5 , n) 

I 1-2u I 
n 1rr(21T) f(u+pV/2)f(u+s+iTV-J)~ 

vES00 

V= { t E n ES IRx: n ES t = 1} and 1 et 
X V 00 t VooV 

invariant form on nvES Rt such that, with a fixed order on 

Now Iet \! be an 

00 
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t -I dt 
V V 

Let lvl be the corresponding measure. Then, on the quotient space, 

The rest of the proof is now clear. ln the traditional fashion one 

divide~ 
X 

n IRt 
vES 

00 

Then one writes the integral above, an V as 

These show that 

n 
vES 

00 

t-(s+IT(V)+2u-2) dxt 
V 

ts+iT(v)+2u-2 
V 

-(s+iT(v)+2u-2) 
t 

V 

The first term is 0 unless for all vES00 ,T(v)=T, when it is 

and the secend is 



n 
vES 
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1 -1 
2TI(s+iT(\!) + 2 9,(v)-1) 

00 

t · u- 1 (e.~(s,T,x,o,a,p,e,(~ -~))) 

The quoted results follow from the functional equation impl icit 

here, the Phragmen-Lindelöf principle and the fact that the residue of 

F(u,w5 ) at u=l is 

}y(-l)LI\)I(i(U~)\ n IR:)·c(l)- 1 

vES00 

Our second result requires an additional assumption, namely, that 

there is a totally real subfield k0 ck with [k:k0 ] =2. This always 

occurs in the appl ications we have in mind. Let Xo be the character 

of k0 associated by class-field theory to the extension k/k0 . Let 

now ß E k and set 

2:2 
)J(mod uk ) 

-1 0 
JJß Ek0 

JJE<t-1\!-1 

Observe that i f ß = 1 then )JE k0 and N (JJ) 112 i s the norm of )J in 

ko. 

Weshall also write xß(x)= (Nk/k (ß)/x0 )k, where (I )k is 
0 0 0 

t he Legend re s ymbo 1 in k0 . Suppose k can be rep resen ted as k0 ( /0) 

where eS E Ok ; then we sha 11 wr i te a = ß/6 and we sha 11 assume that 
0 

-1 
aEa 

Observe that this is not a very strong restriction. 

Theorem 5.2. The series defining Fß(u,w5 ) converges in Re(u) > 1 

and can be continued to a meronomorphic function in C. Suppose that 

Re(s) ;;.1 then the only poles in Re(u) > 3/2- Re(s) are at u = 1 ,2, 

-(s+iT) and (possibly) 0 or 3-2(s+iT). Here, as before, the notation 

means that there is no pole at "2- (s+iT)" or "3-2 (s+iT)" unless aU 

the T(\!) are equal, when T is the common value. Thesepoles are 

simple unless s+iT= 1 and w5 _ 1x·xß considered as a Grössencharakter 

of k0J is trivial, when the pole may be of order 2. Moreover, for 
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E > 0. 3/2- Re(s) + E < Re(u) < 1 + E, and llm(u) I> 1 + llm(s+iT) I 
one has 

[k0 : ] (l+s-Re(u))/(Re(s)-1/2) 

I Fß(u,ws) I« llm(u) I 

Proof. The proof requires a number of preparations. tJote that 

500 can also be regarded by restriction as the set of infinite places 

of k0 . Let now 

where H2 is the usual upper half-plane. 

Define,for aEkx, 

Let G0 = nvES SL2 (IR). 
00 

(x + i y ) -+ ( i (a) x + I i (a) I y k) 
V V V V V V 

Let iv:SL2 (Ok0 )-+ SL2 (Ok) be the natural injection. Let Da=(~ ~). 
-1 -1 

Then, under the assumpt i on that a E Ok, a E a one has 

Lemma 5.3. 
where 

r(a,a) 

(a, d ,a) 

If yEf(a,a) then 

K(D yD-l) = X -l (d) 
a a a 

is 

( 1 ) ' 

if y = ( ~ ~) 

Proof. Clearly 8 (z) = D 81 (z). Thus, observing that the 
a a 

stabilizerof 8 1 (H 0 ) in Gis G0 ,weseethattherequiredgroupis 

i-l (i (r0 ( )) n D G0 o- 1); a simple computation shows that this is 

D r( ,a)D 
_1 a a 

a a 
-1 

K ( D yD ) 
a a 

-1 -1 
( ca I d ) k t:( d ) (d 0) 

E:(d)-1 (c = 0) 

By well-known properties of the Hilbert norm-residue symbol (cf. [BMS] 

(c/d)k = 1 , 

and 
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Thus it only remains to compute E(d). This is a character of 
2 

order 2 as E(d) = (-1/d)k=l, also E(d)=l if d:=l (mod 4). Recall 

that 

E(d)N(d) l/2 

Note that E(du)=E(d) as we have already verified that E(u)=l if 

uEUk. Now suppose that o0 is the relative different of k/k0 ; then 

f..= ok/60 is suchthat (f..) = conorm(vk0 ) where vk0 is the different 

of k0 (cf. [WI], p. 156). Suppose that k-k0 (~), then (60/~) 
is a square and hence, by taking a suitable choice of o0 one has 

oo= ~ m2. 

Now 

Let us assume that x~(d) =-I, then there exists a prime TI of k0 so 

that d:=TI (mod 4), we may assume that 'Tl avoids a finite set of 

primes. We can write x=a+~ß where a,ß are summed (mod TI). 

Since (a/d)k =I and e(x/d) = e(a/d) one can easi ly evaluate the Gauss 

sum, which yields E(TI) = (~ok/TI)k E(d) is independent of the choice 

of ok. For if ok is replaced by a ok' E(d) is replaced by 

E(du-1) = E(d) E(u-1) = E(d). 

Now we return to the theorem proper. Let 8a:r(a,a) ->-r0 (a) be themap 

(a 0 ) (a 0 )-l Then consider j (8 (y),e (z)). This is itself a 
y->- 0 I y 0 I . p a a 
factor of automorphy which extends to G0 and so one sees that it can 

be written as 

X 

vES 
00 

A diag(((z (c)z +i (d))/li (c)z +i (d)l)m(v,i)A-I 
V V VV V VV V 

where m(v,i)EZ (l,;;;i,;;;dim(p)) and diag(ci) is the diagonal 

matrix with entries 6 .. c., and A is some matrix which depends on 
IJ I V 

Pv· lt is easy to determine that Av' m(v,i) explicitly given Pv· 

Now Iet E(w) be as before with Re(s) ~I and Iet 

Then 
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fa(yz) Xa(y)jp(ea(y),ea(z))fa(z) (yEf'(a,a)) ' 

where 

Xa(y) (Nk/ko (a-1)/a)ko y (~ ~) 
and 

r' (a,a) (0-1) (01) 1 0 r(a,a) -1 0 . 

For convenience, Jet 

jo(y,z) j (e (y) ,e (z)) 
p a a 

As E is already known tobe a character we see that 

E(d) 

But since (LI)= conorm(vk0 ), and as k has class-number 1, Nk/ko (LI) 

is a square. Thus E(d) = 1, as required. This proves Lemma 5.3. 

Now Jet us return to the theorem proper. Let be 
-1 

y-+DayDa. Then consider j (6 (y),e (z)) which is itself a factor of 
p a a 

automorphy extending to G0 . lt can be written as 

0 A (diag(((z (c)z +iz (d))/li (c)z +i (d)lllm(i,v))A-l, 
vESco V V V V V V V V 

where m(v, i) EZ and di ag (e.) 
I 

represents the 

diagonal matrix with entries aiöij' and A 
V 

is some matrix which 

would be found expl icitly. Note that if pv = PQ.(v) then 

@ A (diag((i (c)/li (c)i)m(i,v))A-l n 
vESco V V V V vESco 

sgn(i (c))Q.(v)l, 
V 

where sgn i s the usua 1 s i gnum funct i on (c E k~). Th i s observat i on 

wi 11 later be reflected in a simpl ification in our study of Eisenstein 

series. 

Nowlet E(w) beasbefore,with Re(s);;.l andlet 

Then 

XX ( Y) j ( 6 ( y) , 8 ( z) ) f ( z) 
a p a a a 

(yEr(a,a)), 

where 
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and 

f'(a,o:) ( ) ( )
-1 

0 -1 0 -1 
1 0 r(a,o:) 1 0 

Let 

j (8 (y),e (z)), 
p 0: 0: 

and 

<jl~(z) TI s+iT(v)+u-1 
yv 

vES00 

0 otherwise 

Furthermore, Jet 

and we sha 11 choose A 1 arge enough that Y c0 (A) n c0 (A) = <P i f 

y E f' (a,o:)- f~(a,o:), where f~(a,o:) = { (~ ~) E f' (a,o:)}. 

Now weshall consider the integral, whose convergence will soon be 

clear, 

= yf (e',<jl~(z)f (z)) 
r~(a,o:)\H 0 o: 

da(z) , 

whe re da =0 dav, 
2 

da = I dx 1\ dy I I u . Then we can treat this in two 
V V V V 

different ways. First of all Jet 

A E (z, u) 

so that, by the usual Rankin transformation, 

ln view of the usual estimates one can easily verify that this 

converges of Re(u) > 1; this wi 11 become clear from our subsequent 

discussion. On the other hand, on making use of Proposition 2.3, we 

see that ln(u) is the sum of 
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n f/(/i (a:)/y )2-5-iT(v) 
V V vES00 

5+iT(v)+u-1~ -2 t -1 y y /dx ndy • n {2TI(5+iT(v)+ -2·· 9,(v)-1) } 
V V V V vES 

00 

(e.~(5,T,x,O,a,p,e,(~ -~))) 
and 

1 0 ( )/ )5+iT(v)+2(v)/2-1 /0 l • (2TI I O:jJ y K +0 ( ) n( )/2 ] (4TI I (a:jJ)y ) V V 5 11 \) -N \) - V V 

The point of our method i5 now that Je()Ja:x)0dx = 0 unle55 
V 

T Vk/ko (a:)J) = 0, in wh i eh ca5e i t 

i5 the u5ual Lebe5gue mea5ureo 
-1 

mean5 that lJ E a lcS k0 o Hence 

i5 m=m(i(k0 na:- 101)\IR), where m 

I f now k = k 0 (/cS) then T r (a:)J) = 0 

i f we take a: = lcS ß th i 5 mean5 that 
-1 -1 ßJJ E k0 n a v 0 The fir5t integral can ea5ily be evaluated and it i5 

mOyc(a-lv-1)-1 (-l)L vEnS {2n(5+iT(v) + t 9-(v)-1)-1/ iv(a:)/2-5-iT(v)J 

00 

where R0 i5 the regulator of k0 o 

To deal with the 5econd term we write 

JA(u) = L c(a-lv-lfl(-l)Lf 

)J f 00 (a,a)\C0 (A) 

n j1 iV(a:) jyv)2-5-iT(v)y~+iT(v)+u-] 4Tf 

vES 

• (2n/ i (a: ) //+iT(v)+9-(v)/2-1 
V )J V 

1 0 I -2! ·K5+iT(v)-9,(v)/2-1 (4" 1V(a:ll) Y)Yv ) €> dyv 
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From the exponential decay of Ka(x) it follows easily that this 

series is absolutely convergent and represents an entire function. 

Then, if 

moc(a-lv-1)-1 (-I)Lx(-1) n {I iv(a) 12-u-s-iT(v) 
v€500 

•Tf• (2Tr)-ur(-f + R,~v)) r(-f + s + iT(v)- I)! l(Nw!,af 1 , 

one sees that the second term is c0 (u)F 8(u,ws)- JA(u). Thus, we have 

IA(u) y J (EA(z,Ü),fa(z)) dcr(z) 

r(a,a)\H0 

where 

-1 -J -1 L 2 2 2 -J 
m0yR0c(a ,V ) (-1) x(-I)L(N ws,tt)L(Nws,tt) 

\ 1 12-s-iT(v) I -1) n j2Tr i)a) (s+iT(v) + z l',(v)-J) j 
v€500 t 

The series defining EA(z,u) converges in Re(u) > 2- Re(s). To 

analyze the integral further we have to examine the behavior of EA(z,u) 

at all the cusps. Thus Jet P be the set of cusps of r• (tt,a) and 

for each p E P we choose a E SL2 (k0 ) so that crp (oo) = p. Each of 

these is also a cusp of (~ l?~)-lo(a)-lr0 (a)D(a)(~ -~). Let P0 cP be 

0 -1 -1 -1 0 -1 
the set of cusps equivalent under ( 1 0 ) D(a) r 0 (tt) D(a) ( 1 0 ) 

to 0. Both r• (a,a)\P and r• (a,a)\P0 are finite. Also assume that 

if p=yp'(yEf'(a,a)) then crp=ycrp. As in Proposition 2.3 one has 

that 

has a Fourierexpansion of the same type (apart from the difference 

incurred from the "truncation"). Weshall only need the "constant term" 

wh i eh i s, i f z E o -J ( c0 (A)), z = (x + i y ) , 
p V V 

n t 2-u-(s+iT(v))}·~( ) 
yv 't' u,p ' 

v€500 

where the <P(u,p) can~e computed as before. The only facts which we 

need are that if 1\(t,w~-JXa) is the Hecke L-series with Grössencharakter, 
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0 • . . with the corresponding gamma-functions and ws-l 1s the restr1ct1on of 

ws-l to k0 then J\(2u,~_ 1 x0) <j>(u,p) has no poles unless -w~_ 1 xa= 
= N-t (where N is the norm in k0 ) and then the only poles in 

0 0 
Re(u)>l/2Re(s)-l) arethoseat u=l-l/2t and 1/2(1-t). More-

over, J\(2u,w~_ 1 xa)E(z,u) is regular at u= 1/2(1-t). These remarks, 

as the conscientious readerwill verify, follow from the observation 

concerning j 0 made above. 

Now we define EA(z,u) (cf. [Se]). 

A( ) . ( -1 ) n I ( -1 )2-u-(s+iT(v) l "'( ) E z,u -J 0 op ,z 1yv op z 1 '+' u,p 
v€500 l J 

Then 
-A 
E ( • , u) is square-integrable and meromorphic in c (in the 

sense). Moreover, it decays exponentially at the cusps. \~e shall now 

examine 

which exists wherever E(z,~) is anti-analytic. 
-1 

Let f'(a,a) 
p 

be the 

stabil izer of in CJ f' (a,a)o Then 

in the region 

p p 

y pEf'~,a)\P I 
r~(a,a)\c0 (A) 

n j 2-u-(s+iT(v))) (<P(~,p),jo(o ,z)-lf (o (z)) do. 
tyv { p a p 

v€500 ) 

we apply Proposition 2.3 to 
-1 

j 0 (o ,z) f (o (z)) 
P a P 

which can be written as a sum of 

n j 2-s-iT(v)~ n j 2-s-iT(v)) ,., 
(if p E P0 ) ty c + / yv j cp 

vES 
V p 

vES 
00 00 

or 
I 2-s-iT(v)) ,., n I Yo I cp 

( i f pEP-P0) 
vES 

00 

and a second term which we denote by f ( 1 ) (z) , and which decays 
p 

exponential ly at Wr i te now 



0 
JA(u,p) = rJ 

r~(a,a)\c 0 (A) 
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n 
vES 

00 

and one sees that this is an entire function. Thus 

Y L (rjl(~,p),J~(u,p)) 
pEr' (a,a)\P 

+ y L: 
pEr' (a,a)\P0 

+ y L: 
pEr' (a,a)\P 

- 1-u -1 
(rjl(u,p~c )m'A (u-1) 

p p 

(rjl(~,p) ,c''')m'A3-u-2(s+iT) 
p p 

/(u-3+2(s+iT)) , 

where the convention of the enumeration of the theorem appl ies to the 

last term. This we rewrite as 

G0 (u)F (u,w ) 
p s rJ 

f' (a,a)\H0 

-A - u -1 
(E (z,u),fa(z)) do(z)-G 1Au 

- y L: - 1-u 

pEr' (a,a)\P0 
(rjl(u,p),c )m'A /(u-1) p p 

- y L: 
pEr' (a,a)\P 

(rp(~,p) ,c*)m'A30u-2(s+iT)/(u+3+3(s+iT)) 
p p 

- y L (rp(~,p),J~(u,p)) + JA(u) 
pEr' (a,a)\P 

Here the m~ are certain measures, analogaus to R0m0 at the cusp "', 

which are compl icated to define and which will not be further used. 

They can be computed by any reader desirous to know them. This tech­

nique, a general ization of the well-known Rankin-Selberg method, was 

introduced in [P]. 

With this formula we have essentially reached our goal. The 

assertions about the poles can now be read off directly. This leaves 

only the assertion about the growth in the vertical strips. One observes 

that the functional equation for the Eisenstein series gives a relation 
-A 

between E (z,u) and similar ones evaluated at 3-2s-u, in which 

(T(v)) has been replaced by (-T(v)). This induces a functional 

equation for 
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relating it to a similar series evaluated at 3-2s-u. Then as our 

integral expression (modulo some "trivial" poles) shows that this of 

finite order, the assertion concerning the rate of growth folllows as 

usual from the Phragmen-Lindelöf principle. 

Remark. lt would be interesting to develop these methods to Iook 

at 

L: 
-1 -1 

JJE<t V 
2 

jJ mod uk 
0 

JJEßk0 

P(w,JJ)L(wn ,f a)x(JJ) 
jJ jJ ' 

where X is also a Grössencharakter. One suspects that if "Re(w) ;;.]/2" 

then this has a double pole at xl i f 

and a similar statement vis-a-vis Theorem 5.1. This would subsume our 

present picture in a satisfactory fashion. 
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