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ON THE NUMBER OF FOURIER COEFFICIENTS 

THAT DETERMINE A MODULAR FORM 

DORIAN GOLDFELD* JEFFREY HOFFSTEIN** 

§1. Introduction and statement of results: 
The main aim of this paper is to explicitly determine how many Fourier coef-

ficients of a modular form uniquely determine the form. Results of this type had 
previously been attained by Moreno (M] for cuspidal automorphic forms associ-
ated to GL(n) over a number field. In the special case of two modular forms for 
GL(2) of conductors h and h, Moreno showed that there are effectively com-
putable constants A and C such that if the first Af0 (where f = max(h, h)) 
Fourier coefficients of the two forms agree then the two modular forms must be 
identical. Our interest focusses on modular elliptic curves. With today's tech-
nology and the assumption of the generalized Riemann hypothesis, we attempt 
in this paper to give for holomorphic modular forms, the sharpest possible such 
bounds with explicit computation of all constants. In addition, we also obtain 
some unconditional results. In the course of our investigations, we found the 
following general theorem. 

A zeta function Z ( s) is said to satisfy a functional equation with gamma factor 
r 

(1) G(s) = IJ f(ais + bi) 
i=l 

provided Z(s) is a meromorphic function of s which satisfies the following two 
conditions: 

First, for Re(s) > 1, we assume the logarithmic derivative of Z(s) is given by 
the absolutely convergent Dirichlet series 

(2) 
Z' oo 

-z-(s) = L A(n)n-s 
n=l 
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with .A(n) E C, and that for every {j > 0, there exists a constant c8 > 0 depending 
only on {j such that 

00 

(3) L .-\(n)n-1- 8 < c8. 
n=l 

Second, there exists a real number D > 0, called the conductor of Z ( s), such 
that 
(4) A(s) = s(1- s)D 8 G(s)Z(s) 

is an entire function of order one which satisfies the functional equation 
(5) A(s) = ~:A(1- s) 

for some complex number E of absolute value one. 
The zeta function Z ( s) is said to satisfy the Riemann hypothesis if all the 

zeros of A(s) are on the line Re(s) = ~· 

Theorem 1. Let Z1(s), Z2(s) satisfy the Riemann hypothesis and have func-
tional equations with gamma factors G 1(s), G2(s) and conductors D 1, D 2 re-
spectively. Set 

Z' oo 
-2(s) = "'Ai(n)n-s zi ~ 

n=l 

(i=1,2). 

Assume DiG1(s)Z1(s) is analytic except for a simple pole at s = 1 and that 
D2G2(s)Z2(s) is entire. Then for every"' > 1, there exists a constant C"' > 0 
(depending only on "'} such that for all conductors D 1, D 2 > "' as above, there 
exists an integer 

n < C"(logD1D2)2(loglogD1D2)4 

for which .-\1(n) =f. .-\2(n). 

Theorem 1 can be applied to modular forms. In the special case of the con-
gruence subgroup 

fo(N)={(~ ~)ESL(2,Z) I c:=O (modN)}, 

for example, the following theorem can be obtained. 
Theorem 2. Let fi(z) = I;~ 1 a1(n)e21rinz, h(z) = I::=l a2(n)e21rinz, be two 
holomorphic Heeke newforms of weights w1, w2, associated to fo(Nl), fo(N2), 
respectively. Let N = l.c.m.(Nt, N 2 ). Assume that the Riemann hypothesis 
holds for the Rankin-Selberg zeta functions 

00 L lal(nWn-s-wl+l, 

n=l n=l 

Then for every "' > 1, there exists a constant C"' > 0 (depending only on 
"'• w1, w2) such that for all N > "' as above, there exists an integer 

n < C"(logN)2(loglogN)4 

for which a1(n) =f. a2(n). In the special case when w1 = w2 = 2, and N1 = N2 = 
N, we may take C"' = 16 for all "' > e15 . 

If we do not assume the Riemann hypothesis, then we may still obtain uncon-
ditional results. 
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Theorem 3. Let h, h be two holomorphic H ecke newforms of weights w1, w2 
and squarefree levels N1, N2, as in theorem 2. Let N = l.c.m.(N1, N2). Then for 
every "' > 1, there exists a constant CK such that for all N > "' as above, there 
exists an integer 

n < CKNlogN 

Remarks: Theorem 1 may be applied to automorphic forms associated to GL(n) 
over a number field with n 2': 2 (see [J-P-S] and [M]). Under the assumption of 
the Riemann hypothesis for Rankin-Selberg zeta functions, it is a consequence of 
theorem 2 that two non-isogenous modular elliptic curves of conductor N > e15 
cannot have the same number of points (mod p) for all primes 

p:::; 16(logN)2(loglogN)4 . 

Similarly, it follows from theorem 3 that there exists an absolute constant C > 0 
such that two non-isogenous modular elliptic curves of squarefree conductors 
N1, N2 cannot have the same number of points (mod p) for all primes 

p:::; CN(logN) 

where N = l.c.m.(N1, N2). We do not know how to obtain such results for elliptic 
curves which are not assumed to be modular. 

§2. Proof of Theorems: 
The proof of theorem (1) is based on the following: 

Lemma 4. Fix"' > 1. Let Z(s) of conductor D > "' satisfy the Riemann hy-
pothesis and have a functional equation (5) with gamma factor (1). Then for 
x > 10 log D, there exists a constant B > 0 such that 

2: 
"Y 

A(!+h)=O 

The constant B depends only on G and K, and in the particular case where 
Z( s) is the Rankin-Selberg zeta function associated to the convolution of two 
holomorphic weight two newforms for f 0 (N), we may choose 

{ 

10.78 
7.19 

B= 
4.66 
3.85 

if"'= e3 

if"'= e5 

if"'= elo 

if"'= el5 

Proof of Lemma 4: Write A( s) as a product over its zeros using the Hadamard 
product theorem. Applying the functional equation and taking the logarithmic 
derivative, we may reduce to the form: 

(6) G' 1 1 Z' 1 
log D + - (s) + - + - + - ( s) = L 1 . · 

G s s-1 Z s---q 
"Y 2 
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Now if s = a+ it, 

(7) 

Taking a = 2, we obtain 

( 1 ) ~ 6 Re > - 2---Nt L:~+i(t- 1 ) - I: ~+1-13 () 
'Y 2 I'Y-tl:9 4 

where 
N(t) =#hi IT-t/:::; 1}. 

Thus 

Now, by the hypothesis, I~ I « 1, and by the usual upper bound for 

r' 
'lj;(s) = r(s) 

we see that for /t/ :::; 1, D > e3 , 

(9) N(t) «log D, 

which for /t/ ~ 1 gives 

(10) N(t) « log/t/ + logD. 

In the specific case of the Rankin-Selberg zeta function associated to the con-
volution of two holomorphic newforms of weight two (see [0], [L]), the gamma 
factor is of the form G(s) = r(s)r(s + 1), and it is easily checked that for /t/:::; 1 

[ . 1 1 ] Re 'lj;(2 + zt) + 'lj;(3 +it) + --. + --. :::; 2.85, 
2 + zt 1 + zt 

and for /t/ ~ 1 

Re ['I/J(2 +it) + 'lj;(3 +it) + 2 ~it + 1 ~it] :::; 2.49Jftl. 

The maximums are achieved at JtJ = 0, 1 respectively. Note that we use Jitl 
rather than log /tJ in order to achieve a better constant at small values of t. 
Furthermore, the Euler product for Z ( s) and the fact that the coefficients satisfy 
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the Ramanujan conjecture lead to the estimate ~ (2) ::; 6.33. Combining this and 
the line above, we obtain from (8) that 

(11) 

when ltl :S 1 and 

(12) N(t) :S 1
6
3 ((log D + 2.49Jjtj + 6.33) 

if ltl ~ 1. Breaking the sum 

L:=L: + L: 
'Y hl9 hl>1 

and using the estimate I sin t / t I :S 1, we get 

(13) L sin2 ('y;ogx) :S N(O) (logx) 2 + L sin2 ('y;ogx) 
'Y 'Y I'YI>1 'Y 

::; N(O) (logx) 2 + 2 ~ %~: ~)~. 
Applying (11), we have 

"" sin2 ('y log x) 13 [ 3 ~ _...:...;_2_.:::;_..:.. :S 6 (logx)2(9.18 +log D)+ "2((2)(6.33 +log D) 
'Y 'Y 

+ 2(2.49)((3/2)(1- 2-312 )] 

13 ( 2 [ 9.18 2.47 24.03 ] 
= 6 logx) (log D) 1 + logD + (logx)2 + (logD)(logx) 2 · 

This gives the lemma in the case of the Rankin-Selberg zeta function. The 
general case follows from (9), (10) combined with (13). 

Proof of theorem 1: Consider the integral 

_ 1 12+ioo[xs-! -x!-s]2(_z~ ) 
I - -2 . 1 -z ( s) ds. 

1l'Z 2-ioo S - 2 1 

Then 

for x ~ 1 since 

1 12+ioo ys-! { (logy)2 if y ~ 1 
- 1 ds= 
21l'i 2-ioo (s- 2)2 0 if y :S 1. 
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On the other hand, moving the line of integration to Re( s) = t we pick up 
residues at s = 1 and at s = ~ + ir for each zero, obtaining 

(14) 

I = 4(x - 2 + x-1) 
_ 4 " sin 2 ('y log x) 

L....t "(2 

1 it+ioo [xs-!- x!-s] 2 (-z~ ) + -2 . 1 -z ( s) ds. 
rrz t -ioo s - 2 1 

Applying the functional equation 

z~ G~ G~ z~ -(s) = -2logD1 - -(s)- -(1- s)- -(1- s), 
Z1 G1 G1 z1 

and transforming s H 1- s, it follows from (14) that 

(15) 

where 

3+· 1 1 2 1 l4 tOO G' G' r 8-- --s] 
(16) J1 = -. [21ogD1 + G1 (s) + G1 (1- s)] · lx 2 

- ~ 2 ds. 
2rrz 3 · 1 1 s - -4-too 2 

On the other hand, applying the same procedure as above to Z2(s), and noting 
that there is no pole at s = 1, we obtain 

(17) L >.1(n) l (x2) _ 4 " sin2('y'logx) J 2 -- og - - - L....t + 2 
2 n! n 'Y'2 

n<x 

where the sum on the right now goes over zeros ~ + ir' of Z2(s), and 

1 .:!+ioo G' G' [ s-1 1-8 ] 2 4 2 2 X 2 - X2 

(18) J2 = -. h [21ogD2 + -G (s) + -G (1- s)] · 1 ds. 2rrz 3 · 2 2 s - -4 -too 2 

Subtracting (17) from (15) yields 

( _ 1 ) 4L sin2 ('ylogx) "sin2 ('y'logx) J J _ 0 8 X - 2 + X - + 4 L....t 12 + 1 - 2 - • 
"(2 'Y 

It follows from lemma 4 that 

(19) 
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The integrals (16) and (18) for J1 and h may be easily shown to be bounded by 

Thus there will be a contradiction if 

or equivalently if 

This proves the theorem. 

Proof of theorem 2: Following Ogg [0], let 

00 

/l(z) = L al(n)e2?rinz 
n=l 

00 

h(z) = L a2(n)e2?rinz 
n=l 

be two holomorphic newforms of weights wand squarefree level Nb N2, respec-
tively. Set N = l.c.m.(Nb N2), M = g.c.d.(N1, N2). For primes piM, define 

and 

(20) ~(8: /1, h)= ( 4~ 2 r f(8)f(8 + w- 1)Z(8) 

where 

00 

(21) Z(8) = (N(28) L a1(n)a2(n)n-s-w+1 IT (1- c(p)p-s)-1. 
n=l viM 

Then Ogg [0] has shown that ~ is analytic except for a possible simple pole at 
8 = 1 with residue proportional to < /1, h >,the Petersson inner product of /1 
with h. Moreover, ~ satisfies the fuctional equation 

{22) ~(8; /1, h)= ~(1- 8; /1, h). 

This result was generalized by Li [L] to newforms of arbitrary weight. It follows 
that for /1 =f. h, ~(8; /1, /!)has a simple pole at 8 = 1 while ~(8; /1, h) is entire. 
Thus, the conditions of theorem 1 are satisfied. The proof of theorem 2 again 
follows from (19) which yields a contradiction if x » (log N)(log log N)2. 
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In the special case when w1 = w2 = 2 and N1 = N 2 = N, we again apply 
(19), but note that in this case J1 = h. Hence, there will be a contradiction if 

B 
x-2+x-1 ::::; 2 (1ogN)(logx) 2 

where B is given as in lemma 4. If we put x = .JC: (log N)(log log N) 2 with 
B = 3.85 and "' > e15 , then a crude estimate completes the proof. 

Proof of Theorem 3: We compute 

!! -- w1 +w2 dxdy 
< !1,h > = h(z)h(z)y 2 7 

ro(N)\IJ 

= J J L /I(O"z)h(O"z) (ImO"z) w1!w2 d:~y, 
ro(l)\1) uHo(N)\ro(l) 

where f) denotes the upper half-plane. A set of representatives for f 0 (N)\f0 (1) 
is given by 

{ (: ~) I tiN, 1::::; u::::; Njt }· 

Setting M = N jt, we have 

(: ~) = (~ ~~J (1/: ~) (~ ~), 
where h, s1, u1 E Z are chosen so that th + Mu1 = u and rh + s1 = s. Since 
h, h are newforms, they must be eigenfunctions of the involution 

( Mr s 1 ) 
z t-t N Mu1 z 

with the same eigenvalue 

EM= II ( -ai(P)) = II ( -a2(p)) 
PIM PIM 

where the product goes over primes piM (see [A-L]). Moreover, since IEMI 2 = 1, 
it follows that 

1- W) +w2 < JI,h >= M 2 

X !! 
ro(l)\IJ 

"" ( ( 1 h ) ) f ( ( 1 h ) ) ~ dxdy ~h OMz 2 OMzy 2 
MIN y 

l~u~M 

where h = (N/M)-1 · u (mod M). Since we are assuming that that a1(n) = 
a2 (n) for all n « N(logN), a simple computation shows that forM::::; Nand 
z E fo(N)\1) 
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Hence 
< h, h > > JJ \h(z)\ 2 Y w 1 ~w 2 d:~Y + O(N-!), 

ro(N)\~ 

from which it easily follows that 

< h,h > » 1. 

But this contradicts the fact that < h, h > = 0 for newforms h ::J f2. Conse-
quently, the assumption that a1 (n) = a2 (n) for all n « N(logN) must be false. 
This completes the proof. 
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