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 Annals of Mathematics, 140 (1994), 161-181

 Coefficients of Maass forms
 and the Siegel zero

 By JEFFREY HOFFSTEIN and PAUL LOCKHART*

 Introduction

 In this paper we give an upper bound for the first Fourier coefficient of a

 Maass form for Fo (N). Let e be the complex upper half-plane, F = ro (N) the

 Hecke congruence subgroup of level N. Let X be an even Dirichlet character
 to the modulus N, viewed as a character of F in the usual way. We consider

 the set So(F, X) of cusp forms for F of weight zero, and character X. Thus if
 f E SO(F, X), we have f (Lyz) = x(y)f (z) for all 'y E F. The Laplacian

 = _2 ( j + a 2)

 is a self-adjoint operator on So (F, X) with respect to the Petersson inner prod-
 uct

 ,g Vol(\) (z)g(z) d,

 where da denotes the invariant measure y-2 dx dy.

 Suppose f(z) is an eigenfunction of A with eigenvalue A. It is known

 that A > 13 so we may write A = 1 + t2 with t either real and positive, or
 0 < it < 1. Then f(z) has a Fourier expansion

 (0.1) f (Z) = p(n) In 1 -1/2W(nz),
 n$40

 where the Whittaker function W(z) is given by

 W(z) = (IyI cosh irt)1/2Kit(2rtlyl) exp(2wix).

 Here Kit denotes the usual K-Bessel function.

 If we further suppose that f is a newform in So(F, X), then f is an eigen-
 function for the Hecke algebra, as well as the involution z F-+ -z. Let a(n)

 *Research by the first author was partially supported by NSF Grant #DMS-9023202. The authors

 would like to thank Dan Bump, Bill Duke, Henryk Iwaniec, and David Rohrlich for their many helpful

 comments regarding this work.
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 162 JEFFREY HOFFSTEIN AND PAUL LOCKHART

 denote the eigenvalue of the nth Hecke operator Tn. Then

 (0.2) p(n) = ?p(-n), n E Z;
 p(n) = p(1)a(n), n> 1.

 The coefficients p(n) are thus determined up to a scalar multiple by the Hecke
 eigenvalues a(n). Recall that a(l) = 1 and the a(n) satisfy the relations

 a(n) = X(n)a(n), (n, N) = 1;

 (0.3) a(m)a(n) = 3 X(d)a(mn/d2), (mn, N) = 1;
 dl (mn)

 a(p)a(n) = a(pn), p I N.

 Let us normalize f(z) so that If II = 1. It follows from (0.2) that the first
 coefficient p(l) is nonzero. How large can it be? We seek uniform bounds for

 p(l) in terms of the eigenvalue A and the level N. We begin by relating p(l)
 to the convolution L-function

 (0.4) L(s, f x f) = ((2s)Z na(rs)
 n=1

 We use the Hecke eigenvalues a(n) in this series so that its leading coefficient
 is 1. It is known that L(s, f x f) has a meromorphic continuation to the
 entire plane, with a simple pole at s = 1. Computing the Rankin-Selberg
 convolution of f with itself, and taking residues, yields

 (0.5) Res8=iL(s, f x f) = -Ip(1)K.
 3

 Now to any newform f, there is an associated form F on GL(3) with
 Fourier coefficients a(m, n) and L-function

 (0.6) L(s, F) = a(1)
 n=1

 such that the Euler factors of C((s)L(s, F) agree with those of L(s, f x f) at
 the primes not dividing the level N. We thus have a relation

 (0.7) L(s, f x f) = ((s)LN(s)L(s, F),

 where LN(S) is a product over the primes dividing N of "bad" Euler factors.
 The form F is the so-called "adjoint square lift" of f, the existence of which

 was established by Gelbart and Jacquet in [3]. The function L(s, F) is known
 to be entire, and L(1, F) :7 0. Equation (0.7) then gives

 (0.8) Res,=1 L(s, f x f) = LN (1)L(1, F).
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 COEFFICIENTS OF MAASS FORMS 163

 Checking cases in [3], we find that upper bounds for the Fourier coefficients at

 the bad primes are never worse than those for the good primes. Using these

 to bound the Euler factors at the bad primes, we get the estimate

 N-6 <<E LN(1) <<E NE.

 Combining this with (0.5) and (0.8) yields

 (0.9) N`EL(1j F)-1 <<E lP(1)12 <<E NFL(lj F)-l.
 Upper bounds for p(l) then follow from corresponding lower bounds on the

 special value L(1, F) of the associated adjoint square L-function. We thus for-

 mulate the problem as follows: Given a newform f(z), how small can L(1, F)

 be?

 Previous attempts to estimate p(l) from above (for example [2], Corol-

 lary 1), have invariably run into a "stone wall" at A1/4, a situation reminiscent

 of attempts to find effective lower bounds for L(1, Xd) better than 1dl-1/2,
 where Xd denotes the real Dirichlet character associated to the quadratic field
 of discriminant d. In fact, our situation is very much like the class-number

 problem for quadratic number fields, with the adjoint square L-function play-

 ing the role of the Dirichlet L-function, and the eigenvalue corresponding to

 the discriminant of the field. In the classical case, the estimates depend on

 the existence or nonexistence of a so-called "Siegel zero." We will show that

 this is true in our case as well.

 Remark. The lower bound

 lp(1) 12 >>e6 (AN)`6

 has been obtained by Iwaniec ([7], Theorem 2). In fact, Iwaniec's method
 is a key ingredient in our Lemma 2.1. Stated in terms of the adjoint square

 L-series, this becomes

 (0.10) L(1, F) <<e (AN)6.

 Our main results are contained in the following theorems and corollary.

 Theorem 0.1 describes the case when a Siegel zero does not exist. Theorem 0.2

 gives an unconditional result. The constant c(E) in Theorem 0.2 is analogous

 to the constant in Siegel's Theorem. It can be thought of as either ineffective,

 or, as in Tatuzawa's version of Siegel's Theorem, effective with at most one

 exception. We choose to express our result in the latter form.

 THEOREM 0.1. Suppose there exists a constant c such that L(s,F) has

 no real zeros in the range

 log(AN+1)
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 164 JEFFREY HOFFSTEIN AND PAUL LOCKHART

 Then there are effective constants cl and C2, depending only on c, such that

 L(1) ? )log(AN+ 1)

 and

 Ip(1) 12 < c2 log(AN + 1).

 THEOREM 0.2. For any E > 0, there exists an effective constant c(E) so
 that the inequality

 L (1, F) > c (E) (AN)-

 holds for all F with at most one exception.

 In particular, Theorem 0.2 implies that L(1, F) > (AN)-' with an inef-

 fective constant. Combining this with (0.9), we get:

 COROLLARY 0.3. Let f be a newform for Fo(N) with eigenvalue A, nor-

 malized so that If II = 1. Then for any E > 0,

 p(l) <<e (AN)F.

 The size of the coefficient p(l) has been shown by Phillips and Sarnak [11]

 and Deshouillers and Iwaniec [2] to be related to the general question of the

 existence of cusp forms for Fuchsian groups. The connection is via a spectral

 mean value theorem for certain Rankin-Selberg convolutions. Corollary 0.3

 has been used recently by Luo [10] to improve this result, obtaining essentially
 the best possible estimate.

 Unfortunately, we are at present unable to make the bound in Corol-

 lary 0.3 effective with at most one exception, as in Theorem 0.2. The trouble

 is that whereas the exception to Theorem 0.2 is merely a single form F, there
 may be many Maass forms f for which F is the lift.

 Remark. One can in fact show that if the bound of Corollary 0.3 holds,

 then a real zero /3 of L(s, F) must satisfy 1 - 3 ?, (AN)-'. Obtaining an
 upper bound for p(l) is therefore equivalent to proving the nonexistence of a

 Siegel zero of L(s, F). Incidentally, Vinogradov and Tahtadzjan [14] assert the
 nonexistence of such a zero, but do not supply a proof. The short justification

 which they do provide appears to be incorrect.

 Remark. The methods used here can be easily applied to holomorphic

 (resp. nonholomorphic) cusp forms of weight k. One obtains results identical

 to those above, with the term AN replaced by kN (resp. AkN).

 The plan of the paper is as follows. In Section 1 we establish Theorem 0.1.

 Section 2 consists of auxiliary results needed for the proof of Theorem 0.2. Fi-

 nally, in Section 3 we prove Theorem 0.2, using techniques based on Goldfeld's

 simplified proof of Siegel's Theorem (see [4] and [5]).
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 COEFFICIENTS OF MAASS FORMS 165

 1. Zero-free regions and residues of L-series

 In this section we consider L-series of the form

 L 0)= b(n) L(s) = E ns
 n=1

 where the Dirichlet coefficients b(n) are nonnegative and b(l) = 1. We assume

 that the above series converges for Re(s) > 1, and that L(s) has an analytic

 continuation to Re(s) > 0 with a single simple pole at s = 1. One notion we

 will use throughout the paper is that of the level of an L-series. If, for some

 constant D and product of gamma factors G(s), the function DS12G(s)L(s)
 possesses a functional equation as s -? 1-s, we refer to D as the level of L(s).

 We now obtain a lower bound for the residue of such an L-series in terms

 of the width of a zero-free region. For the proof of Proposition 1.1, and several

 additional times throughout the paper, we will require the following integral

 transform (see, for example, [6]). For any positive integer r,

 (1 1) ~1 [2+ZiO xs dsI 1 (1 _ lyr, X > 1

 (1.1) 27ri J2oc s(s+1) (s+r) 0, O<x< 1.

 PROPOSITION 1.1. Let L(s) be an L-series of the above type, and set

 R = Res,=, L(s). Let M > 1. Suppose that L(s) satisfies a growth condition
 on the line Re (s) = o of the form

 (1.2) IL(' + i-Y)I < M(I-yI + 1)B
 for some constant B. If L(s) has no real zeros in the range

 (1.3) 1 -1 M<s< 1,

 then there exists an effective constant c = c(B) > 0 such that

 (1.4) R-1 < clog M.

 Proof. Let 2 < y3 < 1 and let r be a fixed integer greater than B. Using
 the integral transform (1.1) and the absolute convergence of L(s + i3) in the
 range of integration, we get

 1 _ 2+_ 0 L(s+/3)x ds _ 1 b(n) (
 2ri . ijoo s(s+1)...(s+r) r! br(t x

 Since the b(n) are nonnegative, and b(1) = 1, we have for all x > 2,

 (1.5) 1 f L(s<+/)xsds
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 166 JEFFREY HOFFSTEIN AND PAUL LOCKHART

 Here, as throughout the proof, the implied constant is effective and depends

 only on B. From (1.2) we see that L(s) has polynomial growth on the line

 Re(s) = 2. This is also true on the line Re(s) = 3, since IL(3+i-y)I < L(3) for
 all 'y. Hence, by the Phragmen-Lindel6f principle, we have L(o+ity) = Q(1^ylB)
 for all 2 < a < 3, ^y > 1. Thus we may shift the line of integration to
 Re(s) = 2- /3 < 0, picking up residues at s = 0, 1 - /3. Using the bound (1.2),
 we see that the right-hand side of (1.5) becomes

 Rxl1, L(O1)
 (1-/3)(2- 3) ...(r+1-/3) + r!+ O(Mxl -d)

 Taking x = MC, for C a sufficiently large constant, we get

 (1.6) 1 <R cl ) + L(:)

 Thus, if L(s) has no zeros in the interval (1.3), we choose 3 equal to the

 left-hand endpoint, so that

 1 - 13~
 1-pi= log M

 Since L(s) has a simple pole at s = 1, and is positive for real s > 1, we must
 have L(p) < 0. Then (1.6) yields

 R-1 < log M

 as desired. 2

 Now let f be a newform of level N and eigenvalue A, with adjoint square

 lift F. We want to apply the previous result to the two L-functions ((s)L(s, F)
 and L(s, f x f). We first need to show that they satisfy the requisite bound
 on the critical line.

 LEMMA 1.2. Let L(s) denote either 4,(s)L(s,F) or L(s,f x f). There

 exist absolute constants A and B such that

 (1.7) L(4 + iy) < (AN + 1)A(17| + 1)B.

 Proof. Let L(s) = (,(s)L(s, F). From (0.7) we have the relation

 (1.8) L(s, f x f) = LN(s)L(s).

 The function LN(S) is a product over the primes dividing N of various Euler

 factors. These factors vary depending on the type of ramification the corre-

 sponding prime undergoes in the lifting process. Checking the possible cases

 given in [3], one sees that the bounds on the coefficients are never worse than
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 COEFFICIENTS OF MAASS FORMS 167

 in the "good" case. Thus, for example, Shahidi's bound IapI < 2p1/5 (see [13])
 may be used to show that for Re(s) > 2/5,

 (1.9) N-6 <<E LN(S) <<E NE,

 where the implied constants are effective. Combined with (1.8), this shows

 that the problems of bounding L(s) and L(s, f x f) are essentially the same

 (at least for Re(s) > 2/5).

 Now from the definition (0.4) of L(s, f x f), and using Shahidi's bound

 on the coefficients, we see that L(s, f x f) is bounded by an absolute constant

 on the line Re(s) = 2. Hence L(s) <?a NE on this line. Now by the work of

 Gelbart and Jacquet [3], L(s) satisfies a functional equation relating s and

 1 - s. Thus we get a bound for L(s) on the line Re(s) = -1. The ratio

 of gamma factors arising from the functional equation is bounded by certain

 fixed powers of the eigenvalue A and the imaginary part of s. The level of

 L(s) is relevant, and is equal to the level of L(s, f x f). Since the level of
 the convolution of two GL(2) forms must divide the product of their levels

 squared (see [12]), the level of L(s) can be at most N4. Hence we get a bound
 of the form

 L(-1 + i'y) < (AN + i)A(1,^y + 1)B

 for certain absolute constants A and B. Applying the Phragmen-Lindel6f

 principle in the strip -1 < Re(s) < 2, we see that the same bound applies on
 the line Re(s) = 2. By the above remarks, the same goes for L(s, f x f). E[

 It remains to note that the coefficients of both ((s)L(s, F) and L(s, f x f)
 are nonnegative, and both are analytic except for a simple pole at s = 1.

 The nonnegativity of the coefficients, though clear for L(s, f x f), and for

 ((s)L(s, F) at generic primes, is somewhat more subtle for ((s)L(s, F) at bad
 primes. We are indebted to David Rohrlich for pointing out to us that this
 can be checked via the local Langlands correspondence.

 Theorem 0.1 now follows from Proposition 1.1. The residues of the L-

 series ((s)L(s, F) and L(s, f x f) are L(1, F) and 2Ip(1)K-2 respectively. If
 L(s, F) has no zeros in an interval

 1-< si
 log(AN+ 1) -

 then by (0.7) and (1.9) neither does L(s, f x f). Taking M = (AN + 1)c in
 Proposition 1.1, for C sufficiently large, yields Theorem 0.1.

 Remark. Equation (1.6) also shows that if L(s, F) has no zeros in the
 range 1 - E < s < 1, then

 (1.10) L(1,F) <<e (AN)E.
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 168 JEFFREY HOFFSTEIN AND PAUL LOCKHART

 2. Estimates for sums of Hecke eigenvalues

 The main result of this section is Lemma 2.3, which will be used in the
 argument of Section 3. Let f be a newform, with adjoint square lift F. Let
 a(m, n) denote the general Fourier coefficient of F. Throughout this section
 and the next, we will use a primed summation sign A' to denote a summation
 over integers relatively prime to N. In what follows, all bounds are effective.

 LEMMA 2.1.

 _ <<e (xAN)'. Zn
 n<x

 Proof. Let

 S(x) = a(n) 4
 n<x

 We first show that for any E > 0 there is an effective constant c(E) such that
 for all x > 1,

 (2.1) S(x) < c(E)x2 ?(N)E

 Let

 L4(s) = E
 n=1

 Using the standard convexity argument (as in Lemma 1.2), we obtain an esti-
 mate

 (2.2) L4(1 + E) <<a (AN)c

 for some absolute constant C. To be more precise, the Rankin-Selberg con-
 volution of the adjoint square lift F with itself (when multiplied by the ap-
 propriate zeta factors) gives a Dirichlet series L*(s) with positive coefficients,

 a subset of which are the numbers ja(n)14. Now L*(s) satisfies a functional
 equation, so the standard argument gives L*(1 + E) <<I (AN)C, and since
 L4(1 + e) < L*(1 + E), we get (2.2). We now have

 S(x) < 2 - Id ( x
 n<2x

 = 1 [2+i' 2L4(s + 1)(2x)s ds
 2wi J2i(S + 1)

 This is easily seen to be < L4(1 + E)X 2 by moving the line of integration
 to Re(s) = + E. Thus

 (2.3) S(x) < c?(E)x2+ (AN)C.
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 COEFFICIENTS OF MAASS FORMS 169

 Following Iwaniec (see [7] and [8], Lemma 1), we use the Hecke relations (0.3)
 to compute

 S W)2= l Ia(m)I|4a(n)I'
 m,n<x

 = S A/EfE1 la(mn/d2)I)
 m,n<x dj d(m,n)

 r ((m, n)) nla)(mn/d')14
 m,n<x dam(m,n)

 / .wd , T((m,n)) mu
 d<x m,n<x/d

 < T(n)3 5 T(n)4 I
 n<x n<x2

 Hence we get the relation S(x)2 < c2(e)xeS(x2). Iterating this, we have

 S(x)n < C2(E)nxEnlognS(xn) n > 2,

 which, after taking nth roots and using the estimate (2.3) above, yields

 S(X)< C3?)1+2-F log n( ffC/n

 and we obtain (2.1) upon choosing n C/IE. The estimate for Zn<x Ia(n) 14 -
 now follows from partial summation. D

 LEMMA 2.2.

 S a( n) <?, (xAN)6.
 n<x

 Proof. The L-series L(s, f x f) and ((s)L(s, F) have the same Euler
 factors at the primes not dividing N. It follows that for (n, N) = 1, the

 coefficient of n-u in the Dirichlet series E a(l, n)n-s is the same as that in

 ((2s) S ua(n)12

 (()n=l1n

 Thus

 a(l, n) = 5 AL(d) Ia(n/m2d) 12
 m2dln

 =-51la(d)12 5 bt(n/m2d).
 dIn m2In/d
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 170 JEFFREY HOFFSTEIN AND PAUL LOCKHART

 Now the inner sum is always ?1, so

 la(l,n)l < Z a(d) 12, (n, N) = 1.
 din

 Using the above estimate, we get

 Ia(1, n)12 E n < n < - la(d)l)
 n<x n<x din

 < S T(n) Ia(d)14

 n~~~
 n<x d ln

 < T(n) T (n) Ia (n) 14
 - n n

 n<x n<x

 which is << (xAN)e by Lemma 2.1.

 LEMMA 2.3.

 s?'la(m, n)1 <<, (xAN)'6
 m2n

 m2n<x

 Proof. In Chapter IX of [1] we find the identity

 ______i n2_0 a(nil, 1 c) a(1,rn2)
 a , fl2) - ((Si + S2) fl21

 nl ,n2=1 nj=l n2 1

 for any GL(3) eigenform of level 1. For higher level, the same formula holds,
 in the sense that the Euler products of the two sides agree at the good primes.
 Equating the coefficients of m- n-S2 of the two sides yields

 a(m, n) = 5 (d)a(m/d, 1)a(l, n/d), (mn, N) = 1.
 dl(m,n)

 Using the fact that a(n, 1) = a(l, n) for adjoint square lifts, we obtain

 Ia(mn)12 ? ( Z Ia(1, m/d)a(1,n/d)I)
 dl(m,n)

 < I a(l, m/d)12 S Ia(1, n/d)12.
 dl(m,n) dl(m,n)
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 COEFFICIENTS OF MAASS FORMS 171

 Hence

 I (mn) S I 1 E Ia(1,m/dl)12 S Ia(l n/d2)I2
 m2n m2n

 m2n<x m2n<x di I(m,n) d21(m,n)

 < z 1 ja(lm)12Ia(ln)12
 dld2 m2n

 dld2<x m n<x

 < E d) 1 l n )
 d<x n<x

 and the result follows directly from Lemma 2.2.

 3. An analogue of Siegel's Theorem

 Let fi and f2 be newforms as above, with eigenvalues A1, A2, levels N1, N2,
 and associated adjoint square lifts F1, F2. Suppose that fi is not a lift from

 GL(1) (in other words, not monomial). Let F1 x F2 denote the Rankin-

 Selberg convolution of F1 with F2, and let L(s, F1), L(s, F2), and L(s, F1 x F2)
 be the corresponding L-series. Finally, let

 (3.1) W (s) = ( (s)L(s, Fi)L(s, F2)L(s, Fi x F2).

 In the following argument, the function L(s, F1) will play the role of an ex-

 ceptional quadratic Dirichlet L-series with a real zero in the original version of

 Siegel's Theorem, L(s, F2) will play the role of a Dirichlet L-series involving
 a different quadratic character, and L(s, F1 x F2) corresponds to the Dirich-
 let series formed with the product of the two characters. We begin with the

 following:

 LEMMA 3.1. Suppose F1 and F2 are distinct. The function p(s) then
 has a meromorphic continuation to the entire complex plane, with a single

 simple pole at s = 1. It possesses a functional equation as s -? 1 - s, and

 the coefficients in the Dirichlet series expansion of p(s) are nonnegative. Fur-
 thermore, on the line Re (s) = 1 we have an upper bound

 (3.2) 0q( + i-y) < (A1A2N1N2 + 1)A(1|1^ + 1)B

 for some absolute constants A and B.

 Proof. The analytic continuation and functional equation of p(s) fol-
 low from the corresponding properties of the individual terms in the product

 (3.1). For ((s) these are well known, and it is from this term that the simple
 pole arises. The analytic continuation and functional equations for L(s, F1),
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 172 JEFFREY HOFFSTEIN AND PAUL LOCKHART

 L(s, F2), and L(s, F1 x F2) come from the work of Gelbart and Jacquet [3]

 establishing the lifting, and from the work on convolutions of automorphic

 forms on GL(n) contained in [9], [10] and [16]. The assumption that fi is not
 a lift implies that F1 is cuspidal, and it follows that L(s, F1 x F2) is entire.

 The gamma factors contribute the A1A2 part of (3.2). For the level, we call

 upon the principle from [12] that was invoked in Lemma 1.2: The level of

 L(s, F1 x F2) divides the product of the cubes of the levels of L(s, F1) and

 L(s, F2), and thus is at most (N1N2)12.
 To see that the coefficients of the Dirichlet series for p(s) are positive, let

 p denote a good prime, i.e., one which does not divide the level of p(s). Write

 the pth factor in the Euler product for L(s, fi) as

 (1 - _ip-)-1(1 - Cp-8)-l i = 1 2.

 Then the factors corresponding to the lifts Fi have coefficients 1, aic, ca-1, where

 ai= (p) Note that since (i + ( = ai(p) and (i = Xi(P), we have either
 Iail = 1 or jail = ai. The pth factor in the Euler product for p(s) is then

 JJ (1 - 1aa2p-<)-l

 where the product is taken over the sixteen possible pairs (61, 62) with the Fi
 independently running through the values 1, 0, 0, -1. Taking the logarithm, it

 is easy to verify that the pth term in the expansion of log p(s) is

 (a + ajk +2) (a + a-k +2)
 k=1 kpks

 Since the ai are either nonnegative real numbers, or on the unit circle, it follows
 that the above series has nonnegative terms, and hence so does the series for

 p(s). It then follows that p(s) has a pole at s = 1, and L(1,F1), L(1,F2),
 and L(1, F1 x F2) are all nonzero. For nongeneric primes, the positivity result
 can be seen by considering the local Langlands correspondence, as mentioned

 after Lemma 1.2. [1

 Remark. The positivity of p(s) is not a coincidence. There is a con-
 jectured lifting of two automorphic forms on GL(2) with parameters aia,
 and a2, a-1, to a form on GL(4) with parameters a1a2, a1iaY, a2a-1 , a1.
 The series for p(s) is simply the formal convolution of this conjectured form
 with its conjugate. Although we will use the positivity of p(s) at all primes,
 as it streamlines our argument, it is in fact only necessary to verify positivity

 at the generic primes as was done above. One simply divides p(s) by the
 Euler factors corresponding to bad primes, and uses this modified series in the

 arguments which follow.
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 The proof of Theorem 0.2 will require the following upper bound for

 L(1, F1 x F2).

 LEMMA 3.2. L(1,Fi x F2) <?6 (A1A2NlN2)6.

 Proof. Let ai(m, n) denote the general Fourier coefficient of Fi. Then,
 as a Dirichlet series,

 L(s, F1 x F2) = C(3s) z al(m, n)a2(m, n)

 Separating out the bad primes, we have

 L(s, F1 x F2) = ((3s)LN(s, F1 x F2)L*(s, F1 x F2),

 where

 L*(s, F x F2) = -' al (m, n)a2(m, n)
 (M2n)s

 and LN (s, F x F2) is a finite product of bad Euler factors (see [9]). For
 Re(s) > 4 we have the bound N- <?6 LN(S, F1 x F2) <? N6, which follows
 from Shahidi's 1/5 bound [13] combined with Gelbart and Jacquet's analysis

 of bad primes [3]. As in Lemma 1.2, this is seen by listing the types of bad

 primes that can occur and verifying that the growth of the coefficients is never

 worse than in the generic case. Also, for s in this range, 1 < ((3s) < 1.

 Therefore, it suffices to show that L*(1, F1 x F2) <? (AjA2N1N2)6. Consider
 the integral transform

 (3.4) I= 1 f2+i0 L (s + 1, F1 x F2)xs ds

 with x and r to be chosen presently. Using the identity (1.1) we get

 al(m n)a2(mn) _ 2n__
 m2n<x

 Hence

 I j- Ial (mn)a2(m,n)I
 m2n

 m2n<x
 1 1

 ?(~ ~ Iai(m, n) (12 2 ma2 n)12 2
 m2n<x m n<x

 Lemma 2.3 then gives us the bound

 (3.5) I <? (xAlA2NlN2)6.
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 174 JEFFREY HOFFSTEIN AND PAUL LOCKHART

 Now by the functional equation, together with the Phragmen-Lindeldf prin-
 ciple, L(s, F1 x F2) is easily shown (as in Lemma 1.2) to satisfy an upper

 bound

 L(a + iy, F1 x F2) <K (AjA2N1N2)C0y0C

 for a > 4/5 and y bounded away from zero. Dividing by ((3s)LN(s, F1 x F2)
 we see that the same bound applies to L*(s, F1 x F2). Moving the line of

 integration in (3.4) to Re(s) = -1/10, and choosing r = C + 1, we get

 I = L* (1, F1 x F2) + 0((AjA2NiN2)Cx-1/10).
 r!

 Combining this with (3.5) and setting x = (A1A2N1N2)10C+1 gives

 L*(1, Fi x F2) <E (A1A2N1N2)6

 as desired. El

 Remark. The product of bad Euler factors LN(s, F1 x F2) is introduced

 to avoid the necessity for writing down explicit GL(3) Hecke relations at the

 bad primes.

 Finally, we need the following variation on the classical result concerning

 the distribution of Siegel zeros.

 LEMMA 3.3. There exists an absolute constant c such that (p(s) has at

 most one real zero in the range

 log(A1A2 N1 N2)

 Proof. Let A(s) = s(1 - s)G(s)(o(s) where G(s) is the appropriate
 product of gamma factors so that A(s) is entire and satisfies A(s) = A(1 - s).
 Write

 A(s) = eA+BsfJ (1 -s e8P

 where p runs over the set of zeros of A(s). Taking the logarithmic derivative,
 we get

 z 1 ! 1 + 1 + G'(s) + (s)

 s- p s s- 1 G(s) W(s)

 By (3.3), W'(s)/I(s) is negative for s real and greater than 1, hence there is
 an absolute constant cl such that

 1 1 1
 + < 1 + cl log(AjA2N1N2)

 s i S-f2 - s- 1

 for any two real roots /31 and /2 of p(s). Choosing s = 1 + 6/log(AjA2N1N2)
 with 6 < cj1 gives the result. C1
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 Proof of Theorem 0.2. First suppose that F is the lift of a form f which

 is itself a lift from GL(1). In this case, L(s, F) is a product of a quadratic

 Dirichlet L-series and a Hecke L-series defined over a quadratic field. It is easy

 to see that a Siegel zero (if it exists) can only arise from the Dirichlet L-series,
 and then L(1, F) can be bounded below by Siegel's original theorem. (See the
 appendix for further details.) Thus we may assume for the remainder of the
 proof that all F are lifts of nonmonomial GL(2) cusp forms.

 Suppose we are given E > 0. There are two cases to consider: either

 L(s, F) never has a zero /3 with 1 -/ < , or else there is an F with this
 property. In the first case, using equation (1.6) from Section 1, we have the
 bound

 L(1, fl-l <, (AN)--

 with an effective constant, which is the desired result. In the second case,

 let F1 be the adjoint square lift of a Maass form fi such that L(31, Fl) = 0
 with 1 -EF < /31 < 1. We may assume that A1N1 is minimal, subject to
 this condition. Now let F2 be arbitrary. If A2N2 < A1N1, then L(s,F2) 7& 0
 in the range 1 -EF < s < 1, and again by (1.6) we are done. Suppose that
 A2N2 > A1N1. If L(s, F2) has no real zero within c/ log(A1A2N1N2) of 1, where
 c is the constant in Lemma 3.3, then since A2N2 > A1N1, L(s, F2) has no real
 zero within 1c/ log(A2N2) of 1, and thus Theorem 0.1 gives the desired result.
 Thus we may assume that L(s, F2) has a real zero /32 in this interval. We now
 suppose that F2 7& F1, so that we may use the function p(s). Then o(/32) = 0,
 and since /31 is already a zero of p(s), it follows from Lemma 3.3 that

 (3.6) :1 - /3i ?log(A1A2NiN2)'

 Now by Lemma 3.1, p(s) is an L-series of the type considered in Section 1,
 so we may apply Proposition 1.1 with M = (A1A2N1N2)A, for some absolute
 constant A. Equation (1.6) then gives

 L(1, Fi)L(l, F2)L(1, F1 x F2)(A1A2N1N2)C(1 31)
 1~~~~ ~ ~~~ < - 1-I

 where we have used the fact that o(01) = 0. Now from (3.6) we get

 C 1
 > > log(A1A2N1N2) >log(A2N2)'

 so that

 (3.7) L(1, F2)-1 ?< L(1, F1)L(1, F1 x F2)(A2N2)
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 176 JEFFREY HOFFSTEIN AND PAUL LOCKHART

 Now from Iwaniec's bound (0.10) we find L(1, Fi) ad (A1N1)6 ad<s (A2N2)6,

 and Lemma 3.2 gives L(1, F1 x F2) <? (AjA2N1N2)6 Ad (A2N2)26. Substitut-
 ing these estimates into (3.7) yields

 L(1, F2)-1 <E (A2N2)6, F2 ? F1,

 with an effective constant. This completes the proof of Theorem 0.2. [1

 BROWN UNIVERSITY, PROVIDENCE, RI
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