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1. Introduction

If n(x; q, a) denotes the number of primes p not exceeding x congruent to a (modq),
then Titchmarsh [6] proved using Brun's sieve that there exists a positive constant B
such that

x
n(x; q,a)<B ————— if q < x.

0(4)log(x/g)

Results of comparable quality cannot be obtained by analytic methods for q > s/x
even if one assumes the so-called generalized Riemann hypothesis.

There has been considerable interest in recent years in reducing the value of B
and H. L. Montgomery [4] has even obtained B = 2 by a very elegant form of the
large sieve. The first improvement on B = 2 (but only an average) was obtained by
Hooley, who proved that for almost all a (modq)

n(x; q, a) ^ (2 +e) . , * , , , , if 1 < 9 ^ *2 / 3

cf>(q) log ipcj/q)

and for fixed a and almost all q with Q < q < 2Q,

( 1 + £ ) * if v1/2 <c n ^ v*/5

— if x*15 ̂ Q^x1 "\

More recently, Motohashi [5] has improved Hooley's first result and obtained

except for at most q1 ~e/5 residue classes a (modq).
This result was obtained by a very ingenious combination of the Selberg sieve and

of the large sieve, and it even enabled Motohashi to improve on the value B = 2 in
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certain ranges of q uniformly for all a (modq). In particular, he proved

log (x/q*13) \ \ log*

log*

and

"(*:«•a)<2(l +e) mwxie«») if

By a slightly different integration of the Selberg and large sieves and also the deep
theorem of Burgess on the size of the L-functions in the critical strip (obtained by
making use of the known Riemann hypothesis for function fields) we shall obtain the
following improvements on Motohashi's theorems. The author would like to add,
however, that he has since heard that Motohashi has already obtained the first part of
Theorem (1) in the range g < x 1/3.

THEOREM 1. Let e > 0 be arbitrarily small; then there exist positive constants
ci> C2> ci> C4> independent ofe, such that

n(X; q, a) < (2+c, a)

where, for each 0 < 6 ^ | ,

27+265'

fZ/ese results hold uniformly for all a (modg). In particular, for 5

2. Notation
In the proof following we shall introduce e > 0 to be an arbitrarily small positive

number, and the positive numbers el5 e2, e3... will depend at most on e and perhaps
each other and be subject to the condition 0 < e, < ce for some absolute constant
c and i = l , 2 , . . . . We also let tr(n) denote the number of representations of n as a
product of r factors. As usual, x (modg) represents a Dirichlet character to the
modulus q.
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3. The Selberg Sieve Method
For each integer d, let Xd be an arbitrary real number and define for (a, q) = 1

.. — , din
n = a mod q \ d|P(z)

where P(z) is the product of all primes less than z. Then, as noted by Selberg,

nk(x;q,a)^(— + l\ (logx)k+Sk(x;q, a) (2)

as long as Ax = 1, where we have defined

1 V /, XV
nk(x; q, a) = —— > I log — I . (3)

kl f& \ PI
p = a (mod q)

In accordance with Selberg's method, the values of Xd minimizing (1) and subject
to the condition Xt = 1 are given by

(r!d"q) = 1

otherwise,
where

Y = ̂  logz. (4)
a

Here, as is well known,
\Xd\ <1. (5)

The function Sk(x; q, a) can be expressed by the usual Mellin transform as

ix;q'a) = iJm 2 m J L
X mod g (a)

where (a) is any vertical line with a > 1, and

(7)

Now, it follows from (6) that if the line of integration is shifted to a line (a) where
a < 1, say, then

- -dm 2 m
X mod q (a)
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since the L-function formed with the trivial character will contribute a pole with
residue $(<?)/<? at s = 1. The contribution of this pole will then be

l/qK(l,Xo)x

and equation (8) follows from (4) and the fact that

4. Some Lemmas

The present paper is essentially based on the following four lemmas. Lemma 2 is
especially important and is based on Burgess' work on character sums, while the
other lemmas are consequences of the large sieve method.

LEMMA 1. (Gallagher [2]). Let T > 1; then for any complex numbers an and
positive M, N

T

2 / 2 fl"*(")w"
X mod q — T

LEMMA 2. (Burgess [1]). Let Re(s) = •£—<5 and 0 < <5 < £; then for every e > 0

I f f c vM *£ / I(3 + lOd + e)/16 | c |

vvAere the constant implied by <| depends at most on e.

The following two lemmas can be deduced from the second and fourth power
mean-value theorems for Dirichlet L-functions and the functional equations for the
L-functions. A proof of the fourth power mean-value theorem can be found in [4],
(and see also [5]).

LEMMA 3. Let 0 < 5 < £; then

T

"(logqT)2.J
X mod q — T

LEMMA 4. With the same conditions as above,

T

j \LG-S+it>X)\*dt<<iqT)l+*s(logqT)\
X mod q —T

5. The Basic Idea of the Proof

The basic idea in the present method can be illustrated in the following heuristic
argument. Let us assume for the moment that K(s, x) can be written in the following
form
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where |AJ ̂  1. It would then follow from (8) and Lemma 2 that for k = 2

xl/V3+e)/l6 v f m

Sk(x;q,a)~ . , _x. <
logz m xmodfl(l/2)

(1 +z/q) log 2x

lfe+1

(9)
by Lemma 1.

Now, choosing

assures that the right side of (9) is

°(W) logz

as long asg < x(8/19)"e, so that by (2) it can be deduced that

x

for all $ < x( 8 / 1 9 ) - ' .
The transition from nk(x; q, a) to no(x; q, a) is achieved by noting that since

Sk(x; q. a) is an increasing function of x, we get, for 0 < u < 1,

If dy If
— J Sk.x(y\q,a)—< Sk_x(x;q, a) < — j Sk_,(>;;^a)

so that

this implies that

; ^, a)] < Sk_!(x; ̂ , a) ; g, a)];

from which, choosing u = x"*1 for suitable e,, the result follows by a simple backward
induction starting at k = 2.

Similarly, choosing lines of integration other than £ in the above heuristic argument
leads to improvements of the Brun-Titchmarsh theorem for other ranges of q.
Unfortunately, the assumption that Lemma 1 can be directly applied to K{s, x) is
not valid, and following Motohashi [5], we replace K(s, x) by a sum of squares, an
idea originating with Selberg. This sum of squares is then divided into three parts
and a different line of integration and also different method applied to each. The
simple upper bound (9) is then replaced by three such sums in six variables, the
minimization of which leads to the final results.
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6. Proof of Theorem

We note that K(s, x) may be written as a sum of squares in the following way.

where

Let us now split K(s, x) into three sums in the following way

2
= Kl(s,x)+K2(s,x)+K3(s,x),

and for j = 1,2,3, we let (for 0 < Sj < {)

I1
1 2ni<f>(q) J „*+! -ds

Zmodd (1/2-Sj)

so that, by (8),

Sk{x;q,a)-
logz 2 w- (12)

In all that follows we can take k = 2.

1. It follows immediately from (10) and Lemma 2 and also (11) and Lemma 1
that

, r l f f , i
k+1

'^16^!1'2"'^—V

quv J \uv

2. We first of all note that

\HG-62+it,X,z/d)\<(zld)l'2+i>
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Consequently, it follows that

I J ds
lfc+1

/
X (1/2-i

1/4 3/4

uv

2(52] 3/4

by Lemma 4 and also (11) and Lemma 1. It now follows that

1/2 -8 1 ^ - ^ 1
1 V 1

IK) (in3/4

\ V _J

(logs) *max

Case 3. The estimation of 73 is based on the fact that K3 may be rewritten as

X(w2 dv d2)

_ ^ JEfifipL

where
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Consequently,

x O/2-83)

z^3 r z I
Y 1 / 2 - ^ 3 / 7

a 3 — l-i- l o e 1 8 *X Q _ 83
 1 + _ 1/2_1,2 1OS ;^-Z2 L ^2 y J

If now, in accordance with (12), one combines the upper bounds obtained in the
previous three cases, one gets

x
Sk(x;q,a)-

logz

2_j log2*

As previously explained, the completion of the proof rests on the proper choice of the
variables z, zi,z2,8l, 52, <53 so as to minimize the above upper bound while simultane-
ously letting xl(4>(q) logz) be an improvement on the previous forms of the Brun-
Titchmarsh theorem. This minimization problem will be dealt with in the next and
final section.

7. Minimization and Conclusion of Proof
In regard to the six upper bound terms of equation (13), there are only two

possibilities—either the term involving z/q is largest or one of the other terms is larger.
Let us assume the first alternative is the case.

If we now choose

2 = ^(3 + 10801(16 + 3280 J » ( 1 4 )

this ensures that the term involving z/q is

With this choice of z it only remains to choose the other variables so that the right side
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of (13) is also bounded by (15). This will indeed be the case if we choose z, andz2 so.
that

y - * j
< Z l < ( ( 1 9 + 4 2 ^ (

t
8

1 ^ 2
6 ^ ) ( 1 - 2 3 l ) ) ) t " ' <

^ . 3 / { 8 ( l / 4 - d 2 ) } / , v , _ € 6

lM+«S < 7, < | - ^ 1

) -̂  ^2 ^ \ ^(i+a2)/(i/4_a2) I

where

7l 1 16 + 325, ) 1 1/4-«2 j '

and 52 ^ ^. The inequality leads to

,)/l71 + 58«1)Nl-«7

Now, if <5, = <52 = 53 = 0 and

• ( •
"2 ~ \ ^61/16

then all our conditions are satisfied and we have

for all

which proves the first part of Theorem 1. Moreover, the inequality (16) assures us that
we cannot improve our result for any other choices of 8lt S2 or <53. That is, of course,
in the case in which the term involving z/q is the largest term on the right side of (13).
We now proceed to discuss the other possibility.

To deduce the second part of Theorem 1 let us choose z, = z so that only the term

log2

of equation (13) enters. If we then assume that

z1/2""5' >z/<7
this forces us to choose

and with this choice of z, we get

q > (

which proves the second part of Theorem 1.
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Finally, we should just like to remark that up to this point we have not used in any
significant way the three variables 8lt 52, <53 which are the lines of integrations that
arise in the three cases of the previous section. Slight improvements of Theorem 1 are
possible in the range

.v24/71 <q<x2'5

if one assumes that another of the six terms in (13) is largest, and in this case a proper
choice of 8U 82,<53 is essential.

For example, if we assume the term involving z3/4/{43/4Zi1/2+*2} to be largest, and
z, = x/qB for some B, then we see that the choice

X \ » - « M

ensures that (15) is satisfied for this term. Moreover, upon substituting these values
into the first two terms of (13), one obtains

19+ 10^ l+4<52 .
B > ^ 5 + e

where

and consequently, choosing <5t = 0 and B = (19/8)+y for some y > 0 gives

q > x'\
where

- i

Also, with choice of B, we have

where

4-4-^. 19 v

+ T7+-- 08)

Taking 3 ^ ^, we have only to check that

z, <z/q
and this occurs so long as

4+2,5, _ 3 + < ^ ( j 9 )
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Finally, choosing z2 = z proves that

x
n(x; q, a)

where z satisfies (18), and this holds for allg satisfying (17) and all pairs <52, y satisfying
(19) with y > 0, \ > S2 ^ £. Taking <52 = £ and y = 7/24+e17 gives

for all

which is a slight improvement on Theorem 1 for a certain range of q.

Note added in proof. The author would like to thank Professor A. Selberg for many
helpful discussions which led to substantial improvements in some of the results of
this paper.
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