HILBERT FUNCTIONS OF VERONESE ALGEBRAS

H E A CAMPBELL, A V GERAMITA, I P HUGHES, G G SMITH, AND D L WEHLAU

ABSTRACT. We study the Hilbert polynomials of non-standard graded algebras R, that are finitely generated on generators not all of degree one. Given an expression $P(R,t) = a(t)/(1-t^{\ell})^n$ for the Poincaré series of R as a rational function, we study for $0 \le i \le \ell$ the graded subspaces $\bigoplus_k R_{k\ell+i}$ (which we denote $R[\ell;i]$) of R, in particular their Poincaré series and Hilbert functions. For example, we prove that if $R[\ell;i] \ne 0$ then its Hilbert polynomial has degree n-1. We investigate the algebraic invariants of finite groups in this context.

1. INTRODUCTION

We study commutative graded algebras $R = \bigoplus_{k=0}^{\infty} R_k$ over a field **F**. We require that R be connected, that is, $R_0 = \mathbf{F}$, and that R be finitely generated so that $\dim_{\mathbf{F}}(R_k) < \infty$. The Poincaré series of R is the power series $P(R, t) = \sum_{k=0}^{\infty} \dim_{\mathbf{F}}(R_k) t^k$ with Hilbert function $H(R, \cdot) : \mathbf{N} \to \mathbf{N}$ defined as $H(R, k) = \dim_{\mathbf{F}}(R_k)$.

There are many results in the literature concerning the Poincaré series and Hilbert functions of standard graded algebras, notably the result of Macaulay. The wonderful book [1] is a good reference.

It is easy to see (and well-known) that P(R,t) may be written $a(t)/(1-t^{\ell})^n$, where ℓ is a positive integer, n is the Krull dimension of R and a(t) is a polynomial with integer coefficients and $a(1) \neq 0$, see Proposition 3.1. Given an integer ℓ , and i a non-negative integer less than ℓ , we define $R[\ell; i]$ to be the graded vector space of elements of R of degree congruent to i modulo ℓ . The algebra $R[\ell; 0]$ is called the *Veronese subring of order* ℓ . Of course $R[\ell; i]$ is a module over $R[\ell; 0]$. It is easy to see that a the Krull dimension of a Veronese subring has the same Krull dimension as R, see Proposition 4.1. In special cases a Veronese subring is itself a standard graded algebra, see Corollary 4.3.

Now we suppose that ℓ is an integer such that P(R, t) may be written in the form $a(t)/(1-t^{\ell})^n$ where $a(t) \in \mathbb{Z}[t]$. Then for each $i = 0, 1, \ldots, \ell - 1$, there is a Hilbert polynomial $H_i(k)$ which gives the **F**-dimension of $R[\ell, i]_k$. In general, H_0 has degree n-1, although this cannot be said of H_i , see Example 4.9. However, if R is Cohen-Macaulay, then H_i has degree n-1 provided $R[\ell; i]$ is non-trivial, see Proposition 4.8. If R is a domain, then H_i is of degree n-1 and its leading coefficient is equal to the leading coefficient of H_0 , see Corollary 4.11. We are also able to prove for R a Cohen-Macaulay domain, that for any homogeneous system of parameters for $R[\ell; 0]$ all of the modules $R[\ell; i]$ have the same rank as free modules over the system, see Proposition 4.12.

We define the period of R, denoted m(R), to be the least of the integers ℓ for which there exists an expression $P(R, t) = a(t)/(1 - t^{\ell})^n$ where $a(t) \in \mathbf{Z}[\mathbf{t}]$. We show that m(R) divides any such ℓ . In general, it is not easy to determine the period of an arbitrary graded algebra. However if R is a polynomial algebra, then m(R) is the least common multiple of the degrees of its generators, see Proposition 4.5. In the event that $R = \mathbf{F}[V]^G$ is a ring of invariants of a finite group G whose order is not divisible We are particularly interested in the case when P(t) may be written as a rational function $a(t)/(1-t^{\ell})^s$, for some strictly positive ℓ , in which case a(t) has integer coefficients. We note that P(t) has a pole of order s at t = 1 if and only if $a(1) \neq 0$.

Lemma 2.1. Let P(t) be such an integral power series and define $\mathcal{T} := \{(\ell, s) \in \mathbb{N}^2 \mid P(t)(1-t^\ell)^s \in \mathbb{Z}[t]\}, \mathcal{L} := \{\ell \in \mathbb{N} \mid \exists s \text{ with } (\ell, s) \in \mathcal{T}\} \text{ and } \mathcal{S} := \{s \in \mathbb{N} \mid \exists \ell \text{ with } (\ell, s) \in \mathcal{T}\}.$ Let m be the least integer in \mathcal{L} , and n the least integer in \mathcal{S} . Then m divides each integer in \mathcal{L} and $P(t)(1-t^m)^n \in \mathbb{Z}[t]$ (i.e., $(m,n) \in \mathcal{T}$). We denote m by m(P(t)) and call it the period of P(t).

Proof. There exists r such that $(m,r) \in S$. Let $(\ell,s) \in S$ and put $k = \gcd(m,\ell)$, $a(t) = P(t)(1-t^m)^r$ and $b(t) = P(t)(1-t^\ell)^s$. Thus $a(t), b(t) \in \mathbf{Z}[t]$. Therefore

$$b(t)(1-t^m)^r = a(t) \left[\frac{(1-t^\ell)}{(1-t^k)}\right]^s (1-t^k)^s$$

Since $(1-t^m)^r$ and $\left[\frac{(1-t^\ell)}{(1-t^k)}\right]^s$ are co-prime in $\mathbf{Z}[t]$ we have $b(t) = \left[\frac{(1-t^\ell)}{(1-t^k)}\right]^s c(t)$ where $c(t) \in \mathbf{Z}[t]$. Therefore $P(t)(1-t^\ell)^s = \left[\frac{(1-t^\ell)}{(1-t^k)}\right]^s c(t)$ and thus $P(t)(1-t^k)^s \in \mathbf{Z}[t]$ which implies that k = m.

Now suppose that $(\ell, n) \in S$, that *m* divides ℓ , that $a(t) := P(t)(1 - t^m)^r \in \mathbf{Z}[t]$ and that $b(t) := P(t)(1 - t^\ell)^n \in \mathbf{Z}[t]$. Further assume that r > n. Then

$$a(t)\left[\frac{(1-t^{\ell})}{(1-t^{m})}\right]^{n} = b(t)(1-t^{m})^{r-n}$$

and hence $a(t) = (1 - t^m)^{r-n}c(t)$ where $c(t) \in \mathbf{Z}[t]$ since $(1 - t^m)^{r-n}$ is co-prime to $\left[\frac{(1-t^\ell)}{(1-t^m)}\right]^n$. Therefore $P(t)(1-t^m)^n = c(t) \in \mathbf{Z}[t]$.

Lemma 4.1.7 of [1] is the case $\ell = 1$ of the following proposition and is used in its proof.

Proposition 2.2. Let $0 \neq P(t) = \sum_{i=0}^{\infty} p_j t^j$ be a power series with integer coefficients. The following two statements are equivalent.

(a) there exists $a(t) \in \mathbf{Z}[t]$ such that

$$P(t) = \frac{a(t)}{(1-t^\ell)^n}$$

(b) for $0 \le i < \ell$, there exists a polynomial $H_i(t) \in \mathbf{Q}[t]$ of degree at most n-1 such that $H_i(k) = p_{k\ell+i}$ for all k >> 0.

Proof. Let $P(t) = \sum_{j=0}^{\infty} p_j t^j$. For $0 \le i < \ell$ we denote by $P_i(t)$ the power series $\sum_{k=0}^{\infty} p_{k\ell+i} t^k$. Then $P(t) = \sum_{i=0}^{\ell-1} t^i P_i(t^\ell)$. First we prove that (a) implies (b). We write $a(t) = \sum_{j=0}^{s} \alpha_j t^j$. We denote by $a_i(t)$ the polynomial $\sum_{k=0}^{s_i} \alpha_{k\ell+i} t^k$, where s_i denotes the greatest integer with the property that $s_i\ell + i \le \deg a(t) = s$. Clearly, $P_i(t) = a_i(t)/(1-t)^n$ and $a(t) = \sum_{i=0}^{\ell-1} t^i a_i(t^\ell)$.

Since

$$\left(\frac{1}{1-t}\right)^{n} = \sum_{k=0}^{\infty} \binom{-n}{k} (-t)^{k} = \sum_{k=0}^{\infty} \binom{n+k-1}{n-1} t^{k}$$

it follows that $P_i(t) = h(t) + \sum_{k=s_i}^{\infty} \sum_{j=0}^{s_i} {\binom{n+k-j-1}{n-1}} \alpha_{j\ell+i}$ where h(t) is a polynomial of degree less than s_i . Therefore, we define $H_i: \mathbb{Z} \to \mathbb{Z}$ by

$$H_i(k) = \sum_{j=0}^{s_i} \binom{n+k-j-1}{n-1} \alpha_{j\ell+i}$$
$$= \frac{a_i(1)}{(n-1)!} k^{n-1} + \text{ terms of lower degree in } k.$$
(2.1)

So H_i is a rational polynomial in k of degree n-1 or less with the property that $H_i(k) = p_{k\ell+i}$ for $k \ge s_i$. Hence we have proved (b).

Now we show that (b) implies (a). Assume (b) holds and let the degree of H_i be $d_i - 1$. By [1, Lemma 4.1.7] we can write $P_i(t) = \frac{b_i(t)}{(1-t)^{d_i}}$ where $b_i(t) \in \mathbf{Z}[t]$ and $b_i(1) \neq 0$. Thus we have $P_i(t) = \frac{a_i(t)}{(1-t)^n}$ where $a_i(t) \in \mathbf{Z}[t]$. Therefore

$$P(t) = \sum_{i=0}^{\ell-1} t^i P_i(t^\ell) = \sum_{i=0}^{\ell-1} \frac{t^i a_i(t^\ell)}{(1-t^\ell)^n} = \frac{a(t)}{(1-t^\ell)^n}$$

Remark 2.3. Suppose P(t) satisfies (a) and (b) of the above proposition. Then $a(1) \neq 0$ implies that there exists *i* such that $a_i(1) \neq 0$ and therefore by Equation 2.1 H_i has degree n - 1.

3. GRADED ALGEBRAS AND THEIR POINCARÉ SERIES

We study commutative graded algebras $R = \bigoplus_{k=0}^{\infty} R_k$ over a field **F**. We require that R be connected, that is, $R_0 = \mathbf{F}$, and that R be finitely generated so that $\dim_{\mathbf{F}}(R_k) < \infty$. We define the Poincaré series of R to be the power series $P(R, t) = \sum_{k=0}^{\infty} \dim_{\mathbf{F}}(R_k)t^k$ with Hilbert function $H(R, \cdot) : \mathbf{N} \to \mathbf{N}$ defined as $H(R, k) = \dim_{\mathbf{F}}(R_k)$. We apply Lemma 2.1 to P(R, t). We define the period of R, denoted m(R) or just m if R is fixed, to be the period m(P(R, t)). We note that the number n of Lemma 2.1 is the Krull dimension of R.

Let *n* denote the Krull dimension of *R*. Then, by the (graded) Noether Normalization Theorem, there exists a homogeneous system of parameters $\{f_1, \ldots, f_n\}$ for *R*. Then *R* is finitely generated as a module over the polynomial subalgebra $S = \mathbf{F}[f_1, \ldots, f_n]$. We let d_i denote the degree of f_i . It is easy to see that

$$P(S,t) = \prod_{i=1}^{n} (1 - t^{d_i})^{-1}.$$

We observe that P(S, t) has a pole of order n at t = 1.

In the literature, R is said to be a *standard* or *homogeneous graded* algebra if it is generated by its elements of degree 1. However, we will refer here to an algebra which is generated by elements all of the same degree as a standard graded algebra.

Proposition 3.1. Let R be a finitely generated graded \mathbf{F} -algebra of dimension n and let ℓ be the least common multiple of the degrees of some homogeneous system of parameters of R. Then there exists a polynomial, $a(t) \in \mathbf{Z}[t]$ such that

$$P(R,t) = \frac{a(t)}{(1-t^{\ell})^n}$$

with $a(1) \neq 0$.

Proof. Let $\{f_1, \ldots, f_n\}$ be the homogeneous system of parameters and let d_i be the degree of f_i . Then $\{f_1^{\ell/d_1}, \ldots, f_n^{\ell/d_n}\}$ is a homogeneous system of parameters for R with each element having the same degree, ℓ . The proposition now follows from the Hilbert-Serre Theorem [7, page 76].

We recall that R is said to be Cohen-Macaulay if R is free as a module over the polynomial subalgebra S generated by a homogeneous system of parameters as above. (If R is free over one such system, it is free over any such).

Remark 3.2. If R is Cohen-Macaulay, then the polynomial a(t) in Proposition 3.1 is in $\mathbf{N}[\mathbf{t}]$. In fact, if $\{r_1, \ldots, r_s\}$ is a homogeneous basis for R over S and $a(t) = \sum a_i t^i$, then a_i is the number of r_j of degree i. For arbitrary R, the most we can say is that a(1) is positive.

4. Degree modules

In this section we study the decomposition of a finitely generated graded \mathbf{F} -algebra R of dimension n into "degree" modules and study their structure and Hilbert polynomials.

Proposition 4.1. Let d be a positive integer. The Veronese algebra of order d, R[d; 0], is a finitely generated **F**-algebra of dimension n over which R is finitely generated as a module, and therefore R[d; 0] has Krull dimension n.

Proof. By elementary results of commutative algebra, it suffices to show that R is integral over R[d; 0]. Suppose that R is generated as an algebra by $\{f_1, \ldots, f_s\}$ of degrees d_i . Let $k = \text{lcm}(d_1, \ldots, d_s, d)$. We observe that, for all $i, 1 \leq i \leq s$ we have

$$\deg(f_i^{k/d_i}) = k$$

Since f_i is integral over $\mathbf{F}[f_1^{k/d_1}, \ldots, f_s^{k/d_s}] \subset R[d; 0]$ and hence f_i is integral over R[d; 0].

We now prove a purely combinatorial result concerning certain linear congruences. Given a sequence $\theta = (d_1, \ldots, d_s)$ of positive integers and a positive integer ℓ , we say a non-negative sequence $I = (i_1, \ldots, i_s)$ is in the additive monoid $\mathcal{M} = \mathcal{M}(\theta, \ell)$ if $\theta \cdot I = m\ell$ for some $m \ge 0$. We say that a sequence I is decomposable if I = J + K for non-negative non-zero sequences $J, K \in \mathcal{M}$. Otherwise, we say I is indecomposable. It is clear that the set of indecomposable sequences generates the monoid. It is a difficult problem in general to characterize the indecomposable sequences, see [2]. However

Proposition 4.2. Let $\theta = (d_1, \ldots, d_s)$ be sequence of distinct positive integers such that $gcd(d_i, d_j) = 1$ for $i \neq j$, and let $\ell = \prod d_i$ be the least common multiple of $\{d_1,\ldots,d_s\}$. Then $\mathcal{M}(\theta,\ell)$ as defined in the previous paragraph is generated by the sequences I satisfying $\theta \cdot I = \ell$.

Proof. The cases s = 1, 2 are easy to prove so we suppose here that $s \geq 3$. We suppose that I satisfies $\theta \cdot I = m\ell$ for some $m \geq 2$. We show that I = J + K for non-negative non-zero sequences J and K with $j_k \leq i_k$ for all $k, 1 \leq k \leq s$, and $\theta \cdot J = \ell$. We denote by Δ_k the sequence $(0, \ldots, 0, 1, 0, \ldots, 0)$ where the 1 occurs the k-th position from the left. We observe that if there is a $k, 1 \leq k \leq s$, with $i_k d_k \geq \ell$ then we may choose $J = (\ell/d_k)\Delta_k$. So we suppose that $i_k d_k < \ell$ for all k.

After a permutation of the entries of θ , we may suppose, without loss of generality, that $i_1d_1 \leq \cdots \leq i_sd_s$. We consider the set

$$\Omega(I) = \Omega = \{ J' \in \mathbf{N}^{s-2} \mid j_k \le i_k, \ 1 \le k \le s-2, \ \theta' \cdot J' \le \ell - (d_{s-1}-1)(d_s-1) \}.$$

Here θ' denotes the sequence (d_1, \ldots, d_{s-2}) . We have $(0, \ldots, 0) \in \Omega$, so there exist elements $J' \in \Omega$ such that $\theta' \cdot J'$ is a maximum. Fix such a J'.

We have $\ell - \theta' J' \geq (d_{s-1} - 1)(d_s - 1)$ so, by the solution to the postage stamp problem, there exist non-negative integers j_{s-1} and j_s with $j_{s-1}d_{s-1} + j_sd_s = \ell - \theta'J'$. We set $J = (J', j_{s-1}, j_s)$. By construction, $\theta \cdot J = \ell$, so J is the needed sequence provided we can show $i_{s-1} \ge j_{s-1}$ and $i_s \ge j_s$.

Case 1. Suppose $I' = (i_1, \ldots, i_{s-2}) \in \Omega$. Then I' = J' and it follows that

$$(i_{s-1} - j_{s-1})d_{s-1} + (i_s - j_s)d_s = (m-1)\ell.$$

However, we have already seen that $i_{s-1}d_{s-1} < \ell$ and $i_sd_s < \ell$ so we must have $i_{s-1} - j_{s-1} \ge 0$ and $i_s - j_s \ge 0$ as required, since $m \ge 2$. **Case 2.** Suppose $I' = (i_1, \ldots, i_{s-2}) \notin \Omega$. Then there exists a $k, 1 \le k \le s-2$

with $j_k < i_k$. Therefore

$$\theta' \cdot (J' + \Delta_k) = \theta' \cdot J' + d_k > \ell - (d_{s-1} - 1)(d_s - 1)$$

since J' is maximal in Ω , so that

$$j_{s-1}d_{s-1} + j_sd_s = \ell - \theta'J' < (d_{s-1} - 1)(d_s - 1) + d_k$$

We consider three subcases: $d_{s-1} = 1$, $d_s = 1$, or both are larger than 1.

Case 2a. We suppose $d_{s-1} = 1$. Take $j = \ell - \theta' \cdot J' < d_k$. Since $j_k < i_k$ we have $1 \leq i_k$ and therefore, $j < d_k \leq i_k d_k \leq i_{s-1} d_{s-1} = i_{s-1}$. Hence in this case the sequence L = (J', j, 0) may be used in place of J to decompose I.

Case 2b. The proof for the case $d_s = 1$ is very similar to that just given, so we omit it.

Case 2c. Here we have that $d_{s-1}d_s \neq 1$. Also $\theta' \cdot J' + j_{s-1}d_{s-1} + j_sd_s = \ell$ and that $\theta' \cdot J' + d_k > \ell - (d_{s-1} - 1)(d_s - 1)$. We obtain the equation

$$j_{s-1}d_{s-1} \le j_{s-1}d_{s-1} + j_sd_s = \ell - \theta' \cdot J' < d_k + (d_{s-1} - 1)(d_s - 1)$$

Again, there are two cases to consider, $j_{s-1} > i_{s-1}$ or $j_s > i_s$. Both cases lead to contradictions via similar proofs, so we offer only the proof of the former case. In this case, we have $j_{s-1}d_{s-1} > i_{s-1}d_{s-1}$ so that $2\ell \leq \theta' \cdot I' + i_{s-1}d_{s-1} + i_sd_s \leq \theta' \cdot I' + i_{s-1}d_{s-1} + \ell$. Therefore, $\ell \leq \theta' \cdot I' + i_{s-1}d_{s-1} \leq (s-1)i_{s-1}d_{s-1} \leq (s-1)j_{s-1}d_{s-1}$. Combining this equation with the equation displayed above we obtain

$$\ell < (s-1)(d_k + (d_{s-1} - 1)(d_s - 1)).$$

We write the factor on the right hand side as $d_{s-1}d_s + (d_k - d_{s-1} - d_s + 1)$. Suppose we have $d_k \leq d_{s-1} + d_s - 1$. Then we obtain $d_1d_2 \dots d_s = \ell < (s-1)(d_{s-1}d_s)$. This cannot happen if $s \geq 5$ since then the product of s-2 distinct positive integers cannot be less than s-1. If s=3 then this can only happen if $d_k = d_1 = 1$, and the proof follows easily. If s=4, then this can only happen if $\{d_1, d_2\} = \{1, 2\}$, say $d_1 = 1$, where we no longer assume $i_1d_1 \leq i_2d_2$. Suppose $i_1d_1 + i_4d_4 > \ell$. Then we can choose $k_1 < i_1$ so that $k_1 + i_4d_4 = k_1d_1 + i_4d_4 = \ell$. But then the sequence $K = (k_1, 0, 0, i_4)$ may be used to decompose I. On the other hand, if $i_1d_1 + i_4d_4 \leq \ell$ then we must have $i_2d_2 + i_3d_3 > \ell$ since $i_1d_1 + i_2d_2 + i_3d_3 + i_4d_4 \geq 2\ell$. Therefore, since $d_2 = 2$, we may choose $k_2 < i_2$ so that $k_2d_2 + i_3d_3 = \ell - 1$ or ℓ . If $k_2d_2 + i_3d_3 = \ell$ then we decompose I using $L = (0, k_2, i_3, 0)$. If $k_2d_2 + i_3d_3 = \ell - 1$ then the sequence $L = (1, k_2, i_3, 0)$ may be used to decompose I, where we may assume $i_1 \neq 0$ because if $i_1 = 0$ then Imay be decomposed using the case s = 3.

Finally, we may suppose that $d_k > d_{s-1} + d_s - 1$. Note that $d_{s-1} + d_s > 4$, since neither d_{s-1} nor d_s is 1. First we show that

$$d_{s-1}d_s + d_k - d_{s-1} - d_s + 1 \le \frac{d_k d_{s-1} d_s}{4}$$

This is true since

$$\frac{d_k d_{s-1} d_s}{4} - d_k = d_k \left(\frac{d_{s-1} d_s - 4}{4}\right) > d_{s-1} d_s - 4$$
$$= (d_{s-1} - 1)(d_s - 1) + d_{s-1} + d_s - 5 \ge (d_{s-1} - 1)(d_s - 1).$$

Hence $\ell < (d_k d_{s-1} d_s/4)(s-1)$. Again, it cannot happen that for $s \ge 3$ a product of s-3 distinct integers is less than (s-1)/4.

Corollary 4.3. Suppose R is generated by homogeneous elements any two of which either share the same degree or whose degrees are co-prime. If ℓ is the least common

multiple of these degrees then $R[\ell; 0] = \mathbf{F}[R_{\ell}]$, that is, $R[\ell; 0]$ is a standard graded algebra, generated by its elements of degree ℓ .

However, we have

Example 4.4. Let $A = \mathbf{F}[x_1, x_2, x_3, x_4]$ be a standard graded polynomial algebra on generators of degree 1, and let R be the polynomial subalgebra generated by $\{f_1 = x_1, f_2 = x_2^6, f_3 = x_3^{10}, f_4 = x_4^{15}\}$. Then m = m(R) = lcm(1, 6, 10, 15) = 30 by Proposition 4.5 below but $R[30; 0] \neq \mathbf{F}[R_{30}]$ since $z = f_1 f_2^4 f_3^2 f_4 \in R_{60}$ but $z \notin \mathbf{F}[R_{30}]$.

In general, in the situation of this example, we have

Proposition 4.5. Let R be a polynomial algebra on generators f_1, \ldots, f_n of degrees d_i and let $\ell = \text{lcm}(d_1, \ldots, d_n)$. Then the period of R, m(R) is ℓ .

Proof. We have

$$P(R,t) = \frac{1}{\prod_{i=1}^{n} (1 - t^{d_i})} = \frac{b(t)}{(1 - t^{\ell})^n} = \frac{a(t)}{(1 - t^m)^n}$$

where $m \mid \ell$ by Lemma 2.1. Cross-multiplying we have $(1 - t^m)^n = a(t) \prod (1 - t^{d_i})$ which implies that $(1 - t^{d_i})$ divides $(1 - t^m)$ for all *i*. But then $d_i \mid m$ for all *i* so that $\ell \mid m$, as required.

Let us fix an expression $P(R, t) = a(t)/(1-t^{\ell})^n$ with a(1) > 0 and deg a(t) = s. We observe that $R[\ell; i]$ is a module over the Veronese algebra $R[\ell; 0]$. By Proposition 2.2 $P(R[\ell; 0], t) = t^i P_i(t^{\ell}) = t^i a_i(t^{\ell})/(1-t^{\ell})^n$. The polynomial H_i , defined in the proof of Proposition 2.2, is called the *Hilbert polynomial* of $R[\ell; i]$. We recall from Equation 2.1 that $H_i(k) = H(k\ell+i)$ is a polynomial of degree at most n-1 in k with $a_i(1)/(n-1)!$ as the coefficient of k^{n-1} .

Proposition 4.6. The Hilbert polynomial $H_0(k)$ of $R[\ell; 0]$ is a polynomial of degree n-1 in k.

Proof. Since $R[\ell; 0]$ has Krull dimension n by Proposition 4.1, we have an expression $P(R[\ell; 0], t) = b(t)/(1 - t^k)^n$ with $b(1) \neq 0$, for some k > 0, in addition to the expression $P(R[\ell; 0], t) = a_0(t)/(1 - t^\ell)^n$ determined by P(R, t). It is easy to see that $b(1) \neq 0$ implies $a_0(1) \neq 0$, and the result follows using Equation 2.1.

The following result is observed in [3, Chapter 3]

Proposition 4.7. Let d be a positive integer. If R is Cohen-Macaulay, then R[d;0] is also Cohen-Macaulay. If R is an integrally closed domain, then R[d;0] is also an integrally closed domain.

In [3, Chapter 3] the relationship between the two conditions that R is Gorenstein and that R[d; 0] is Gorenstein is examined in detail.

Proposition 4.8. If R is Cohen-Macaulay and $R[\ell; i] \neq 0$ then $H_i(k)$ is of degree $n-1, 0 \leq i < \ell$.

Proof. It is enough to show that $a_i(1) \neq 0$.

Since R is Cohen-Macaulay, we may write $P(R,t) = \frac{b(t)}{(1-t^s)^n}$ for some s (s may be chosen to be the least common multiple of the degrees of a homogeneous system of parameters for R all of whose degrees are divisible by ℓ so $\ell|s$). By Remark 3.2, $b(t) \in \mathbf{N}[t]$. In addition we have the usual expression $P(R,t) = \frac{a(t)}{(1-t^\ell)^n}$ with $a(t) = \sum_j \alpha_j t^j \in \mathbf{Z}[t]$. So we may write

$$b(t) = a(t)(\frac{1-t^s}{1-t^\ell})^n = a(t)f(t^\ell),$$

where $f(t) = (1 + t + t^{2} + \dots + t^{\frac{s}{\ell} - 1})^{n}$. Therefore

$$\sum_{k} b_{k\ell+i} t^{k\ell+i} = \left(\sum_{k} \alpha_{k\ell+i} t^{k\ell+i}\right) f(t^{\ell}).$$

If we now set t = 1 in this expression, we obtain $0 \leq \sum_k b_{k\ell+i} = (\sum_k \alpha_{k\ell+i})(s/\ell)^n$. Now we observe that if $R[\ell; i]$ is non-zero, then $\sum_k b_{k\ell+i} \neq 0$ and the result follows. \Box

However, the following example shows that the hypothesis that R be Cohen-Macaulay is necessary in Proposition 4.8

Example 4.9. Let $R = \mathbf{F}[x, y^2, z^2]/(x^2, xy^2)$ where each of the indeterminates x, y and z has degree 1. We note that the Krull dimension of R is 2. It is not difficult to show that m(R) = 2 and, moreover, that R_{2k+1} has basis $\{xz^{2k}\}$ while $R_{2k} = \mathbf{F}[y^2, z^2]_{2k}$. But then $R[\ell; 1]$ has a Hilbert polynomial of degree 0 while $R[\ell; 0]$ has a Hilbert polynomial of degree 1. It is easy to see that R is not Cohen-Macaulay.

Lemma 4.10. Suppose there exists a non-zero divisor $f \in R[\ell; i]$. Then $H_i(k)$ has degree n - 1, and, moreover, its lead coefficient $a_i(1)/(n - 1)!$ is equal to the lead coefficient $a_0(1)/(n - 1)!$ of the Hilbert polynomial $H_0(k)$ of $R[\ell; 0]$.

Proof. From Equation 2.1 we see that it is sufficient to prove that $a_0(1) = a_i(1)$. The degree of f is of the form $j\ell + i$ for some j. We observe that multiplication by f injects $R[\ell; 0]_{k\ell}$ into $R[\ell; i]_{(k+j)\ell+i} = R_{(k+j)\ell+i}$, for all k. Therefore, $H_0(k) = \dim_{\mathbf{F}}(R[\ell; 0]_{k\ell}) \leq \dim_{\mathbf{F}}(R[\ell; i]_{(k+j)\ell+i}) = H_i(k+j)$ for all k. This can only happen if $a_0(1) \leq a_i(1)$.

We observe that multiplication by $f^{\ell-1}$ injects $R[\ell; i]_{k\ell+i}$ into $R[\ell; 0]_{\ell(k+i+\ell j-j)}$ for all k, so we also obtain $a_i(1) \leq a_0(1)$.

Corollary 4.11. If R is a domain, then the Hilbert polynomials of each of its nontrivial degree modules have the same degree n - 1 and, moreover, each of the lead coefficients of these polynomials is the same.

Proof. The proof follows from Proposition 4.6 and Proposition 4.10.

Proposition 4.12. Let $\{f_1, \ldots, f_n\}$ be a homogeneous system of parameters for $R[\ell; 0]$. If R is a Cohen-Macaulay domain, then all the non-zero degree modules $R[\ell; i]$ have the same rank as free modules over $\mathbf{F}[f_1, \ldots, f_n]$.

Proof. The homogeneous system of parameters for $R[\ell; 0]$, $\{f_1, \ldots, f_n\}$ is also a homogeneous system of parameters for R. Consequently, each $R[\ell; i]$ is a free module over $S = \mathbf{F}[f_1, \ldots, f_n]$. Let d_i denote the degree of f_i . We have

$$P(R[\ell;i],t) = \frac{t^i a_i(t^\ell)}{(1-t^m)^n} = \frac{c_i(t)}{\prod_{j=1}^n (1-t^{d_j})} = \frac{b_i(t)}{(1-t^\ell)^n}$$

for $\ell = \text{lcm}(d_1, \ldots, d_n)$ and polynomials $a_i(t) \in \mathbf{Z}[t]$ and $b_i(t), c_i(t) \in \mathbf{N}[t]$. We observe in particular that $c_i(1)$ is the rank of $R[\ell; i]$ as a module over S. Now $m \mid \ell$ by Lemma 2.1 and we obtain

$$b_i(t) = t^i a_i(t) (\frac{1 - t^\ell}{1 - t^m})^n.$$

Therefore $b_i(1) = a_i(1)(\ell/m)^n$. Now $a_i(1)$ is the sum of the coefficients in the polynomial $a_i(t)$ and so we have, by Corollary 4.11, that $b_i(1) = b_0(1)$ for all *i*. But now $c_i(1) \prod (\ell/d_j) = b_i(1)$ so that $c_i(1) = c_0(1)$, as required.

5. Invariant theory

We assume throughout this section that we have some fixed faithful representation $\rho : G \to Gl(V)$ for V a vector space of dimension n over the field **F**. Then the group G acts on the polynomial algebra $\mathbf{F}[V]$ as degree-preserving automorphisms. We denote the algebra of G-invariant polynomials by $\mathbf{F}[V]^G$.

Proposition 5.1. Suppose the order of the finite group G is co-prime to the characteristic of **F**. Then $m(\mathbf{F}[V]^G)$ divides $\exp(G)$ where $\exp(G)$ denotes the exponent of G.

Proof. By Brauer lifting as described in [6, page 504] — we may assume the characteristic of **F** to be 0. Then, by Molien's Theorem, [7, Theorem 4.3.2, page 87], we have

$$P(t) = P(\mathbf{F}[V]^G, t) = \frac{1}{|G|} \sum_{g \in G} \frac{1}{\det(I - gt)}.$$

Extending the field does not affect either side of the equation, so we may assume that **F** is algebraically closed. Let g be in G. Then $\det(I - gt) = \prod_{i=1}^{n} (1 - \sigma_i(g)t)$ where g has eigenvalues $\sigma_1(g), \ldots, \sigma_n(g)$. Furthermore, we have $\sigma_i(g)^{\exp(G)} = 1$ for all i, $1 \le i \le n$. Thus,

$$P(t) = \frac{1}{|G|} \sum_{g \in G} \prod_{i=1}^{n} \frac{1}{1 - \sigma_i(g)t}$$

= $\frac{1}{|G|} \sum_{g \in G} \left(\prod_{i=1}^{n} \frac{1 - t^{\exp(G)}}{1 - \sigma_i(g)t} \right) \frac{1}{(1 - t^{\exp(G)})^n}$
= $\frac{b(t)}{(1 - t^{\exp(G)})^n},$

for some polynomial $b(t) \in \mathbf{C}[t]$. But since $b(t) = P(t)(1 - t^{\exp(G)})^n$, we see that $b(t) \in \mathbf{Z}[t]$. It follows that m divides $\exp(G)$.

Example 5.2. Let G be the group generated by the following two complex matrices:

$$\left(\begin{array}{rrrr} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{array}\right) \qquad \left(\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \imath \end{array}\right)$$

Then, G is Abelian of order 8, exponent 4 and $P(t) = \frac{1}{(1-t^2)^3}$. Hence, m is strictly less than the exponent of G. We note that in [7, Example 1, page 77] it is shown that although the form the Poincaré series here suggests that $\mathbf{C}[V]^G$ is a polynomial algebra, this is not the case.

Example 5.3. Let G be the group of 3 by 3 upper triangular matrices over \mathbf{F}_p , $p \geq 3$ a prime. Now, from [5] or [7, Theorem 8.3.5, page 259] $\mathbf{F}_p[V]^G = \mathbf{F}_p[u_1, u_2, u_3]$ is a polynomial algebra with $\deg(u_i) = p^{i-1}$ and so $m = p^2$, by Proposition 4.5. However, $\exp(G) = p$ so Proposition 5.1 does not hold in the modular setting.

Theorem 5.4. Let G be a finite group whose order is co-prime to the characteristic of \mathbf{F} , and let $\rho: G \to GL(V)$ be a representation of G on V a vector space of dimension n over \mathbf{F} . Let $\mathcal{F} = \{f_1, \ldots, f_n\}$ be any homogeneous system of parameters for the ring of invariants $\mathbf{F}[V]^G$, and let ℓ be the least common multiple of their degrees. Then we have $m = m(\mathbf{F}[V]^G)$ divides $\exp(G)$ which in turn divides ℓ .

Proof. We have already seen in Proposition 5.1 that $m \mid \exp(G)$.

Now we suppose p is a prime satisfying $p^r || \exp(G)$. We may choose $g \in G$ of order p^r . Now \mathcal{F} is a homogeneous system of parameters for $\mathbf{F}[V]^{\langle g \rangle}$. Therefore, by extending the field if necessary, there exists a basis $\{x_1, \ldots, x_n\}$ of V such that the matrix of $g = \operatorname{diag}(\sigma_1, \ldots, \sigma_n)$, where the σ_i s are the eigenvalues of g. As well, we may assume without loss of generality that σ_1 is a primitive p^r -th root of unity. Then $x_1^w \in \mathbf{F}[V]^{\langle g \rangle}$ if and only if $p^r | w$. More generally, we observe that the group generated by g is diagonal and consequently monomials $x^I = x_1^{i_1} \cdots x_n^{i_n}$ are mapped to multiples of themselves by g. We have, therefore, that elements of $\mathbf{F}[V]^{\langle g \rangle}$ are linear combinations of invariant monomials — in particular, this is true of the f_i s.

Now x_1 is integral over $\mathbf{F}[f_1, \ldots, f_n]$ so there exists a $s \in \mathbf{N}$ such that $x_1^s + \sum_{j=0}^{s-1} b_i x_1^j = 0$ for some choice of $b_i \in \mathbf{F}[f_1, \ldots, f_n]$. We rewrite this equation in the form $x_1^s = \sum_{i=1}^n h_i f_i$ for some choice of $h_i \in \mathbf{F}[V]$. Of course, this can only happen if there is a k with $f_k = x_1^w +$ terms of lower degree in x_1 . Moreover, w must be the degree of f_k . But f_k is a sum of invariant monomials in the x_i s, and so $x_1^w \in \mathbf{F}[V]^{\leq g>}$ and $p^r \mid w = \deg(f_k) \mid \ell = \operatorname{lcm}(\deg f_1, \ldots, \deg f_n)$. The result follows immediately.

Example 5.5. If the ring of invariants is a polynomial algebra then its period m is the least common multiple of the degrees of its generators. However these form

a homogeneous system of parameters and so by Theorem 5.4, $m = \exp(G)$. In particular, for a group G generated by complex pseudo-reflections the exponent of G equals the period of G is the least common multiple of the so-called degrees of G.

It is possible that for every choice of homogeneous system of parameters, $\exp(G) \neq \ell$ where ℓ is the least common multiple of the degrees occurring in the system, as shown in the following

Example 5.6. Consider, the group

$$G = \left\langle x, y, z : x^{3} = y^{3} = z^{3} = 1 , xz = zx , yz = zy , y^{-1}xy = xz \right\rangle.$$

The group is of order 27 and exponent 3. Let $\rho : G \to \operatorname{Gl}(V)$ be one of the two inequivalent irreducible 3 dimensional representations of G over \mathbb{C} . Let f_1, f_2, f_3 be a homogeneous system of parameters for $\mathbb{C}[V]^G$, and let $\ell = \operatorname{lcm}(\operatorname{deg} f_i)$. If $\ell = 3$ then, since $27 = |G| | \prod \operatorname{deg} f_i$, we conclude that $\operatorname{deg} f_i = 3, i = 1, 2, 3$. It follows that $\mathbb{C}[V]^G = \mathbb{C}[f_1, f_2, f_3]$ is a polynomial algebra. But this cannot be, since (G, ρ) is not one of the groups and representations on the list of Shephard and Todd, see [7, page 199] classifying those groups and their complex representation with polynomial rings of invariants.

Remark 5.7. However, if G is an Abelian group of exponent e and the characteristic of the field does not divide the order of the group then every representation of the group can be diagonalized with respect to some basis $\{x_1, \ldots, x_n\}$. Then $\{x_1^e, \ldots, x_n^e\}$ is a homogeneous system of parameters.

Remark 5.8. We have just seen that the exponent of G divides the least common multiple of the degrees of any homogeneous system of parameters if the order of G is co-prime to the characteristic p of the field, \mathbf{F} (i.e., in the "non-modular case"). However this result is true in general since this result for the case when $p \mid |G|$ (the "modular case") has been proved by Gregor Kemper, [4].

References

- Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, 2nd ed., Studies in Advanced Mathematics, vol. 39, Cambridge University Press, New York, 1993.
- [2] H E A Campbell, J C Harris, and D L Wehlau, On rings of invariants of non-modular Abelian groups, submitted, 12 pages.
- [3] S Goto and K Watanabe, On Graded Rings, I, J. Math. Soc. Japan, 30 No. 2, 1978.
- [4] G Kemper, preprint (1996).
- [5] Huỳhn Mùi, Modular invariant theory and the cohomology algebras of the symmetric groups, J. Fac. Sci. Univ. Tokyo, Sec. IA (1975), 319–369.
- [6] W M Singer, The transfer in homological algebra, Math. Z. 202 (1989), 493–523.
- [7] L Smith, Polynomial invariants of finite groups, A K Peters, Wellesley, MA USA, 1995.
- [8] R P Stanley, Hilbert functions of graded algebras, Adv. in Math. 28 (1978), 57–83.

DEPARTMENT OF MATHEMATICS AND STATISTICS, QUEEN'S UNIVERSITY, KINGSTON, ONTARIO, CANADA, K7L 3N6 *E-mail address*: eddy@mast.queensu.ca, hughesi@queensu.ca, tony@mast.queensu.ca

Department of Mathematics, Brandeis University, Waltham, Massachusetts USA, 02254

E-mail address: ggsmith@math.berkeley.edu

Department of Mathematics and Computer Science, Royal Military College, Kingston, Ontario, Canada, K7K $7\mathrm{B4}$

E-mail address: wehlau@mast.queensu.ca, wehlau@rmc.ca

12