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Multigraded Castelnuovo-Mumford regularity

By Diane Maclagan at Stanford and Gregory G. Smith at New York

Abstract. We develop a multigraded variant of Castelnuovo-Mumford regularity.
Motivated by toric geometry, we work with modules over a polynomial ring graded by
a finitely generated abelian group. As in the standard graded case, our definition of multi-
graded regularity involves the vanishing of graded components of local cohomology. We
establish the key properties of regularity: its connection with the minimal generators of a
module and its behavior in exact sequences. For an ideal sheaf on a simplicial toric variety
X, we prove that its multigraded regularity bounds the equations that cut out the asso-
ciated subvariety. We also provide a criterion for testing if an ample line bundle on X gives
a projectively normal embedding.

1. Introduction

Castelnuovo-Mumford regularity is a fundamental invariant in commutative alge-
bra and algebraic geometry. Intuitively, it measures the complexity of a module or sheaf.
The regularity of a module approximates the largest degree of the minimal generators and
the regularity of a sheaf estimates the smallest twist for which the sheaf is generated by
its global sections. Although the precise definition may seem rather technical, its value in
bounding the degree of syzygies [20], [13] and constructing Hilbert schemes [18], [26] has
established that regularity is an indispensable tool in both fields.

The goal of this paper is to develop a multigraded variant of Castelnuovo-Mumford
regularity. We work with modules over a polynomial ring graded by a finitely generated
abelian group. Imitating [14], our definition of regularity involves the vanishing of certain
graded components of local cohomology. We establish the key properties of regularity:
its connection with the minimal generators of a module and its behavior in short exact
sequences. As a consequence, we are able relate the regularity of a module to chain com-
plexes associated with the module.

Our primary motivation for studying regularity over multigraded polynomial rings
comes from toric geometry. For a simplicial toric variety X, the homogeneous coordinate
ring, introduced by Cox in [11], is a polynomial ring S graded by the divisor class group
G of X. The dictionary linking the geometry of X with the theory of G-graded S-modules
leads to geometric interpretations and applications for multigraded regularity. We prove
that the regularity of an ideal sheaf bounds the multidegrees of the equations that cut out
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the corresponding subvariety. Multigraded regularity also supplies a criterion for testing if
an ample line bundle on X determines a projectively normal embedding.

Multigraded regularity consolidates a range of existing ideas. In the standard graded
case, it reduces to Castelnuovo-Mumford regularity. If S has a nonstandard Z-grading,
then our definition is the version of regularity introduced by Benson in [3] for studying
group cohomology. When S is the homogeneous coordinate ring of a product of projective
spaces, multigraded regularity is the weak form of bigraded regularity defined by Hoffman
and Wang in [25]. Our description for the multigraded regularity of fat points (Proposi-
tion 6.7) is also connected with the results in [21]. On the other hand, the versions of regu-
larity developed for Grassmannians in [9] and abelian varieties in [33] do not fall under the
umbrella of multigraded regularity.

For ease of exposition we state our theorems in the case where S is the homoge-
neous coordinate ring of a smooth projective toric variety X. Let B be the irrelevant ideal
of X. We denote by N% the semigroup generated by a finite subset € = {¢;,..., ¢/} of
G =~ Pic(X). In the introduction, we restrict to the special case that € is the minimal gen-
erating set of the semigroup of nef line bundles on X. For example, if X = P? then G =~ Z,
S has the standard grading defined by deg(x;) =1 for 1 <i<n, B=<xy,...,X,), and
€ = {1}.

The main point of this paper is to introduce the following definition, which general-
izes Castelnuovo-Mumford regularity.

Definition 1.1. For m € G, we say that a G-graded S-module M is m-regular (with
respect to %) if the following conditions are satisfied:

(1) Hyp(M), =0 for all i = 1 and all pe J(m — Aie; — - — Jse, + NG) where the
union is over all 4;,...,4,e Nsuch that 2 +---+ 4, =i— 1.

(2) Hy(M),=0forallpe |J (m+¢+N%E).

l=j=/
We set reg(M) :={pe G: M is p-regular}.

In contrast with the usual notation, reg(M) is a set rather than a single group ele-
ment. Traditionally, G = Z and the regularity of M refers to the smallest m € G such that
M is m-regular. When S has a multigrading, the group G is not equipped with a natural
ordering so one cannot choose a smallest degree m. More significantly, the set reg(M) may
not even be determined by a single element; see Example 1.2. From this vantage point,
bounding the regularity of a module M is equivalent to giving a subset of reg(M).

Example 1.2. When X is the Hirzebruch surface F,, the homogeneous coordinate
ring S = k[x|, X2, x3, x4] has the Z>-grading defined by deg(x;) = [(1)], deg(x,) = [_02],
deg(x;) = Ll)] and deg(x4) = [(1)] and the irrelevant ideal B is {x1X», X2X3, X3X4, X1X4 ».
This grading identifies Pic(X) with Z2. It follows that the semigroup of nef line bundles is

1
generated by the set € = { [

O .
0} g [1 ] } A topological interpretation for Hj(S) (see Section
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1 0
3) shows that reg(S) = ([0] + N2> V) (L} + N2>. A graphical representation of reg(.S)

appears in Figure 5. Observe that reg(S) is not determined by a single element of G and

[g] ¢ reg(S).

The following key result shows that the regularity of a module is a cohomological
approximation for the degrees of its minimal generators.

Theorem 1.3. The degrees of the minimal generators of a finitely generated G-graded
S-module M do not belong to the set reg(M) + ( U (¢+ N(g))

1<)/

To emphasize the similarities between the multigraded form of regularity and the
original definition in [30], §14, we give the geometric translation of this result below. For
p € G, Ox(p) is the associated line bundle on X. Set 7 (p) := F ® Ox(p).

Theorem 1.4. Let F be a coherent Ox-module. If F is m-regular then for every
P € m—+ NE we have the following:

(1) F is p-regular.

(2) The natural map H°(X, 7 (p)) @ H*(X,Ox(q)) — H*(X,ZF (p+4q)) is surjec-
tive for all g € NG.

(3) Z(p) is generated by its global sections.

We highlight two consequences of this theorem. Firstly, if .# is an ideal sheaf on
X and m € reg(.#) then the subscheme of X defined by .# is cut out by equations of degree
m. Secondly, if Ox(p) is an ample line bundle and p € reg(Cx) then the complete linear
series associated to Oy (p) gives a projectively normal embedding of X. In particular, if
0 € reg(Oy) then every ample line bundle on X gives a projectively normal embedding.

The next result illustrates a second key feature of regularity, namely its behavior
in exact sequences. When S has the standard grading, the following are equivalent: the
module M is m-regular, the degrees of the ith syzgies are at most m + i, and the truncated
module M|, ,, has a linear resolution. We generalize these properties in the following way.

Theorem 1.5. Let d be the number of variable in polynomial ring S minus the rank of
group G and let M be a finitely generated G-graded S-module.

() If -+ —E3s— Ey,— E — Ey Y M — 0 is a chain complex of finitely generated
G-graded S-modules with B-torsion homology and 0y is surjective then

( (=es) == =g + reg(Ei))) < reg(M).
P:ld+1]—=[/) N =Sisd+]

(2) If cereg(S) N ( N (¢+ N‘é)) and m € reg(M) then there exists a chain com-
plex l=j=/
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= FE—FE —-FE —E—M-—0
with B-torsion homology and E; = @ S(—m — ic).

If S has the standard grading, then the inclusion in Part (1) is an equality when the
E; form a minimal free resolution of M, and the chain complex in Part (2) is the minimal
free resolution of M| ,,. Since B-torsion modules correspond to the zero sheaf on the cor-
responding toric variety, there is also a geometric version of this theorem involving regu-
larity and resolutions of a sheaf.

The techniques used to establish Theorems 1.3, 1.4 and 1.5 also apply to a larger class
of multigraded polynomial rings. We develop these methods for pairs (.S, B) where S is a
polynomial ring graded by a finitely generated abelian group G, and B is a monomial ideal
that encodes a certain combinatorial structure of the grading. This class of rings includes
the homogeneous coordinate rings of simplicial semi-projective toric varieties. We also es-
tablish these results for other choices of the set €.

This paper is organized as follows. In the next section, we discuss the basic defini-
tions and examples of multigraded polynomial rings. In Section 3, we establish some van-
ishing theorems for local cohomology modules. These results are based on a topological
description for the multigraded Hilbert series of H}(S). The definition of multigraded reg-
ularity is presented in Section 4. We also prove that in certain cases the definition of regu-
larity is equivalent to an apparently weaker vanishing condition. Section 5 connects the
multigraded regularity of a module with the degrees of its minimal generators. In Section
6, we reinterpret regularity of S-module in terms of coherent sheaves on a simplicial toric
variety and study some geometric applications. Finally, Section 7 examines the relationship
between chain complexes associated to a module or sheaf and regularity.

Acknowledgements. We thank Dave Benson for conversations which expanded our
notion of regularity. We are also grateful to Kristina Crona for conversations about mul-
tigradings early in this project. The computer software package Macaulay 2 [19] was indis-
pensable for computing examples. Both authors were partially supported by the Mathe-
matical Sciences Research Institute in Berkeley, CA.

2. Multigraded polynomial rings

In this section, we develop the foundations of multigraded polynomial rings. Let k be
a field and let G be a finitely generated abelian group. Throughout this paper, we work with

a pair (S, B) where S := k|x,...,x,] is a G-graded polynomial ring and B is a monomial
ideal in S. For a positive integer m, we write [m] for the set {1,...,m}. The convex cone
generated by (or positive hull of ) the vectors {vy,...,v,} is the set

pos(v1, ..., 0m) == {Aiv1 + -+ Al : A1y o o, A € R}

A G-grading of the polynomial ring S = k(xj,...,x,] corresponds to a semigroup
homomorphism N” — G. We say a monomial x” has degree p if u — p € G. This map

induces a decomposition S = @ S, satistying S, - S, < Sp., Where S, is the k-span of
peG
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all x" of degree p. The G-grading is determined by the set .o/ := {ay,...,a,} where
a; :=deg(x;) € G for 1 <i <n. We write N.o/ for the subsemigroup of G generated by
/. Let r be the rank of G and identify R ®, G with R". If a; denotes the image of a; in
R ®, G = R’, then the set .o/ := {aj,...,a,} is an integral vector configuration in R”. The
monomial ideal B corresponds to a chamber (maximal cell) I' = R" in the chamber com-
plex of the vector configuration .o/. The chamber complex is the coarsest fan with support
pos(.</ ) that refines all the triangulations of .oZ; see [4]. We encode the choice of a chamber
I' in the monomial ideal

B:= <H x; 10 < [n] with T < pos(a; : iea)>.

ieo
Alternatively, the monomial ideal B can be described by a regular triangulation ([36],
Definition 5.3) of the dual vector configuration. If d := n — r, then the dual vector config-

uration is a set of vectors 2 := {by,...,b,} in R? such that

[‘il"‘én]

(2.0.1) 0 R4 R 0

is a short exact sequence. The set 4 is uniquely determined up to a linear change of coor-
dinates on RY; see [36], §6.4. We identify a triangulation of 28 with a simplicial complex A.
Gale duality, specifically [4], Theorem 3.1, implies that the chamber I = R" corresponds to
a regular triangulation A of 4. For ¢ < [n], let 6 denote the complement of ¢ in [r]. From
this standpoint, we have B = < [[xi:0€ A>.

ieq

The simplicial complex A (or equivalently the chamber I') also gives rise to two
important subsemigroups of N.oZ. The first subsemigroup " is the intersection [ N.oZ;

geA

where .oZ; := {a; : i € 6}. Let Z.of be the subgroup of G generated by .o/. The second sub-
semigroup "' is the saturation (or normalization) of 2" in Z.o/. In other words, 4"
is the set of all p € N.oZ such that the image p € R" lies in the chamber I". The interior of
A% denoted int 4, consists of all p e % such that p lies in the interior of T

Example 2.1. Let G = Z and assume that a; > 0 for all i. Since G is torsion-free, we
may identify a; with a;. The polynomial ring S = k(xy, ..., x,] has the Z-grading induced by
deg(x;) = a; for 1 < i < n. The chamber complex of .7 has a unique maximal cell I' = Rx
and the corresponding ideal is B = {x, ..., x,>. The dual vector configuration 4 is given
by the columns of the matrix

a, 0 0 —a
0 a, 0 —a
o 0 --- a -a,_;

The semigroup # < Z consists of all nonnegative multiples of lcm(.e/) and # ' = N.
It follows that #* = 2" if and only if @; = 1 for all 1 <i <n. When a; = 1 for all i, S is
standard graded polynomial ring and B is the unique graded maximal ideal.
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Example 2.2. Fix 7 € N. Suppose that G = Z> and let .« correspond to the columns

of the matrix
1 -+ 1 0
0 1 0 1}

Again, we identify .o/ with .oZ. The polynomial ring S = k(x1, x2, X3, x4] has the Z>-grading

1 — 1 0
defined by deg(x;) = {0}, deg(x,) = [ OZ], deg(x3) = {0] and deg(x4) = [1} There are

1 0 —t] [0
two possible choices for the chamber I': Réo = pos([o] , [1 }) or pos([ | ] , [J) and

the ideal B equals <{xjx,, X2X3, X3X4, X1 X4 or {X|X2, X2X3, X2X4 » respectively. The dual vec-
tor configuration is given by the columns of the matrix

1 0 -1 0

01 ¢ —1)
Figure 1 illustrates the associated vector configurations when ¢ = 2. Regardless of the
choice of T, both #™%* and A" equal I n Z°.

Figure 1. The vector configurations for Example 2.2.

Example 2.3. If G=27>@® (Z/2Z)* and .o corresponds to the columns of the
matrix

1 01 01
01 01 1
1 01 00
1 10 00

where the entries in bottom two rows are elements of Z/27, then S = k[xi, x2, X3, X4, Xs]
is graded by a group with torsion. The vector configuration .o/ is given by the columns

01 0 1 L 1 1
L0 1 1].The chamber T is either Fl.—pos<[0},{l]> or

1

of the matrix [ 0
0 1 . . .

I := pos L and the ideal B equals either {xjx;, x1X4, X1X5, X2X3, X3X4, X3X5» In

the first case or {x1x2, X2X3, X2Xs, X1 X4, X3X4, X4X5» in the second. The dual vector configu-
ration 48 is given by the columns of the matrix
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1 1 -1 -1 0
1 -1 -1 1 0
1 1 1 1 -2

The two triangulations are illustrated in Figure 2. If I is the chosen chamber, then

and % =N

2 0 0
2 0 0
10 1|0
0 0 1

1
1

) O )
0

I

2
o oo
c oo~

Figure 2. The two triangulations and chamber complex for Example 2.3.

On the other hand, if I'; is the chosen chamber, then

2

2 t
o and A =N

0

S O DO

The following lemma further illustrates the connections between the ideal B and the
semigroups # and A", For p € G, let {S,) denote the ideal generated by all the mono-
mials of degree p in S. For u e N, let supp(u) := {i : u; + 0} = [n].

Lemma 2.4. If p belongs to the interior of A" and deg(x") = p then x" belongs to
the ideal B. Moreover, if p € K, then B = /{S,).

Proof. 1If peint# ™" and x" €S, then pos(a; :iesupp(u)) nintT =+ @. Since T
is a maximal cell in the chamber complex of .7, we have I' < pos(a; : i € supp(u)) and
dimp pos(ﬁi (i€ supp(u)) = r. Caratheodory’s Theorem ([36], Proposition 1.15) implies
that pos(a; : i € supp(u)) is the union of the pos(a; : i € g) where |o| = r and ¢ < supp(u).
Hence, there exists o < supp(u) such that |o| =r and pos(a; : i € ) nint" & (). Again,
because I' is a chamber, we have I' < pos(a; : i € g). It follows that the monomial [] x;
belongs to B and divides x*. This establishes the first assertion. ieo
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If p e A, then for every g € A there exists a monomial x* € S, with supp(u) < 6. It
follows that a sufficiently large power of each generator of B belongs to the ideal <{S,)

which implies B = /<{Sp). O

Our motivating example of a pair (S, B) is the homogeneous coordinate ring and ir-
relevant ideal of a toric variety introduced by Cox in [11]. Let X be a simplicial toric vari-
ety over a field k determined by a fan A in R?. By numbering the rays (one-dimensional

cones) of A, we identify A with a simplicial complex on [n]. We write by,...,b, for the
unique minimal lattice vectors generating the rays and we assume that the positive hull of
B = {by,...,b,} is R?. The set A gives rise to a short exact sequence
LT
0 za Bt g G 0.

Tensoring this sequence with R, we obtain (2.0.1). Geometrically, G is the divisor class
group (or Chow group) of X; see [17], §3.4. The image of the ith standard basis vector
of Z" in G is denoted by a;. Observe that the set .o« = {ay,...,a,} is uniquely determined
up to an automorphism of G. The homogeneous coordinate ring of X is the polynomial
ring S = k[xy, ..., x,] with the G-grading induced by deg(x;) = a; and the irrelevant ideal is

B:<Hx,-:o'eA>.

i¢o

This geometric choice of a pair (S, B) fits into the algebraic framework developed at
the start of this section if the fan of X corresponds to a regular triangulation of 4. By [24],
Theorem 2.6, this is equivalent to saying that X is semi-projective. In particular, this holds
whenever X is projective. Conversely, an algebraic pair (S, B) is the homogeneous coordi-
nate ring and irrelevant ideal of a simplicial toric variety if and only if, for each i, the ray
pos(b;) belongs to the triangulation associated to the chamber T

Example 2.5. The pair (S, B) described in Example 2.1 corresponds to the weighted
projective space X = P(ay, ..., a,). In particular, when X = P“, the homogeneous coordi-
nate ring S is the standard graded polynomial ring and the irrelevant ideal B is the unique
graded maximal ideal.

Example 2.6. If (S, B) is the pair described in Example 2.2 where I' = Réo then the
associated toric variety is the Hirzebruch surface (or rational scroll) F, = P(COp1 @ Ui (2)).

Example 2.7. If X is the product of projective space P? x P¢, then the ho-
mogeneous coordinate ring S = k[xo, ..., X4, Yo, ...,V has the Z>-grading induced by

1 0
deg(x;) = [0} and deg(y;) = [1} and the irrelevant ideal B is {xg,...,Xq> V<Y, . .., Ve.

When the pair (S, B) corresponds to a simplicial toric variety X, the chamber I and
the semigroups " and 4 have geometric interpretations. Assuming all the maximal
cones are d-dimensional, we have Pic(X) ® Q =~ G ® Q. As [12], §3 indicates, the cham-
ber I' is the closure of the Kidhler cone of X. The dual of the Kdhler cone is the Mori
cone of effective 1-cycles modulo numerical equivalence. The semigroup 24" corresponds
to the numerically effective Weil divisors on X up to rational equivalence and elements
in " are nef line bundles. When X is smooth, the class group G is torsion-free and
l%/' — %'Sat.
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The next example demonstrates that 2# can be complicated even when X is
smooth.

Example 2.8. Consider the following smooth resolution X of weighted projective
space [(2,3,7,1). Specifically, the set # corresponds to the columns of the matrix

100 -2 0 0 -1 0 -1 -1 -1
010 -3 0 -1 -1 -1 -1 -2 =2
001 -7 -1 -2 -3 -3 —4 —4 -5

Figure 3 illustrates the regular triangulation and the irrelevant ideal is

B = {X1X2X3X4X6X7X9X10,  X2X3X4X5X6X7X9X10, X1 X2X3X6X7X8X9X10,
X2X3X5X6X7X8X9X10, X1X2X3X5X7X8X9X11, X1X2X4X5X7X8X9X]],
X1X2X5X6X7X8X9X11, X1X2X3XeX7X8X10X11, X1X3X4X6X7X8X10X11,

X1 X3X5X6X7X8X10X11, X2X3X4X6X7X9X10X11, X1X2X5X6X8X9X]10X]],
X1X3X5X6X8X9X10X11, X1X4X5XeXg§X9X10X11, X2X3X5X7X8X9X10X]11,
X2X4X5X7X8X9X10X11, X3X4XeX7X8X9X10X11, X4X5X6X7X8X9X10X]] )

In this case, I' is an 8-dimensional cone with 16 extremal rays. Using Normaliz 8], we

determine that the set of minimal generators for 4" has 25 elements all of which lie on the
boundary of T'.

Figure 3. The triangulation for Example 2.8.

3. A topological formula for local cohomology

Throughout this paper, M denotes a finitely generated G-graded S-module. In this
section we derive a vanishing theorem for the local cohomology modules Hj(M) from a
topological formula for H}(S). We refer to [5] for background information on local coho-
mology. A module M is B-torsion it M = Hy(M). If M is B-torsion then Hj(M) = 0 for
i > 0. For an element g € S, we set
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(0:37 g) :={f e M:gf =0} =Ker(M > M).

This submodule is zero when ¢ is a nonzerodivisor on M. We say an element g € S is almost
a nonzerodivisor on M if (0 :js g) is a B-torsion module.

Proposition 3.1. Let k be an infinite field. If p e A" and g € S is a sufficiently general
form of degree p, then g is almost a nonzerodivisor on M. In other words, there is an open
dense set of degree p forms g for which (0 :ys g) is B-torsion.

Proof. The module M’ := (0 :)s g) is B-torsion if each element in M’ is annihilated
by some power of B. This is equivalent to saying that the localization M}, = 0 for all prime
ideals P in S not containing B. In other words, g is a nonzerodivisor on the localization
M p. Hence, it suffices to show that g is not contained in any of the associated primes of M
except possibly those which contain B.

To accomplish this, observe that each prime ideal P in S which does not contain
B intersects S, in a proper subspace. Otherwise {S,» = P and Lemma 2.4 implies that
B < /<S,> < VP = P which contradicts the hypothesis on P. Because M has only finitely
many associated primes, our observation shows that g € S, is almost a nonzerodivisor on
M if it lies outside a certain finite union of proper subspaces. Since k is infinite, the vector
space S, is not a finite union of proper subspaces. []

To give a uniform vanishing result for local cohomology, we assume for the remain-
der of this section that pos(.e/) is a pointed cone with @ # 0 for each i or equivalently that
o/ is an acyclic vector configuration; see [36], §6.2. This condition holds if S is the homo-
geneous coordinate ring of a projective toric variety. We can rephrase this assumption by
saying that the dual configuration 48 is totally cyclic or pos(28) = R?. Hence, any regular
triangulation of 4 is a complete fan in RY. We may identify A with a simplicial (d — 1)-
sphere and the collection A := A U {[n]} (ordered by inclusion) with the face poset of a
finite regular cell decomposition of a d-ball. It follows that there is an incidence function ¢
on A. Recall from [7], §6.2, that ¢ takes values in {0, +1} and is induced by an orientation
of the cells.

For o  [n], let x, denote the squarefree monomial [] x; € S. The canonical Cech
complex associated to A is the following chain complex: ~ €¢

A0 Al A2 A
= ~0 0 x1 0 =2 0 Od-1 <d Od
C=0—-C'" St 2L 2 od 2 et 0,

where C?:= S, C' := @  Skx;'lfori>0and d': C' — C™!is composed of ho-
geA,|ol=d+1—i
momorphisms &(a, ) - nat : S[x; '] — S[x
Theorem 6.2, we deduce that H}(M) =
Hi(M)=0foralli<Oori>d+1.

]. By combining [2], Corollary 2.13, and [29],
(C®g M) for all S-modules M. It follows that

—1
7
i

The next proposition gives a combinatorial description for the local cohomology of
the polynomial ring S. We will use this formula to compute the multigraded regularity in
some examples. This result is a variant on the formulae found in [16] and [34]. For o € A,
let A, be the induced subcomplex {r e A:7 < g} of A. The modules Hj(S) have a Z"-
grading which refines their G-grading.
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Proposition 3.2. Let H'(—) denote the ith reduced cellular cohomology group with
coefficients in k. If u € 7" and o := neg(u) = {j : u; < 0}, then we have

i—2 i
H’(S) {H (Ay) fori=l,
0 fori=1.
Proof. One easily checks (see [7], Lemma 5.3.6) that dimy S[x;!], =1 when 1 < ¢

and dimy S[x;!'], = 0 when 7 & 6. It follows that the uth graded component of C is iso-
morphic to a shift of the augmented oriented chain complex of As (see [7], §6.2). More
precisely, we have H'(C,) = Hy_; (A ). To complete the proof, we analyze three cases:

® If 5 is a proper nonempty subset of [n], then the subcomplex A§~equals As.
Alexander duality ([31], Theorem 71.1) shows that Hy_;(A;) is isomorphic to H'"2(A\A).
Because A, is a deformation retract of A\A; ([31], Lemma 70.1), we have

Ay i(As) =~ B2 (A,).
Note that H~2(A,) = 0 when i = 1.

* If g =, then 6 = [n] and A, is a d-ball which implies that Hy_;(A;) = 0 for all i.
It follows that H,_ (A[ 1) is isomorphic to H'=2(Ag) for i + 1 and equals 0 for i = 1.

® If o = [n], then 6 = 0 and As = 0 which implies that H,_ ,(A,,) =0fori+d+1
and H_;(A;) = k. Since Ay = Ais a (d — 1)-sphere, we also have H,;_ (A@) ~ H- 2(Ap)
foralli. [

Remark 3.3. Proposition 3.2 implies that H5(S) + 0 only if 2 <i < d + 1. Since
HJT(S), = k when neg(u) = [n], we have H{t!(S) # 0. Moreover, Hg™'(S) is the only
nonvanishing local cohomology module if and only if every proper subcomplex of A is con-
tractible. This happens precisely when A is the boundary of the standard simplex. Hence,
HL(S)=0foralli +d+ 1if and only if B = {xy,...,x,).

Using Proposition 3.2, we can describe the Hilbert series of the modules Hj(S).
Corollary 3.4. For all i + 1, we have

dimy H'2(A,) - [[ 17
(3.4.1) p;Gdimk Hé(S)p P = agn] DN (1jjara,-) -

jeo jeao

Proof. For i % 1, Proposition 3.2 implies that

%,, dimy Hi\(S), - x* = % dimy, H'™?(Apeg(u) - X"
dimy H'2(A,) - T] x;!

= 3 (dimH7(A,) S oat) = 3 e
gg[n]< neg(u)=c ) og[n]H(l_xj)H(l_le)

jea Jjea

Mapping x; to % establishes the corollary. []
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We illustrate this corollary with the following example.

Example 3.5. If S is the homogeneous coordinate ring of the Hirzebruch surface [,
as in Examples 2.2 and 2.6, then the only non-contractible subcomplexes are Ay, Ay 3y,
Apr,4y and Ay,. Since H(Ag) =0 for all i + —1 and H- 1(Aq)) =k, this subcomplex does
not contrlbute to any local cohomology module. Because H° (A{l 3) =k = H (Ap,4y),
the degrees p e Z> for which H 2(S) + 0 correspond to the lattice points in the two
cones —a; — a3 + pos(—ay, az, —as, a4) and —a; — a4 + pos(a;, —ay, a3, —as). We also have
H' (Aj)) = b, so the degrees p € Z* for which H Izg(S)p %+ 0 correspond to the lattice points
in the cone —a; — a; — a3 — a4 + pos(—a;, —a», —as, —as). These cones are indicated by the
shaded areas in Figure 4 when ¢ = 2.

H(S)

Figure 4. Degrees p € Z* for which Hé(S)p =+ 0 in Example 3.5.

The next result extends a well-known vanishing theorem for ample line bundles on a
complete toric variety; see (6.3.1) for the explicit connection.

Corollary 3.6. If p belongs to H™*", then Hy(S), vanishes.

Proof. Fix p e A" and suppose u € Z" satisfies deg(x") = p. The vector u defines
a function on y, : RY — R that is linear on the cone pos(b; : i € ¢) for all ¢ € A and sat-
isfies ,(b;) = —u; for 1 £i < n. [4], Lemma 3.2 implies that p € #™**" if and only if ,
is convex which means v, (w + w') = s, (w) + ,(w’) for all w,w’ € R?. Hence, the set
{weR?:y,(w) =0} is convex. It follows that simplicial complex Aveg(u) corresponds to
the intersection of a convex set with the (d — 1)-sphere. Therefore, Ayeq(y) is contractible
and Proposition 3.2 implies that H(S), = 0 which proves the statement. []

As a further corollary, we obtain a vanishing theorem for the local cohomology of any
finitely generated G-graded S-module. Geometrically, this result corresponds to Fujita’s
vanishing theorem ([27], Theorem 1.4.32). We first record a useful observation.

Remark 3.7. Let & be a subsemigroup of G consisting of all points p € G such that
their image p in R lies in a fixed convex cone C. If p + & and ¢ + & are two shifts of &,
then their intersection is nonempty. In fact, if p € &, with p € int C, then for all sufficiently
large j € N we have jp € ¢ + & for any ¢q € G.
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Corollary 3.8. There is me X" such that Hp(M),=0 for all i and all
pem—+ A In particular, Hy(M )p vanishes for all i and all p € A At sufficiently far into
the interior of A ™. If desired we may assume m € KA.

Proof. We proceed by induction on the projective dimension pd(M) of M. Since
M is finitely generated, there is a short exact sequence 0 — E; — Ey — M — 0 where

Ey= @ S(—g;) for some g; € G. The associated long exact sequence contains
1<j<h '
(3.8.2) Hy(Eo), — Hy(M), — Hi ' (E1),.

If we choose m' € (| (g;+ "), which is possible by Remark 3.7, then Theorem 3.6

1<j<h
implies that the left module in (3.8.2) vanishes for all i and all pem’ + . When
pd(M) = 0, we have E; = 0 and there is nothing more to prove. Otherwise, we have E +0
and pd(E;) < pd(M). Hence, the induction hypothesis provides m” € G such that the right
module in (3.8.2) vanishes for all p € m” + #"%*'. Therefore, by choosing

me (m/ Jr%'sat) A (m// + x—sat))

which is again possible by Remark 3.7, we see that the middle module in (3.8.2) vanishes
for all i and all p e m + A"

Lastly, because 4" is the saturation of ., there exists some m"” € A N (m + H"*).
Since m" + A5 = m + A, the corresponding vanishing statement holds for m”" which
establishes the last part of the corollary. []

We end this section by examining the assumption that pos(.eZ) is acyclic. Firstly, we
can remove the condition that @; & 0 for all 7.

Remark 3.9. Let g:={ie[n]:a; =0}. For each jeo the variable x; does not
divide any minimal generator of B. In other words, the set ¢ is contained in every facet of
A. Hence, the simplicial complex A is a cone over the induced subcomplex A;. By replacing
A with A;, we can extend Proposition 3.2 and its corollaries to this more general situation.

On the other hand, the next example shows that we cannot eliminate the hypothesis
that pos(.Z ) is a pointed cone.

Example 3.10. If G=7 and o/ = {1, —1,1}, then S = k[x;,x2,x3] has the Z-
grading induced by deg(x,) = —1 and deg(x;) = deg(x3) = 1. Choosing the chamber I' to
be Rx(, we have # = A" = N. The corresponding monomial ideal is B = {x, x3» and

the dual vector configuration corresponds to the columns of the matrix { Since

1 0
0 1 1
the first paragraph of the proof of Proposition 3.2 applies in this situation,

H2(S), = Ho(As) where o = neg(u).

If 0 = {2}, then ¢ = {1,3} and A{l 33 = {0, {1},{3}}. It follows that Hoy(As) + 0 which
implies that H2(S), #+ 0 when neg(u) = {2}. However, for all p € N, there exists a u € Z°
with neg(u) = {2}. We conclude that Hz(S) + 0 forall pe #-
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4. Regularity of S-modules

In this section, we define the multigraded regularity of a G-graded S-module. As in
the standard case, multigraded regularity involves the vanishing of certain graded compo-
nents of local cohomology modules. We show that, in certain cases, the definition is equiva-
lent to an apparently weaker vanishing statement.

Before giving the definition of multigraded regularity, we collect some notation.
Throughout this paper, € := {ci, ..., ¢/} will be a fixed subset of G. We write N% for the
subsemigroup of G generated by €. A subset & of G is called an Né-module if for all
peZandallge N€ wehave p+qe 2. If ¥ < G and i€ Z, then

li] = U<|%(/llcl Foe Ay +@) cG

where the union is over all Ay,...,4, € N such that A +---+ 4, =|i|. For pe G, we
clearly have p + Z[i] = (p + Z)]i]. Moreover, if & is an Né-module then Z]i] is also an
N%-module and Z[i + 1] < %[i]. The following definition includes Definition 1.1 as a spe-
cial case.

Definition 4.1. If m € G, then the S-module M is m-regular (with respect to é) if
Hy(M), =0 forall i > 0 and all p e m+ N[l — i|. The regularity of M, denoted reg(M),
is the set {m e G : M is m-regular}.

When S has the standard grading, B = {x,...,x,), and € = {1}, the definition is
simply: M is m-regular if and only if Hé(M)p =0foralli=0andall p=m—i+ 1. This
is equivalent to the standard definition of Castelnuovo-Mumford regularity; for example
see [5], page 282. Moreover, if S has an N-grading as in Example 2.1, B = {xy, ..., x,» and
% = {1}, then the definition of m-regular is compatible with [3], Definition 4.1.

Our definition for reg(M) conflicts with the standard notation used for Castelnuovo-
Mumford regularity. Traditionally, G = Z and the regularity of M referred to the smallest
m € G such that M is m-regular. In the multigraded setting, the group G is not equipped
with a natural ordering so one cannot choose a smallest degree m. More importantly, the
set reg(M) may not even be determined by a single element of G. Example 4.3 illustrates
this phenomenon. For these reasons, we regard the regularity of M as a subset of G. From
this vantage point, giving a bound on the smallest m such that M is m-regular should be
interpreted as describing a subset of reg(M).

Example 4.2. Let S = k[x), ..., x,] have the Z-grading induced by deg(x;) =a; > 0
and the ideal B be <{xj,...,x,) as in Example 2.1. If € = {1}, then Remark 3.3 implies
that reg(S) ={meZ:m=n—a; —--- —a,}. On the other hand, ifq; =1 for 1 <i<n
and € = {c1,...,¢;} with0 < ¢; £--- < ¢/, then we have

reg(S)={meZ:m=mn-1)(c, —1)}.

Example 4.3. Let ¢ € N. Suppose that S is the homogeneous coordinate ring of the

1 0
Hirzebruch surface [F,; see Example 2.6. If € = { [ O] , [ ) } } then Example 3.5 implies that
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N2 fort=0,1,

reg(S) = ([zgthz)U([?th) for 13 2.

Observe that when 7 = 2 the set reg(.S) is not determined by a single element of G. More-
over, we have int £ < reg(S) for all z € N, but 0 ¢ reg(S) for # = 2. The shaded region in
Figure 5 represents reg(S) when ¢ = 2.

Figure 5. The reg(S) for the homogeneous coordinate ring S of F,.

Without additional hypotheses, it is possible that reg(M) is the empty set. Indeed,
if S = k[x1, x2,x3] has the Z-grading described in Example 3.10, then reg(S) = . Fortu-
nately, there is a large class of pairs (S, B) for which reg(M) =+ 0 for all finitely generated
S-modules M. Specifically, we have the following:

Proposition 4.4. If pos(.o/) is a pointed cone and NG ~int A5 + 0, then every
module M is m-regular for some m € G.

Proof.  Corollary 3.8 states that there is m e #™** such that Hy(M), = 0 for all i
and all p e m+ #*'. By hypothesis, there exists ¢ € NG nint #**'. Remark 3.7 implies
that there exists k € N such that

kce ﬂ (m—l—/11c1+~--+/1/c/+,%fsat).
).1,...,)./EN
Jat+de=d

We conclude that kc e reg(M). [

To show that a module M is m-regular directly from Definition 4.1, one must verify
that an infinite number of graded components of the local cohomology vanishes. In fact,
under the appropriate hypothesis, one need only check a finite number of components. To
prove this result, we introduce the following two weaker versions of regularity.

Definition 4.5. Given k € N, the module M is m-regular from level k if Hy(M) , =0

for all i > k and all p e m+ N€[l —i]. In particular, M is m-regular if and only if it is
m-regular from level 0. We set reghk(M) := {me G : M is m-regular from level k}. For
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k >0, we say M is weakly m-regular from level k if Hi(M ), =0 for all i = k and all
p=m—jic; —---—Jse, where ;eNand Ay +---+ 4, =i — 1.

Our goal is to show that, when € < 4, M is m-regular if and only if it is weakly m-
regular from level 1 and H3(M ),=0forpe U (m+ ¢+ NE). To accomplish this, we
need the following fact. l=j=/

Lemma 4.6. Let k be a positive integer. If M is weakly m-regular from level k and
g € S, is almost a nonzerodivisor on M for some 1 < j </, then M /g;M is also weakly m-
regular from level k.

Proof. Since g; is almost a nonzerodivisor on M, the submodule (0 :3 g;) is a B-
torsion module. We set M := M /(0 :3s g;). Because Hj((0 :p g;)) = 0 for i > 0, the long
exact sequence associated to the exact sequence 0 — (0 :ps g;) — M — M — 0 implies that
Hy(M) = HL(M) fori > 0. Since M is weakly m-regular from level k and k > 0, it follows
that M is weakly m-regular from level k. On the other hand, the long exact sequence asso-
ciated to the exact sequence 0 — M(—¢;) — M — M /g;M — 0 contains

(4.6.1) Hy(M), — Hy(M/g;M), — H;;“(M)pfcj.
Since M and M are weakly m-regular from level k, the left and right modules in (4.6.1)
vanish when i = k and p=m — Aj¢; — --- — As¢, where 4,...,4, € N and

M+ +i=i-1

Therefore, the middle module also vanishes which proves that M /g; M is weakly m-regular
from level k. [

Theorem 4.7. Let k be a positive integer. If € = A" and M is weakly m-regular from
level k, then M is weakly p-regular from level k for every p e m + NE.

Proof. Since extension of our base field commutes with the formation of local co-
homology, we may assume for the proof that k is infinite. Because € < ., Proposition 3.1
implies that we may choose a nonzerodivisor g; € S, on M foreach 1 < j < /.

Suppose that k > 0 and that M is weakly m-regular from level k. Since every
p € m+ N% can be expressed in the form p=m+ A1¢; + - -+ + As¢, where A1,..., 4, € N,
it suffices to prove that if M is weakly g-regular from level k then M is also weakly (¢ + ¢;)-
regular from level k for each 1 < j < /. We proceed by induction on dim M. If dim M =0
then Grothendieck’s vanishing theorem ([5], Theorem 6.1.2) implies that H4(M) = 0 for
i > 0. Thus, M is weakly g-regular from level k for all g € G and there is nothing more to
prove.

Assume that dim M >0 and set M := M/Hp(M). Since Hg(M) is a B-torsion
module, the long exact sequence in cohomology arising from the short exact sequence
0— HYM)— M — M — 0 implies that Hj(M) = Hjy(M) for all i > 0. Hence, M is
weakly g-regular from level k and it suffices to show that M is weakly (g + ¢;)-regular from
level k.
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Since g; is a nonzerodivisor on M, we have dim M /g;M < dim M. Lemma 4.6 shows
that M /g;M is weakly g-regular from level k and the induction hypothesis implies M /g;M
is also weakly (g + ¢;)-regular from level k. Taking the long exact sequence associated
to the exact sequence 0 — M(—¢;) — M — M /g;M — 0, we obtain the exact sequence
Hy(M), — Hy(M),,., — Hg(M/g;M),. . Since M is weakly g-regular from level k and
M /giM is (q + cj)-regular from level k, the left and right modules vanish when i = k and
g =q— ey —---—Js¢c, where Ay,...,2,eN and Ay +---+ /1, =i— 1. Therefore, the
middle module also vanishes which proves M is weakly (g + ¢;)-regular from level k. [J

Theorem 4.7 provides the desired alternative characterization of m-regularity.

Corollary 4.8. Let € = A. The module M is m-regular if and only if M is weakly
m-regular from level 1 and Hg(M)p =0 forall pem+ ( U (¢+ N%))

1<)/

Proof. Suppose that the module M is m-regular from level 1 and Hy(M) , vanishes
for all p e m + N%[1]. Since the condition on Hy(M ), 1s the same as in Definition 4.1, we
only need to show that Hj(M) , = 0 forall pem+ N€[l —i]. However, this is the content

of Theorem 4.7. The converse follows from the Definition 4.1 and Definition 4.5 [J
The next example illustrates that the condition € < ¢ is necessary for Theorem 4.7.

Example 4.9. Let S = k[x;,x,] have the Z-grading defined by deg(x;) =2 and
deg(x2) = 3 and let B = {x1,x,). Example 2.1 shows that #" = 6N. Proposition 3.2 estab-
lishes that the nonvanishing local cohomology is concentrated in H3(S) and that H3(S)
in nonzero exactly in degrees —5,—7,—8,—=9,... . If € = {1} ¢ &, then S is weakly (—5)-
regular from level 1 but not weakly (—4)-regular from level 1. The strategy used in the
proof of Theorem 4.7 does not apply because S; = 0, so there is no nonzerodivisor of de-
gree 1.

By design, the regularity of a module measures where its cohomological complexities
vanish. Since Grobner bases calculations are linked to homological properties, one expects
a strong connection between regularity and computational complexity. Both Proposition
6.13 and Corollary 7.3 provide further support for this idea by relating regularity to initial
modules and free resolutions. To make the connection between regularity and complexity
more precise, we are interested in the following open problem:

Problem 4.10. Give a computationally efficient method of calculating reg(M).

When S has the standard grading, this problem is solved in [1] by showing that
reg(M) is determined by the largest degree generator of the initial module in(M) with
respect to a reverse lexicographic order in generic coordinates. Unfortunately, this tech-
nique does not extend directly to polynomial rings with arbitrary multigradings. As the next
example demonstrates, there may not be any coordinate changes which preserve the grad-
ing and change the initial module.

Example 4.11. Let S be the homogeneous coordinate ring of a toric variety X
obtained from P? by a sequence of five blow-ups. More explicitly, the minimal lat-
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tice points 4 on the rays of the fan correspond to the columns of the matrix

1 1.0 -1 -1 -1 0O 1 . . . .
01 1 1 0 -1 -1 -1 and the associated irrelevant ideal is

B = {X3X4X5X6X7X8, X1 X4X5X6X7Xg, X1 X2X5X6X7Xg, X1 X2X3X6X7 X8,
X1X2X3X4X7Xg, X1 X2X3X4X5Xg, X2 X3X4X5X6X7, X1 X2 X3X4X5X6 ).

Hence, G = Z° and we may assume that .7 be given by the columns of the matrix

1 0 0 0 0 O 1 -1
o1 -2 1 0 0 0 O
00 1 -1 1 0 0 O
00 o 1 =2 1 0 O
6o o o0 1 -1 1 0
00 0 0 0 -2 1]
The homogeneous coordinate ring S = k[xy,...,xs] has the Z°-grading induced by

deg(x,) =a; for 1 <7< 8. Since S,, is the Ik -span of the variable x; for | <i < §, Corollary
4.7 in [11] establishes that Aut(S) (k*)®. As a consequence, any change of coordinates
which preserves the grading does not alter the initial ideal. Hence, one cannot develop a
theory of generic initial ideals.

5. Degrees of generators

The regularity of a module should be regarded as a measure of its complexity. In this
section, we justify this idea by proving that the regularity controls the degrees of the mini-
mal generators. To understand the minimal generators of a module, we study submodules
of the following form.

Definition 5.1. Let & be a subset of G. We define the &-truncation of M, denoted
M|, to be the submodule of M generated by all the homogeneous elements in M of degree
p where pe 9.

In contrast with the standard graded case, the next example illustrates that (M|,),
may be nonzero even if p ¢ & + NA ",

Example 5.2. Suppose that S is the homogeneous coordinate ring of the Hirzebruch
1
surface [,; see Examples 2.2 and 2.6. If & = [1} + N2, then S|, is generated in degree
1
[1]. Observe that x3x3 € S|, but deg(x}x3) ¢ 2.

To prove the main theorem in this section, we need the following fact.

Lemma 5.3. Let c € NG and let ¥~ = G such that Hg(M) =0forallpe V. If Mis
m-regular from level 1 and g € S, is almost a nonzerodivisor on M then HY(M /gM ) =0 for
all pe V" n(m+ ¢+ NE).
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Proof. Set M := M /(0 :)s g). Because ¢ is almost a nonzerodivisor on M, (0 :s g)
is a B-torsion module and the long exact sequence associated to the short exact se-
quence 0 — (0:p g) = M — M — 0 implies that Hy(M) = Hy(M) for i > 0. Since M
is m-regular from level 1, it follows that M is also m-regular from level 1. Now, the long
exact sequence associated to the exact sequence 0 — M(—¢) - M — M /gM — 0 con-
tains Hp(M), — Hp(M /gM), — Hy(M), .. By hypothesis, the left module vanishes
when pe " Since M is m-regular from level 1, the right module vanishes for all
p e m+ ¢+ N%. Hence, the middle module vanishes for all pe ¥ " n (m+ ¢+ N€). [

We now prove that if M is m-regular then M|,, = M|, +NG)- In the standard graded
case, this is true for any m € Z that is larger than the maximum degree of the minimal
generators.

Theorem 5.4. Assume that € = K. If the module M is m-regular, then we have
M|, =M |(m +n@)- In particular, the degrees of the minimal generators of M do not belong to
the set reg(M) + ( U (¢+ N%))

1<)/

Proof. We prove the following claim: If M is m-regular from level 1 and
Hy(M), =0 for all pe ¥, then M|, gy is @ submodule of M|,. We proceed by
induction on dim M. If dim M < 0, which is equivalent to saying that M =0, then
M| (i neg) g = 0 s trivially a submodule of M,,.

Suppose that dim M = 0. Set M := M/H3(M) and consider the short exact se-
quence

(5.4.1) 0— HY(M)— M — M — 0.

We claim that it is enough to prove that M|,y is a submodule of M]|,,. To see this, let
pe(m+NG) Ny andlet f € M,. If f € M, can be written as > s5;/; for some s; € S and

_ . 1
some f; € M,,, then f =) s;fi+h for he Hg(M)p. Since p € ", we have Hg(M)IJ =0
i
which implies 4 = 0. Thus, f = s;/; and it suffices to prove the claim for M. The long

exact sequence associated to (5.4.1) implies Hy(M) = Hy(M) for all i > 0. Since M is m-
regular from level 1 and HJ(M) = 0, we deduce that M is m-regular.

Extending the base field commutes with the computing local cohomology, so we
may assume without loss of generality that l is infinite. Because € < ¢, Proposition 3.1
implies that, for each 1 < j </, we may choose a nonzerodivisor g; € S, on M. It fol-
lows from Lemma 4.6 that M /g;M is m-regular from level 1 and Lemma 5.3 shows that
Hy(M/g;M), =0 for all pem + ¢;+ N%. Since dim M /g;M < dim M < dim M, the in-
duction hypothesis with #” = m 4 ¢; + N% guarantees that (M /g;M)|, (e +NG) is a sub-
module of (M/g;M)|,,. It remains to show that this implies M |(m+ne) 18 @ submodule of
M,

Suppose otherwise. For each element f € M with deg(f) € m + N, we set

reach(f) :=min{4; +---+ A, : deg(f) =m+ Aye; +---+ Asc,and 4y, ..., 4, € N}
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Because M is noetherian and we are assuming that M [N = M]|,,, there is a minimal
generator f € M |m+ne) Which has smallest reach(/) among all the minimal generators
of M |m+ne) With degree not equal to m. Since f ¢ M]|,,, we have reach(f) > 0 and there
exists ¢; w1th 1 < j =/ such that deg(f) € m + ¢; + N%. From the previous paragraph, we
know that the image of f in (M/gjﬂﬂ (m-¢-N%) Delongs to (M/g;M)|,,- Hence, we may

choose homogeneous elements fi, ..., f. € M|, and si,...,s, € S such that

S=sitfi = —scfe € (ng)|(m+q+N‘€) = gj(M|(m+N‘€))'

Let /' be the homogeneous element of M |(m+nv) satisfying the equation

f=sifi— o —sefe=gif".

Since f does not belong to M|, the element f’ cannot belong to M]|,. However,
reach(f") < reach(f) and f’ e M|, ¢ Which contracts our choice of f. We conclude

that M|, ) is a submodule of M,,. [

Proof of Theorem 1.3. In the introduction we assumed that € was the minimal
generating set of 2. Hence, Theorem 1.3 follows from Theorem 5.4. []

When S has the standard grading and € = {1}, the statement that the minimal gen-
erators of M do not lie in m + N%/|1] is equivalent to saying that the minimal generators
of M have degree at most m. In this case, Theorem 5.4 proves that the regularity gives a
bound on the degrees of the minimal generators. For an ideal in S, an upper bound on the
minimal generators yields a finite set containing the degrees of the minimal generators. In
contrast, Theorem 5.4 does not automatically produce a finite set containing the degrees of
the minimal generators for an ideal when S has a general multigrading.

We may still ask the question whether if M is m-regular all minimal generators of M
lie in m — N4. It is not hard to find examples showing that this need not be the case, but
to date all such examples have had Hy(M) = 0. In the bigraded case Hoffman and Wang
[25] take a different approach, adding an extra local cohomology vanishing requirement to
guarantee this bound on generators.

6. Regularity of ('x-modules

In this section, we develop a multigraded version of regularity for coherent sheaves
on a simplicial toric variety X. Since (/y-modules correspond to finitely generated modules
over the homogeneous coordinate ring of X, regularity for Ox-modules is essentially a special
case of regularity for S-modules. Nevertheless, the geometric context provides new inter-
pretations and applications for regularity.

To begin, we examine the relation between sheaves on a toric variety X and G-graded
modules over its homogeneous coordinate ring S; see [11]. For o € A, we write x; for the
monomial [] x; € S and U, = Spec(S[x;],) is the corresponding open affine subset of X.

i¢o
Every (not necessarily finitely generated) G-graded S-module F gives rise to a quasicoher-
ent sheaf F on X where H(U,, F) = (F[x;!]),. If M is finitely generated G-graded S-
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module, then M is a coherent ('y-module. Moreover, every quasicoherent sheaf on X is of
this form for some G-graded S-module F' and if the sheaf is coherent then F can be taken to
be finitely generated. For p € G, the sheaf associated to the module S(p) is denoted Oy (p).
Note that the natural map Oy (p) ®, Ox(q) — Ox(p + q) need not be an isomorphism.
For an Ox-module 7, we simply write # (p) for # ®,, Ox(p).

The map sending a finitely generated G-graded S-module M to the sheaf M is not
injective. In fact, there are many nonzero modules which give the zero sheaf. The following
proposition analyzes this phenomenon.

Proposition 6.1.  The sheaf M is zero if and only if there is j > 0 such that B/ M, =0
forall pe A.

Proof. Suppose that B/M, = 0 for all p e A" Fix ¢ € A and take f/x" € (M[x;]),.
Remark 3.7 implies that there exists a monomial x’ € S such that supp(v) £ é and
deg(x"*) € #**'. Moreover, we may choose k € N such that p := deg(x**"**) e " It fol-
lows that x*=Dukv £ e Ap, and (x5)/x*~DwHkf = 0 for some j > 0. Therefore, f/x* =0
and (M([x;']), = 0 which shows that M is the zero sheaf.

Conversely, suppose that M is the zero sheaf, fix pe # and let f € M,. Lemma
2.4 implies that for each o € A there is a monomial x* € S such that deg(x") = p and
supp(u) < 6. The monomial x* is invertible in S[x;!] and f/x" € (M[x;']), = 0. It follows
that (x5)’f =0 for some j > 0. To see that one j works for all f € M, and all p € A,
observe that M|, is a submodule of M and thus finitely generated. The proposition now
follows easily. [

As above, we continue to write € = {c|,...,¢/} for a fixed subset of G, the class
group of X. Geometrically, the set € corresponds to choosing a collection of reflexive
sheaves on X. When X is smooth, G = Pic(X) and % corresponds to a choice of line
bundles. In particular, fixing an ample line bundle on X determines a set % consisting of
one element. At the other extreme, the toric variety X is equipped with a canonical choice
for @€, namely the minimal generators of the semigroup #. We are most interested in this
case. Nonetheless, we expect that the flexibility in allowing other sets & will also be useful
in studying how maps between toric varieties effect regularity.

In analogy with Definition 4.1, we have the following:

Definition 6.2. If m e G, then an Oy-module & is m-regular (with respect to €)
if H'(X,7(p)) =0 for all i >0 and all pem+ N%[—i]. We write reg(#) for the set
{me G : 7 is m-regular}.

Remark 6.3. Notice that if & is m-regular then % is p-regular for all p e m + NE.

To make an explicit connection between the two definitions of regularity, we first

recall the following. If # is the coherent (x-module corresponding to M, then the local
cohomology is related to the (Zariski) cohomology of sheaves by the exact sequence

(6.3.1) 0—>H2(M)—>M—> @HO(X,Q(I)))H lls,(M)—>0
peCG
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and H'' (M) = Q}G H'(X,7(p)) for all i > 1; see [16], Proposition 2.3. Using this obser-
pPe

vation, we have:

Proposition 6.4. Let F be the coherent Ox-module associated to the module M. The
sheaf F is m-regular if and only if M is m-regular from level 2. The module M is m-regular if
and only if the following three conditions hold:

(1) F is m-regular.
(2) The natural map M, — H° (X, ?f’(p)) is surjective for all p e m + NE.

(3) Hy(M),=0forallpe U (m+ ¢+ N%).

1<)/

Proof. Since Hy"' (M), = H'(X, 7 (p)) for all i = 1, we see that 7 is m-regular if
and only if M is m-regular from level 2. To establish the second part, observe that saying
M is m-regular is equivalent to saying that M is m-regular from level 2, H}(M) , = 0 forall
pem+N% and Hy(M ), =0forall pem+ |J (¢+N%). Since the exact sequence

1<j</
(6.3.1) implies that Hyz(M), = 0 if and only if M, — H°(X, 7 (p)) is surjective, the asser-
tion follows. []

Example 6.5. Since Hj(S) = 0 fori =0, 1 (see Remark 3.3), Proposition 6.4 implies
that reg(Ox) = reg(S). In particular, Example 4.2 shows that reg(¢p«) = N when € = {1}.

The next corollary shows that Definition 6.2 extends the original definition given in
[30], §14. When X = P and % = {1} (1 € G corresponds to Ox(1) € Pic(P?)), the second
part of this corollary is Mumford’s definition.

Corollary 6.6. Let F be the coherent Ox-module associated to the module M. If
€ < A then the following are equivalent:

(1) Z is m-regular.

H (X, 7 (m— ¢ —~~—/1/c/)) =0 foralli>0andall ,...,2, €N satisfy-
zng/11—|- A :'

Proof. This follows from Proposition 6.4 and Corollary 4.8. [

The regularity of a finite set of points has a geometric interpretation. [28], Example
2.16 rephrases the following result in terms of the associated multigraded Hilbert polyno-
mial.

Proposition 6.7. Assume that € = K. Let Y be an artinian subscheme of X of length t
(for example, a set of t points in X) and let Iy be the associated B-saturated ideal in S. If
Ry = S/Iy then m € reg(Ry) if and only if the space of forms vanishing on Y has codimen-
sion t is the space of forms of degree m.

Proof. Since Iy is B-saturated, the local cohomology module Hj(Ry) vanishes.
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Because dimY = 0, we also have Hi''(Ry) = @ H'(X,Oy(p)) = 0 for all i > 0. Hence,
eqG

P

reg(Ry) is determined by the module H}(Ry). Since the exact sequence (6.3.1) becomes

0— Ry — @ H(X,0y(p)) — Hi(Ry) — 0, we see that m e reg(Ry) if and only if
G

€
(Ry),, — HY (X, Oy(m)) is surjective. Again, because dimY =0, the scheme Y is an
affine variety and every reflexive sheaf on Y is trivial. It follows that for all p we
have Oy(p) =~ Oy and dimy H°(X,Oy) = t. Therefore, Ry is m-regular if and only if
dimy(Ry),, = t. In other words, the space of forms (Iy),, that vanish on Y has codimen-
sion . [

Although the definition of regularity may seem rather technical (“‘apparently silly” in
Mumford’s words), the following theorem provides a geometric interpretation for regular-
ity. Concretely, the regularity of a coherent sheaf measures how much one has to twist for
the sheaf to be generated by its global sections. We first show that the module M and cer-
tain truncations of M give rise to the same sheaf.

Lemma 6.8. Assume that € = A and dimgpos(€) =r. If me ZA and M’ is the
quotient module M/M|(m+N<g> then there exists j > 0 such that B/MI; =0 forall pe 74.
Moreover, the module M and its truncation M|, g correspond to the same Ox-module.

Proof. Fix peZA and f e M,. If ceint#, then Remark 3.7 (applied to the
group Z#") shows that there is k € N such that p+kcem+ #. Since € < A" and
dimg pos(é) = r, there exists g € # for which p + kc¢ + q € m+ N€. Now, Lemma 2.4
implies that B < /<{Skc4+¢, Which means that there is j > 0 such that B/ < {Ske+q>- Hence,

we have B/f e M |(m +ne)- Because M is finitely generated, there is one j that works for all
J € M, and all p € & which establishes the first part.

For the second part, consider the short exact sequence
(6.8.2) 0—>M|(m+N(g)—>M—>M’—>0.

Since the functor F — F is exact, it suffices to show that M’ = 0. By Proposition 6.1, this is
equivalent to the first part of the lemma. []

Theorem 6.9. Assume that € = A" and dimg pos(6) =r. If me ZA" and the sheaf
F is m-regular then the natural map

(6.9.3) H'(X,7(p)) ® H*(X, Ox(q)) — H*(X,F(p+9q))

is surjective for all p € m+ N and all ¢ € N€. In particular, the sheaf 7 (p) is generated by
its global sections.

Proof. Consider the G-graded S-module

M= ( H(X, 7 )’ .
p?% ( (p>) (m+N%)
Because 7 is the sheaf associated with the S-module @ H°(X, 7 (p)), Lemma 6.8 guar-
~ pEAX
antees that M = . Since & is m-regular, Proposition 6.4 shows that M is m-regular
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from level 2. Combining the definition of M with the exact sequence (6.3.1), we have
H,é(M)p =0 for all i=0,1 and all pem+ N%. Hence, M is m-regular which implies
that M is also p-regular for all p e m + N€. If p e m + N, then Theorem 5.4 shows that
M|, = M|, n¢)- In other words, M), - S; = Mp., for all g € N€ and this is equivalent to
(6.9.3) being surjective. Furthermore, Lemma 6.8 also guarantees that 7 is the sheaf as-
sociated to M|, ) Since M|, = M|, nq), this establishes the last part of the theorenEi

Proof of Theorem 1.4. Part (1) follows from Remark 6.3. In the introduction, € is
the minimal generating set for 2. Therefore, Theorem 6.9 proves Parts (2) and (3). [

When % = Oy, Theorem 6.9 has a classical geometric interpretation. Specifically, if
p ereg(Ox) and Ox(p) is an ample line bundle then Theorem 6.9 implies that the natural
map H’(X, 0x(p)) ® H*(X, Ox(jp)) — H°(X,Ox((j + 1)p)) is surjective for all j = 0. It
follows (see [23], Exercise 11.5.14) that Oy (p) embeds X into PV as a projectively normal
variety where N := dimy H° (X, Ox(p)).

It is an interesting open problem to describe the set of ample line bundles on a d-
dimensional toric variety X which give a projectively normal embedding. When Oy (m) is
an ample line bundle, Bruns, Gubeladze, and Trung [6] show that the complete linear series
of the line bundle O”X((d — l)m) produces a projectively normal embedding of X. More-
over, this bound is sharp on some simplicial toric varieties. For smooth toric varieties, the
question of whether the map

H°(X,0x(p)) ® H*(X,0x(q)) — H*(X,0x(p+9q))

is surjective for Oy (p) an ample line bundle and Ox(q) a nef line bundle appears in [32].
This would imply that every ample line bundle induced a projectively normal embedding.

These questions motivate the study of when 0 € reg(Cy).

Proposition 6.10. If X is a finite product of projective spaces and € is the set of unique
minimal generators of A, then the structure sheaf Oy is 0-regular.

Proof. We proceed by induction on the number of factors in X. When there is only
one copy of projective space, Example 6.5 establishes the proposition. For the induction
step, we prove the following stronger claim: Let X be a smooth projective toric variety such
that Oy is 0-regular with respect to {cj,...,¢/}. If Z = X x P" then Oy is 0-regular with

ot {3 )

To accomplish this, we first fix some notation. Let A and X be the simplicial com-
plexes arising from the fans of X and Z respectively. If the set {a,...,a,} defines the
Z"-grading on the homogeneous coordinate ring of X then the homogeneous coordinate

ring S = k[x1,...,Xu, Yo,..., ;] has the Z""'-grading induced by deg(x;) = {‘3} and

0 ol
deg(y;) = [1] For 7 < [n] and ¢ < {0, ..., A}, we write ¥, for the subset of Z"*! given
by
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> —a . —a

jet ! +N “ cjety+N @ tjEeT

ol 0 0

0] . 0 )
c{ [ en e b end] 8] il eol
We also set

. R 0 R Cl (¥ .
R =< - 1 — M 0 — =y 0 20, €Nand Ag+---+ A, =1i,.

Now, Corollary 3.4 implies that ¢, is O-regular if ¥; , "2’ = whenever i > 0 and
H H(EM,) =+ 0. We consider four possible cases:

e If ) +0+{0,...,h}, then every maximal simplex in X, , contains o. Since the
induced subcomplex associated to o is the standard simplex, it follows that X, is con-
tractible and H'~'(Z._,) = 0.

e Ifo= 0 then X, , is a subcomplex of A. Since (U is 0-regular, we must have
Yive N R = 0 whenever i > 0 and H=!(Z,_,) + 0.

e If 6 ={0,...,h} and 7 + [n], then Alexander duality implies that H'~! (X, ,) is
isomorphic to H*™~~1(X__) which reduces us to the second case.

e If 6={0,...,h} and 7 = [n] then H""'(Z,.,) % 0 if and only if i = d 4 h. Since
both Oy« and Oy are 0-regular, we must have ¥7,, N RN =0, O

The following example demonstrates that even when X is a smooth Fano toric variety
the structure sheaf @y may not be 0-regular.

Example 6.11. Let X be a blowup of P? at three points. Specifically, the lattice
1 -1 -1 0

0 1 1 0 -1 -1
lar triangulation of 4 is encoded in the irrelevant ideal

points £ correspond to the columns of the matrix . The regu-

B = {x1X2X3X4, X2X3X4X5, X3X4X5X6, X1 X4X5X6, X] X2X5X6, X] X2X3X6 )

We have G = Z* and we may assume that .o/ is given by the columns of the matrix

1 0 0 O I -1
01 -1 1 0 0
00 1 -1 1 0
00 O I -1 1

Let % be the unique minimal generators of the monoid A4~ = "%
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0 1 0 0
0 0 0 1
B I I 0 O e O I )
0 0 1 1

O O =

It follows from Corollary 3.4 that

HZ(X, (9}((—03 — 6‘5)) = HZ(X, (Qx(—al —a) —az — dag — as — a6)) = Hl(A) +0
which implies 0 ¢ reg(Cy).
The following remains an interesting open problem.

Problem 6.12. Let € be a set of minimal generators of 2. Give a combinatorial
characterization of all toric varieties X such that #" < reg(COy).

We end this section with an upper semi-continuity result. This is well-known when
X = P?. We write in(I) for the initial ideal of an ideal / < S with respect to some mono-
mial order.

Proposition 6.13. Let S be the homogeneous coordinate ring of a simplicial toric
variety. If I is an ideal in S, then reg(S/in(I)) < reg(S/I). Moreover, if I is B-saturated and
J = (in(Z) : B*) then reg(S/J) < reg(S/I).

Proof. Fix j > 0. If x"f belongs to I for all x* € B/, then x"in(f) belongs to in([).
Hence, f € (I : B*) implies that in(f) € (in(/) : B*). We conclude that

dimy, HY(S/I), < dimy, Hg(S/in(I))p forall pe G.

[15], Theorem 15.17 gives a flat family over A! whose general fiber is S/I and whose spe-
cial fiber is S/(in(1)). Since Hi''(F) =~ @ H'(X,Z (p)) for all i = 1, [23], Theorem 12.8
eG

P
implies that dimy Hy(S/1), < dimy H(S/in(1 ))p for all i > 1. If .# denotes the sheaf of
ideals corresponding to 7, then the exact sequence (6.3.1) gives

dimy H(S/I), + dimy H° (X, (Ox /.9)(p)) = dimy(S/1), + dimy Hy(S/1),,.

Since the terms on left-hand side do not decrease and dimy(S/1 )p is constant when passing
to an initial ideal, we see that dimy H}(S/I ), also does not decrease when passing to an
initial ideal. Thus, we conclude that Hj(S/in(/ ))p = 0 implies H3(S/I), = 0 and the first
assertion follows. Since H)(S/J) =0 and Hj(S/J) = Hj(S/in(I)) for i > 0, this also es-
tablishes the second assertion. []

7. Syzygies and chain complexes
The final section of the paper examines the relationship between the regularity of M

and the syzygies of M. We give a combinatorial formula, involving only the degrees of the
syzygies and the regularity of S, for a subset of reg(M). When S is the homogeneous coor-
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dinate ring of weighted projective space, this subset actually equals reg(M). In other words,
we recover the characterization of regularity in terms of Betti numbers in this case; see [3],
Theorem 5.5. We extend this formula to coherent (y-modules. Changing directions, we
then describe chain complexes associated to certain elements of reg(M). At the level of Cx-
modules, we obtain a locally free resolution of # from specific elements in reg(#).

If E is a free resolution of the module M, then there is a spectral sequence that com-
putes the local cohomology of M from E, namely E,” := H'(H}(E)) = Hy"/(M). When
S is the homogeneous coordinate ring of weighted projective space, this spectral sequence
degenerates because H}(S) vanishes unless i = d + 1; see Remark 3.3. As a consequence,
there is a simple characterization of the regularity of M in terms of the degrees of the syzy-
gies. In contrast, Remark 3.3 also shows that nonvanishing local cohomology of S is not
typically concentrated in a single cohomological degree. Hence, the spectral sequence does
not degenerate and one cannot expect as simple a relationship between regularity and syzy-
gies in the general situation. Despite this, the syzygies of M do provide a method for ap-
proximating the regularity of M which captures the description in the special case. More-
over, this technique also works on a larger class of chain complexes associated to M.

We start by describing how regularity behaves in short exact sequences.

Lemma 7.1. If0—- M — M — M" — 0 is a short exact sequence of finitely gen-
erated G-graded S-modules, then we have the following:

(1) reg'(M') nreg!(M") < reg'(M),

2) ( U (—¢ +regi+1(M’))> nregi(M) < reg/(M") and

1</

(3) reg’(M)m( N (cj+regi’1(M”))> < regi(M’).

1<)/

Proof. The associated long exact sequence in cohomology contains the exact se-
quence

(7.1.1)  Hi'(M"),— Hy(M'), - Hy(M), — Hy(M"), — Hi"'(M"),.

Suppose that both M" and M" are m-regular from level k. This means that the second and
fourth modules in (7.1.1) vanish for all i = k and all p e m + N%|[1 — i]. Hence, the third
module in (7.1.1) also vanishes for all i > k and all p € m + N[l — i] which implies that
M is m-regular from level k.

Similarly, if M is m-regular from level k and M’ is (m + ¢;)-regular from level (k + 1)
for some 1 < j </, then the third and fifth modules in (7.1.1) vanish for all i = k and
all pe m+ N€J[1 — i]. It follows that the fourth module in (7.1.1) also vanishes under the
same conditions. Thus, M"” is m-regular from level k.

Finally, if M is m-regular from level k and M" is (m — ¢;)-regular from level (k — 1)
for every 1 < j </, then the first and third modules in (7.1.1) vanish for all i = 0 and all
p € m+ N€|1 — i]. Hence, the second module in (7.1.1) vanishes under the same conditions
and therefore m e regh(M'). [J
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The difference between the union in Part (2) and the intersection in Part (3) introduces
an asymmetry in working with short exact sequences. In many cases, this prevents one from
giving a simple characterization of m-regularity in terms of minimal free resolutions. How-
ever, when € consists of a single element, as in the standard graded case, this obstruction is
not present. In this case, we have the more symmetric:

(—er +reg™ (M) nreg'(M) < reg (M)
and (¢; +reg’ ™! (M")) nreg(M) < reg'(M').

The approach used in the proof of Lemma 7.1 also leads to an analogous result for a
short exact sequence of coherent (y-modules. However, there is a notable change in Part
(3). Specifically, we must assume that i > 1 because the hypothesis that # is m-regular does
not place any conditions on H°(X, 7 (p)).

The next theorem provides a method for estimating the regularity of a module M
from certain chain complexes associated to M. We say a chain complex of S-modules has
B-torsion homology if every homology module is a B-torsion module.

Theorem 7.2. Let E:=..- — Ej & E, & E; o Ey — 0 be a chain complex of fi-
nitely generated G-graded S-modules with B-torsion homology. If 0y : Ey — M is a surjective
map then we have

( (=o) =+ = €p) + regi(Ei))> < reg(M),
Fld+1]—[/] N0<i<d+1

where the union is over all functions ¢ : [d + 1] — [/].

Proof. Fix a function ¢ : [d + 1] — [/]. We claim that for all k = 0

N (—epusr) — - — ¢y + 1eg'(E;)) < regh(Imoy).
k<izd+l

Since Im dy = M, this will prove the theorem. We establish the claim by using a descending
induction on k. Since Hy(Im d)) vanishes for all j > d + 1, we have regh(Im d;) = G for
k>d+1 and the claim holds. Suppose kK <d + 1 and consider the exact sequence
0 — Hi(E) — Ei/Im i1 — Imd, — 0. Because Hy(E) is a B-torsion module, the asso-
ciated long exact sequence in cohomology implies that H}(Ey/Im 0x11) = Hp(Im &) for all
j > 0 and that H)(Ey/Im d1) surjects onto Hy(Im d). It follows that

reg’(E;/Im 0y 1) < regh(Im o) for all k = 0.

Applying Lemma 7.1 to the short exact sequence 0 — Im dxy — Ep — Ex/Imdg; — 0
gives reg" 1 (Im dxy1)[—1] N regh(Ey) < regh(E;/Im dxy1). Since the induction hypothe-

sis implies that N (—¢purn) = — ¢y + reg'(E;)) < reg"™(Im dyy1), we have
k+1sisd+1 )
(=g — -+ — cpy + reg’(E;)) < reg"t!(Im Oxy1)[—1]. Combining these three
k1 Si<d+] .
inclusions, we obtain () (—¢ypr1) — -+ — ¢y + reg'(E;)) S regh(Imoy). O

k<igd+l
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Since the proof of Theorem 7.2 only used Part (2) of Lemma 7.1, the same approach
leads to a formula for estimating the regularity of a sheaf # from a resolution. We leave
the details to the interested reader. Because it is frequently used in applications, we explic-
itly state the following special case of Theorem 7.2.

Corollary 7.3. If0 — E; — --- — E; — E| — Ey is a free resolution of the module
M with E; = @ S(—q;;) for some q; ; € G, then we have

1<j<h
(7.3.2) U ( N (ql-,j—cq;(l)—~~—c¢(,-)+reg"(S))>greg(M).
Fld+1]—[/] “0<i<min{d+1,s}
I<Sjsh

Proof. Since reg'(E;)) = () / (q;, +reg'(S)), (7.3.2) follows from Theorem 7.2.
l<jsh H

The next three examples illustrate this corollary.
Example 7.4. Suppose S is the homogeneous coordinate ring of weighted projective

space; see Example 2.1. Let € = {1} and let 0 — E; — --- — E; — E; — Ej be the mini-
mal free resolution of the module M where E; = @ S(—¢; ;) for some ¢, ; € Z. Hilbert’s

1<j<h
syzygy theorem implies that s <n =d + 1. Hence, Example 4.2 and (7.3.2) imply that
max{q; ; —i+n—a — - —a,} ereg(M). In particular, if S has the standard grading,
i.j

then M is (ma.x{q,-’j - i})-regular.
1] ’

Example 7.5. Let S be the homogeneous coordinate ring of P' x P! x P!. This
means that 2 corresponds to the columns of the matrix

and the irrelevant ideal is B = (x1,x2> N {x3,x4> N (x5, x¢>. Hence, G = 7> and we may
assume that .o/ is given by the columns of the matrix

1 1.0 000
001 1 00O
000 01 1
The polynomial ring S = lk[x,...,Xxs] has the corresponding Z°-grading and

H = AN =N If € = {c],¢,c3} = A where ¢; is the ith standard basis vector in Z3,
then Corollary 3.4 implies that reg(S) = N?.

Consider the module M = S/I where I = {(x; — x2,X3 — X4,X5 — Xg. Since [ is a
prime ideal of codimension 3, the subvariety of P! x P! x P! defined by I is a single point.
The minimal free resolution of M has the form

0—-S(—c1—ar—c3)— D S(—ci—¢)— D S(—¢)—S.

1<i<j<3 1<i<3
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A calculation using Corollary 7.3 shows that  |J (e + ¢ + N?) < reg(M). Note that
1<i<j<3

this is not the entire regularity of M. Proposition 6.7 shows that reg(M) = N?.
Example 7.6. As in Example 7.5, we assume that S is the homogeneous coordinate

ring of the toric variety P! x P! x P! and we choose % to be the set of standard basis
vectors in Z*. Consider M = §/I where

I = (X1 — X2,X3 — X4, X5 — X6 ) N (X1 — 2X2, X3 — 2X4, X5 — 2X6 ).

The B-saturated ideal I corresponds to two distinct points on P! x P! x P!. The minimal
free resolution of M has the form

0— @ S(-¢9)— D S(-9)— D S(-9)—~ D S(-9)— D S(—¢) =S

q€Ys g€y g€ Y3 q€ D, q€ D)

where, for 1 <i <5, the set &; is given by the column vectors of the matrix D; and

D=0 11002110,
0001 10112
22221 1111111110000
Dy=|1100221111110022T1 1|,
00110011 1111221122

Dy=12 1 111022221111 2],

2 22 211 2
Dy=12 2 1 1 2 2|, Ds=|2
11 2 2 2 2 2

Observe that the length of the minimal free resolution is greater than 4 4+ 1. Applying
Corollary 7.3, we deduce that

1 2 2
214+N3 U [1]+N Ol | 2] +N3 | creg(M).
2 2 1

However, Proposition 6.7 shows that

1 0 0
reg(M)=| |0 +N3 || [1|+NJuf|0]+N3
0 0 1
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To describe a partial converse for Theorem 7.2, we concentrate on the situation aris-
ing from smooth toric varieties. Specifically, we assume that # = 2 "**' and that € is a
finite generating set for the monoid 4"

Lemma 7.7. Let NG =# =" If M is m-regular then M|, , is also m-
regular.

Proof. Suppose that M is m-regular and let M’ be the quotient module
M /M|y, 5. Since NG = # = A", Lemma 6.8 establishes that M’ is a B-torsion
module. Hence the long exact sequence associated to (6.8.2) implies that
Hy(M| () = Hp(M) for all i > 1 and Hy(M|,, 4), = Hy(M), for all pem+ A
For k > 0, we deduce that M is m-regular from level k if and only if the submodule
M| ;1 5y is m-regular from level k. The long exact sequence also shows that HY(M |mrt))
is a submodule of HO( ). Thus, if Hyp(M), =0 then Hp(M|,,. ), also vanishes.
Therefore, M|, 4 is m-regular. []

Theorem 7.8. Assume that N€ = A = A If ¢ e reg(S) N ( N (¢+ %)) and

m € reg(M) then there exists 1<)/

(1) a chain complex ---— Ej 2B S E a Ey with B-torsion homology and
E = & S(—m-—ic), and

I<j<sh

(2) a surjective map 0o : Eg — M|, ne)-

Proof. We prove by induction on k that there exists a chain complex with B-torsion
homology

(7.8.3) 0—>Mk—>Ek1L>---i>E0ﬁ>M£,0

such that E; = @ S(—m —ic), My = Ker 0, and m + ke € reg(My). Since M = M,
1<j<h
and M is m-regular, the first step in the induction holds.

Suppose k = 0. Since N = & = A", Lemma 7.7 and Lemma 6.8 show that
reg(My) < re@(Mi|miesneg)) and that M/ M|, icing) is @ B-torsion module. The in-
duction hypothesis states that M is (m + kc)-regular and Theorem 5.4 implies that
M| (mikeine) 18 generated in degree m + ke. It follows that there exists a surjective map
O : B — Mk’(m+kc+NW) where E; := @ S(—m — kc). Setting M., := Ker i, we ob-
tain the short exact sequence I=/=bi

(784) 0 — Mk+] — Ek — Mk’(m+kc‘+N‘6) — 0
Combining (7.8.3) and (7.8.4) gives the chain complex with B-torsion homology
0—>Mk+1—>Ekii>E0ﬂ>M8—_;0

where E;= @ S(—m—ic) and M, = Kerdi. It remains to show that M, is

i<h

1<)
(m +(k+1 ) regular Applying Lemma 7.1 to (7.8.4) yields
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(m+ ket reg(S) 0 () e+ reg(My)) € reg(Mi1).

1=is/

Our choice of ¢ guarantees that m+ (k+1)c lies in both [ (¢ +reg(My)) and
m + ke + reg(S) which completes the proof. [] lsiz/

Proof of Theorem 1.5. In the introduction, X was smooth so # = 4 %', We also
assumed that € was the set of minimal generators for 2. Hence, Theorem 7.2 establishes
Part (1) and Theorem 7.8 proves Part (2). []

This theorem leads to a “linear” resolution of @y-modules.

Corollary 7.9. Assume that N€ = H = K. If cereg(Ox) N <

(Qf*‘ﬁf7)
and m € reg(F) then there is an exact sequence

1

IIA

jst

o3> 60— 86— 6y—F —0

where ;= @ Ox(—m —ic).

1<j<h

Proof. Consider the G-graded S-module

M=(@HX.7p))| .

peCG (m+)

Lemma 6.8 implies that M = % and Proposition 6.4 shows that M is m-regular. Theorem
7.8 produces a chain complex --- — E3 — E) — E} — Ey — ]\{ — 0 with B-torsion ho-
mology and E; = €& S(—m — ic). Applying the functor F — F, we obtain a chain com-

1<j<h
plex of the desired form. Moreover, Proposition 6.1 implies that the homology of this
complex consists of the zero sheaf. Therefore, the chain complex is a locally free resolution
of #. [

We illustrate Theorem 7.8 with the following examples. The first example shows that
Theorem 7.8 is a converse to Theorem 7.2 in the standard graded case.

Example 7.10. Let S have the standard grading, let B = {xi,...,x,», and let
& = {1}. Since reg(S) =N, we have ¢ =1€reg(S)n (14 #"). Hence, if m e reg(M),

then Theorem 7.8 implies that there is a chain complex E := --- — E, — E; — Ey with B-
torsion homology and E; = €@ S(—m — i) and there is a surjective map Ey — M|, -
I<jsh

Conversely, given such a chain complex, Example 7.4 shows that m € reg(M). In fact, [4],
Exercise 1.4.24 proves that E must be a resolution.

Example 7.11. Let M be the module in Example 7.5 and let

c:= c1+cz+63ereg(S)m( N (cj+N‘€)>.

1=/<3

If m:= 0 e reg(M), then Theorem 7.8 produces a chain complex with B-torsion homology
of the form
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=D S(=3¢) - P S(-2¢) = D S(-¢)—=S.

1=ig7

However, applying Theorem 7.2 to this chain complex yields

D1

U p2 |+ N | < reg(M),

P1,p2,p3€N
P1+p2tp3=8 p3

and the smaller set does not contain 0.
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