
Teaching the Geometry of Schemes

Gregory G. Smith and Bernd Sturmfels

This chapter presents a collection of graduate level problems in algebraic
geometry illustrating the power of Macaulay 2 as an educational tool.

When teaching an advanced subject, like the language of schemes, we
think it is important to provide plenty of concrete instances of the theory.
Computer algebra systems, such as Macaulay 2, provide students with an
invaluable tool for studying complicated examples. Furthermore, we believe
that the explicit nature of a computational approach leads to a better under-
standing of the objects being examined. This chapter presents some problems
which we feel illustrate this point of view.

Our examples are selected from the homework of an algebraic geometry
class given at the University of California at Berkeley in the fall of 1999. This
graduate course was taught by the second author with assistance from the
first author. Our choice of problems, as the title suggests, follows the material
in David Eisenbud and Joe Harris’ textbook The Geometry of Schemes [5].

1 Distinguished Open Sets

We begin with a simple example involving the Zariski topology of an affine
scheme. This example also indicates some of the subtleties involved in working
with arithmetic schemes.

Problem. Let S = Z[x, y, z] and X = Spec(S). If f = x and Xf is the
corresponding basic open subset in X, then establish the following:

(1) If e1 = x + y + z, e2 = xy + xz + yz and e3 = xyz are the elementary
symmetric functions then the set {Xei}1≤i≤3 is an open cover of Xf .

(2) If p1 = x+ y + z, p2 = x2 + y2 + z2 and p3 = x3 + y3 + z3 are the power
sum symmetric functions then {Xpi}1≤i≤3 is not an open cover of Xf .

Solution. (1) To prove that {Xei}1≤i≤3 is an open cover of Xf , it suffices
to show that e1, e2 and e3 generate the unit ideal in Sf ; see Lemma I-16
in Eisenbud and Harris [5]. This is equivalent to showing that xm belongs
to the S-ideal 〈e1, e2, e3〉 for some m ∈ N. In other words, the saturation(
〈e1, e2, e3〉 : x∞

)
is the unit ideal if and only if {Xei}1≤i≤3 is an open cover

of Xf . We verify this in Macaulay 2 as follows:
i1 : S = ZZ[x, y, z];

i2 : elementaryBasis = ideal(x+y+z, x*y+x*z+y*z, x*y*z);

o2 : Ideal of S
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i3 : saturate(elementaryBasis, x)

o3 = ideal 1

o3 : Ideal of S

(2) Similarly, to show that {Xpi}1≤i≤3 is not an open cover of Xf , we prove
that

(
〈p1, p2, p3〉 : x∞

)
is not the unit ideal. Calculating this saturation, we

find
i4 : powerSumBasis = ideal(x+y+z, x^2+y^2+z^2, x^3+y^3+z^3);

o4 : Ideal of S

i5 : saturate(powerSumBasis, x)

2 2
o5 = ideal (6, x + y + z, 2y + 2y*z + 2z , 3y*z)

o5 : Ideal of S

i6 : clearAll

which is not the unit ideal. ut

The fact that 6 is a generator of the ideal
(
〈p1, p2, p3〉 : x∞

)
indicates

that {Xpi}1≤i≤3 does not contain the points in X lying over the points 〈2〉
and 〈3〉 in Spec(Z). If we work over a base ring in which 6 is a unit, then
{Xpi}1≤i≤3 would, in fact, be an open cover of Xf .

2 Irreducibility

The study of complex semisimple Lie algebras gives rise to an important fam-
ily of algebraic varieties called nilpotent orbits. The next problem examines
the irreducibility of a particular nilpotent orbit.

Problem. Let X be the set of nilpotent complex 3 × 3 matrices. Show that
X is an irreducible algebraic variety.

Solution. A 3 × 3 matrix M is nilpotent if and only if its minimal polyno-
mial p(T) equals Tk, for some k ∈ N. Since each irreducible factor of the
characteristic polynomial of M is also a factor of p(T), it follows that the
characteristic polynomial of M is T3. We conclude that the coefficients of
the characteristic polynomial of a generic 3 × 3 matrix define the algebraic
variety X.

To prove that X is irreducible over C, we construct a rational parame-
terization. First, observe that GL3(C) acts on X by conjugation. Jordan’s
canonical form theorem implies that there are exactly three orbits; one for
each of the following matrices:

N(1,1,1) =
[

0 0 0
0 0 0
0 0 0

]
, N(2,1) =

[
0 1 0
0 0 0
0 0 0

]
and N(3) =

[
0 1 0
0 0 1
0 0 0

]
.

Each orbit is defined by a rational parameterization, so it suffices to show
that the closure of the orbit containing N(3) is the entire variety X. We
demonstrate this as follows:



Teaching the Geometry of Schemes 3

i7 : S = QQ[t, y_0 .. y_8, a..i, MonomialOrder => Eliminate 10];

i8 : N3 = (matrix {{0,1,0},{0,0,1},{0,0,0}}) ** S

o8 = | 0 1 0 |
| 0 0 1 |
| 0 0 0 |

3 3
o8 : Matrix S <--- S

i9 : G = genericMatrix(S, y_0, 3, 3)

o9 = | y_0 y_3 y_6 |
| y_1 y_4 y_7 |
| y_2 y_5 y_8 |

3 3
o9 : Matrix S <--- S

To determine the entries in G · N(3) · G−1, we use the classical adjoint to
construct the matrix det(G) ·G−1.

i10 : classicalAdjoint = (G) -> (
n := degree target G;
m := degree source G;
matrix table(n, n, (i, j) -> (-1)^(i+j) * det(

submatrix(G, {0..j-1, j+1..n-1},
{0..i-1, i+1..m-1}))));

i11 : num = G * N3 * classicalAdjoint(G);

3 3
o11 : Matrix S <--- S

i12 : D = det(G);

i13 : M = genericMatrix(S, a, 3, 3);

3 3
o13 : Matrix S <--- S

The entries in G · N(3) · G−1 give a rational parameterization of the orbit
generated by N(3). Using elimination theory — see section 3.3 in Cox, Little
and O‘Shea [2] — we give an “implicit representation” of this variety.

i14 : elimIdeal = minors(1, (D*id_(S^3))*M - num) + ideal(1-D*t);

o14 : Ideal of S

i15 : closureOfOrbit = ideal selectInSubring(1, gens gb elimIdeal);

o15 : Ideal of S

Finally, we verify that this orbit closure equals X scheme-theoretically.
Recall that X is defined by the coefficients of the characteristic polynomial
of a generic 3× 3 matrix M.

i16 : X = ideal substitute(
contract(matrix{{t^2,t,1}}, det(t-M)),
{t => 0_S})

o16 = ideal (- a - e - i, - b*d + a*e - c*g - f*h + a*i + e*i, c*e*g - · · ·
o16 : Ideal of S
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i17 : closureOfOrbit == X

o17 = true

i18 : clearAll

This completes our solution. ut

More generally, Kostant shows that the set of all nilpotent elements in
a complex semisimple Lie algebra form an irreducible variety. We refer the
reader to Chriss and Ginzburg [1] for a proof of this result (Corollary 3.2.8)
and a discussion of its applications in representation theory.

3 Singular Points

In our third question, we study the singular locus of a family of elliptic curves.

Problem. Consider a general form of degree 3 in Q[x, y, z]:

F = ax3 + bx2y + cx2z + dxy2 + exyz + fxz2 + gy3 + hy2z + iyz2 + jz3 .

Give necessary and sufficient conditions in terms of a, . . . , j for the cubic
curve Proj

(
Q[x, y, z]/〈F 〉

)
to have a singular point.

Solution. The singular locus of F is defined by a polynomial of degree 12 in
the 10 variables a, . . . , j. We calculate this polynomial in two different ways.

Our first method is an elementary but time consuming elimination. Car-
rying it out in Macaulay 2, we have

i19 : S = QQ[x, y, z, a..j, MonomialOrder => Eliminate 2];

i20 : F = a*x^3+b*x^2*y+c*x^2*z+d*x*y^2+e*x*y*z+f*x*z^2+g*y^3+h*y^2*z+
i*y*z^2+j*z^3;

i21 : partials = submatrix(jacobian matrix{{F}}, {0..2}, {0})

o21 = {1} | 3x2a+2xyb+y2d+2xzc+yze+z2f |
{1} | x2b+2xyd+3y2g+xze+2yzh+z2i |
{1} | x2c+xye+y2h+2xzf+2yzi+3z2j |

3 1
o21 : Matrix S <--- S

i22 : singularities = ideal(partials) + ideal(F);

o22 : Ideal of S

i23 : elimDiscr = time ideal selectInSubring(1,gens gb singularities);
-- used 64.27 seconds

o23 : Ideal of S

i24 : elimDiscr = substitute(elimDiscr, {z => 1});

o24 : Ideal of S
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On the other hand, there is also an elegant and more useful determinantal
formula for this discriminant; it is a specialization of the formula (2.8) in
section 3.2 of Cox, Little and O‘Shea [3]. To apply this determinantal formula,
we first create the coefficient matrix A of the partial derivatives of F .

i25 : A = contract(matrix{{x^2,x*y,y^2,x*z,y*z,z^2}},
diff(transpose matrix{{x,y,z}},F))

o25 = {1} | 3a 2b d 2c e f |
{1} | b 2d 3g e 2h i |
{1} | c e h 2f 2i 3j |

3 6
o25 : Matrix S <--- S

We also construct the coefficient matrix B of the partial derivatives of the
Hessian of F .

i26 : hess = det submatrix(jacobian ideal partials, {0..2}, {0..2});

i27 : B = contract(matrix{{x^2,x*y,y^2,x*z,y*z,z^2}},
diff(transpose matrix{{x,y,z}},hess))

o27 = {1} | -24c2d+24bce-18ae2-24b2f+72adf 4be2-16bdf-48 · · ·
{1} | 2be2-8bdf-24c2g+72afg+16bch-24aeh-8b2i+24adi 4de2-16d2f-48 · · ·
{1} | 2ce2-8cdf-8c2h+24afh+16bci-24aei-24b2j+72adj 2e3-8def-24cf · · ·

3 6
o27 : Matrix S <--- S

To obtain the discriminant, we combine these two matrices and take the
determinant.

i28 : detDiscr = ideal det (A || B);

o28 : Ideal of S

Finally, we check that our two discriminants are equal
i29 : detDiscr == elimDiscr

o29 = true

and examine the generator.
i30 : detDiscr_0

2 4 3 2 5 3 2 6 3 2 2 2 2 · · ·
o30 = 13824c d*e f g - 13824b*c*e f g + 13824a*e f g - 110592c d e · · ·
o30 : S

i31 : numgens detDiscr

o31 = 1

i32 : # terms detDiscr_0

o32 = 2040

i33 : clearAll

Hence, the singular locus is given by a single polynomial of degree 12 with
2040 terms. ut
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For a further discussion of singularities and discriminants see Section V.3
in Eisenbud and Harris [5]. For information on resultants and discriminants
see Chapter 2 in Cox, Little and O‘Shea [3].

4 Fields of Definition

Schemes over non-algebraically closed fields arise in number theory. Our
fourth problem looks at one technique for working with number fields in
Macaulay 2.

Problem (Exercise II-6 in [5]). An inclusion of fields K ↪→ L induces a
map AnL → A

n
K . Find the images in A2

Q
of the following points of A2

Q
under

this map.

(1) 〈x−
√

2, y −
√

2〉;
(2) 〈x−

√
2, y −

√
3〉;

(3) 〈x− ζ, y − ζ−1〉 where ζ is a 5-th root of unity ;
(4) 〈

√
2x−

√
3y〉;

(5) 〈
√

2x−
√

3y − 1〉.

Solution. The images can be determined by using the following three step
algorithm: (1) replace the coefficients not contained inK with indeterminates,
(2) add the minimal polynomials of these coefficients to the given ideal in A2

L,
and (3) eliminate the new indeterminates. Here are the five examples:

i34 : S = QQ[a,b,x,y, MonomialOrder => Eliminate 2];

i35 : I1 = ideal(x-a, y-a, a^2-2);

o35 : Ideal of S

i36 : ideal selectInSubring(1, gens gb I1)

2
o36 = ideal (x - y, y - 2)

o36 : Ideal of S

i37 : I2 = ideal(x-a, y-b, a^2-2, b^2-3);

o37 : Ideal of S

i38 : ideal selectInSubring(1, gens gb I2)

2 2
o38 = ideal (y - 3, x - 2)

o38 : Ideal of S

i39 : I3 = ideal(x-a, y-a^4, a^4+a^3+a^2+a+1);

o39 : Ideal of S
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i40 : ideal selectInSubring(1, gens gb I3)

2 2 3 2
o40 = ideal (x*y - 1, x + y + x + y + 1, y + y + x + y + 1)

o40 : Ideal of S

i41 : I4 = ideal(a*x+b*y, a^2-2, b^2-3);

o41 : Ideal of S

i42 : ideal selectInSubring(1, gens gb I4)

2 3 2
o42 = ideal(x - -*y )

2

o42 : Ideal of S

i43 : I5 = ideal(a*x+b*y-1, a^2-2, b^2-3);

o43 : Ideal of S

i44 : ideal selectInSubring(1, gens gb I5)

4 2 2 9 4 2 3 2 1
o44 = ideal(x - 3x y + -*y - x - -*y + -)

4 2 4

o44 : Ideal of S

i45 : clearAll

ut

It is worth noting that the points in An
Q

correspond to orbits of the action
of Gal(Q/Q) on the points of An

Q
. For more examples and information, see

section II.2 in Eisenbud and Harris [5].

5 Multiplicity

The multiplicity of a zero-dimensional scheme X at a point p ∈ X is defined
to be the length of the local ringOX,p. Unfortunately, we cannot work directly
in the local ring in Macaulay 2. What we can do, however, is to compute the
multiplicity by computing the degree of the component of X supported at p;
see page 66 in Eisenbud and Harris [5].

Problem. What is the multiplicity of the origin as a zero of the polynomial
equations x5 + y3 + z3 = x3 + y5 + z3 = x3 + y3 + z5 = 0?

Solution. If I is the ideal generated by x5+y3+z3, x3+y5+z3 and x3+y3+z5

in Q[x, y, z], then the multiplicity of the origin is

dimQ
Q[x, y, z]〈x,y,z〉
IQ[x, y, z]〈x,y,z〉

.
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It follows that the multiplicity is the vector space dimension of the ring
Q[x, y, z]/ϕ−1(IQ[x, y, z]〈x,y,z〉) where ϕ : Q[x, y, z] → Q[x, y, z]〈x,y,z〉 is the
natural map. Moreover, we can express this using ideal quotients:

ϕ−1(IQ[x, y, z]〈x,y,z〉) =
(
I : (I : 〈x, y, z〉∞)

)
.

Carrying out this calculation in Macaulay 2, we obtain:
i46 : S = QQ[x, y, z];

i47 : I = ideal(x^5+y^3+z^3, x^3+y^5+z^3, x^3+y^3+z^5);

o47 : Ideal of S

i48 : multiplicity = degree(I : saturate(I))

o48 = 27

i49 : clearAll

Thus, we conclude that the multiplicity is 27. ut

There are algorithms (not yet implemented in Macaulay 2) for working
directly in the local ring Q[x, y, z]〈x,y,z〉. We refer the interested reader to
Chapter 4 in Cox, Little and O‘Shea [3].

6 Flat Families

Non-reduced schemes arise naturally as flat limits of a family of reduced
schemes. Our next problem illustrates how a family of skew lines in P3 gives
rise to a double line with an embedded point.

Problem (Exercise III-68 in [5]). Let L and M be the lines in P3
k[t] given

by x = y = 0 and x− tz = y + t2w = 0 respectively. Show that the flat limit
as t→ 0 of the union L ∪M is the double line x2 = y = 0 with an embedded
point of degree 1 located at the point (0 : 0 : 0 : 1).

Solution. We first find the flat limit by saturating the intersection ideal and
setting t = 0.

i50 : PP3 = QQ[t, x, y, z, w];

i51 : L = ideal(x, y);

o51 : Ideal of PP3

i52 : M = ideal(x-t*z, y+t^2*w);

o52 : Ideal of PP3

i53 : X = intersect(L, M);

o53 : Ideal of PP3
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i54 : Xzero = trim substitute(saturate(X, t), {t => 0})

2 2
o54 = ideal (y*z, y , x*y, x )

o54 : Ideal of PP3

Secondly, we verify that this is the union of a double line and an embedded
point of degree 1.

i55 : Xzero == intersect(ideal(x^2, y), ideal(x, y^2, z))

o55 = true

i56 : degree(ideal(x^2, y ) / ideal(x, y^2, z))

o56 = 1

i57 : clearAll

ut

Section III.3.4 in Eisenbud and Harris [5] contains several other interesting
limits of various flat families.

7 Bézout’s Theorem

Bézout’s Theorem — Theorem III-78 in Eisenbud and Harris [5] — may fail
without the Cohen-Macaulay hypothesis. Our seventh problem is to demon-
strate this.

Problem (Exercise III-81 in [5]). Find irreducible closed subvarieties X
and Y in P4 such that

codim(X ∩ Y ) = codim(X) + codim(Y )
deg(X ∩ Y ) > deg(X) · deg(Y ) .

Solution. We show that the assertion holds when X is the cone over the
nonsingular rational quartic curve in P3 and Y is a two-plane passing through
the vertex of the cone. First, recall that the rational quartic curve is given by
the 2× 2 minors of the matrix

[
a b2 bd c
b ac c2 d

]
; see Exercise 18.8 in Eisenbud [4].

Thus, we have
i58 : S = QQ[a, b, c, d, e];

i59 : IX = trim minors(2, matrix{{a, b^2, b*d, c},{b, a*c, c^2, d}})

3 2 2 2 3 2
o59 = ideal (b*c - a*d, c - b*d , a*c - b d, b - a c)

o59 : Ideal of S

i60 : IY = ideal(a, d);

o60 : Ideal of S
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i61 : codim IX + codim IY == codim (IX + IY)

o61 = true

i62 : (degree IX) * (degree IY)

o62 = 4

i63 : degree (IX + IY)

o63 = 5

which establishes the assertion. ut

To understand how this example works, it is enlightening to express Y as
the intersection of two hyperplanes; one given by a = 0 and the other given
by d = 0. Intersecting X with the first hyperplane yields

i64 : J = ideal mingens (IX + ideal(a))

3 2 2 3
o64 = ideal (a, b*c, c - b*d , b d, b )

o64 : Ideal of S

However, this first intersection has an embedded point;
i65 : J == intersect(ideal(a, b*c, b^2, c^3-b*d^2),

ideal(a, d, b*c, c^3, b^3)) -- embedded point

o65 = true

i66 : clearAll

The second hyperplane passes through this embedded point which explains
the extra intersection.

8 Constructing Blow-ups

The blow-up of a scheme X along a subscheme Y can be constructed from
the Rees algebra associated to the ideal sheaf of Y in X; see Theorem IV-22
in Eisenbud and Harris [5]. Gröbner basis techniques allow one to express the
Rees algebra in terms of generators and relations. We illustrate this method
in the next solution.

Problem (Exercises IV-43 & IV-44 in [5]). Find the blow-up X of the
affine plane A2 = Spec

(
Q[x, y]

)
along the subscheme defined by 〈x3, xy, y2〉.

Show that X is nonsingular and its fiber over the origin is the union of two
copies of P1 meeting at a point.

Solution. We first provide a general function which returns the ideal of rela-
tions for the Rees algebra.
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i67 : blowUpIdeal = (I) -> (
r := numgens I;
S := ring I;
n := numgens S;
K := coefficientRing S;
tR := K[t, gens S, vars(0..r-1),

MonomialOrder => Eliminate 1];
f := map(tR, S, submatrix(vars tR, {1..n}));
F := f(gens I);
J := ideal apply(1..r, j -> (gens tR)_(n+j)-t*F_(0,(j-1)));
L := ideal selectInSubring(1, gens gb J);
R := K[gens S, vars(0..r-1)];
g := map(R, tR, 0 | vars R);
trim g(L));

Now, applying the function to our specific case yields:
i68 : S = QQ[x, y];

i69 : I = ideal(x^3, x*y, y^2);

o69 : Ideal of S

i70 : J = blowUpIdeal(I)

2 2 3 2
o70 = ideal (y*b - x*c, x*b - a*c, x b - y*a, x c - y a)

o70 : Ideal of QQ [x, y, a, b, c]

Therefore, the blow-up of the affine plane along the given subscheme is

X = Proj
(

(Q[x, y])[a, b, c]
〈yb− xc, xb2 − ac, x2b− ya, x3c− y2a〉

)
.

Using Macaulay 2, we can also verify that the scheme X is nonsingular;
i71 : J + ideal jacobian J == ideal gens ring J

o71 = true

i72 : clearAll

Since we have

(Q[x, y])[a, b, c]
〈yb− xc, xb2 − ac, x2b− ya, x3c− y2a〉

⊗ Q[x, y]
〈x, y〉

∼=
Q[a, b, c]
〈ac〉

,

the fiber over the origin 〈x, y〉 in A2 is clearly a union of two copies of P1

meeting at one point. In particular, the exceptional fiber is not a projective
space. ut

Many other interesting blow-ups can be found in section II.2 in Eisenbud
and Harris [5].

9 A Classic Blow-up

We consider the blow-up of the projective plane P2 at a point.
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Problem. Show that the following varieties are isomorphic.

(a) the image of the rational map from P
2 to P4 given by

(r : s : t) 7→ (r2 : s2 : rs : rt : st) ;

(b) the blow-up of the plane P2 at the point (0 : 0 : 1);
(c) the determinantal variety defined by the 2×2 minors of the matrix

[
a c d
b d e

]
where P4 = Proj

(
k[a, b, c, d, e]

)
.

This surface is called the cubic scroll in P4.

Solution. We find the ideal in part (a) by elimination theory.
i73 : PP4 = QQ[a..e];

i74 : S = QQ[r..t, A..E, MonomialOrder => Eliminate 3];

i75 : I = ideal(A - r^2, B - s^2, C - r*s, D - r*t, E - s*t);

o75 : Ideal of S

i76 : phi = map(PP4, S, matrix{{0_PP4, 0_PP4, 0_PP4}} | vars PP4)

o76 = map(PP4,S,{0, 0, 0, a, b, c, d, e})

o76 : RingMap PP4 <--- S

i77 : surfaceA = phi ideal selectInSubring(1, gens gb I)

2
o77 = ideal (c*d - a*e, b*d - c*e, a*b - c )

o77 : Ideal of PP4

Next, we determine the surface in part (b). We construct the ideal defining
the blow-up of P2

i78 : R = QQ[t, x, y, z, u, v, MonomialOrder => Eliminate 1];

i79 : blowUpIdeal = ideal selectInSubring(1, gens gb ideal(u-t*x,
v-t*y))

o79 = ideal(y*u - x*v)

o79 : Ideal of R

and embed it in P2 × P1.
i80 : PP2xPP1 = QQ[x, y, z, u, v];

i81 : embed = map(PP2xPP1, R, 0 | vars PP2xPP1);

o81 : RingMap PP2xPP1 <--- R

i82 : blowUp = PP2xPP1 / embed(blowUpIdeal);

We then map this surface into P5 using the Segre embedding.
i83 : PP5 = QQ[A .. F];
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i84 : segre = map(blowUp, PP5, matrix{{x*u,y*u,z*u,x*v,y*v,z*v}});

o84 : RingMap blowUp <--- PP5

i85 : ker segre

2
o85 = ideal (B - D, C*E - D*F, D - A*E, C*D - A*F)

o85 : Ideal of PP5

Note that the image under the Segre map lies on a hyperplane in P5. To get
the desired surface in P4, we project

i86 : projection = map(PP4, PP5, matrix{{a, c, d, c, b, e}})

o86 = map(PP4,PP5,{a, c, d, c, b, e})

o86 : RingMap PP4 <--- PP5

i87 : surfaceB = trim projection ker segre

2
o87 = ideal (c*d - a*e, b*d - c*e, a*b - c )

o87 : Ideal of PP4

Finally, we compute the surface in part (c).
i88 : determinantal = minors(2, matrix{{a, c, d}, {b, d, e}})

2
o88 = ideal (- b*c + a*d, - b*d + a*e, - d + c*e)

o88 : Ideal of PP4

i89 : sigma = map( PP4, PP4, matrix{{d, e, a, c, b}});

o89 : RingMap PP4 <--- PP4

i90 : surfaceC = sigma determinantal

2
o90 = ideal (c*d - a*e, b*d - c*e, a*b - c )

o90 : Ideal of PP4

By incorporating a permutation of the variables into definition of surfaceC,
we obtain the desired isomorphisms

i91 : surfaceA == surfaceB

o91 = true

i92 : surfaceB == surfaceC

o92 = true

i93 : clearAll

which completes the solution. ut

For more information of the geometry of rational normal scrolls, see Lec-
ture 8 in Harris [6].
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10 Fano Schemes

Our final example concerns the family of Fano schemes associated to a flat
family of quadrics. Recall that the k-th Fano scheme Fk(X) of a scheme X ⊆
P
n is the subscheme of the Grassmannian parametrizing k-planes contained

in X.

Problem (Exercise IV-69 in [5]). Consider the one-parameter family of
quadrics tending to a double plane with equation

Q = V (tx2 + ty2 + tz2 + w2) ⊆ P3
Q[t] = Proj

(
Q[t][x, y, z, w]

)
.

What is the flat limit of the Fano schemes F1(Qt)?

Solution. We first compute the ideal defining F1(Qt), the scheme parametriz-
ing lines in Q.

i94 : PP3 = QQ[t, x, y, z, w];

i95 : Q = ideal( t*x^2+t*y^2+t*z^2+w^2 );

o95 : Ideal of PP3

To parametrize a line in our projective space, we introduce indeterminates
u, v and A, . . . ,H.

i96 : R = QQ[t, u, v, A .. H];

We then make a map phi from PP3 to R sending the variables to the coordi-
nates of the general point on a line.

i97 : phi = map(R, PP3, matrix{{t}} |
u*matrix{{A, B, C, D}} + v*matrix{{E, F, G, H}});

o97 : RingMap R <--- PP3

i98 : imageFamily = phi Q;

o98 : Ideal of R

For a line to belong to Q, the imageFamily must vanish identically. In other
words, F1(Q) is defined by the coefficients of the generators of imageFamily.

i99 : coeffOfFamily = contract(matrix{{u^2,u*v,v^2}}, gens imageFamily)

o99 = | tA2+tB2+tC2+D2 2tAE+2tBF+2tCG+2DH tE2+tF2+tG2+H2 |

1 3
o99 : Matrix R <--- R

Since we don’t need the variables u and v, we get rid of them.
i100 : S = QQ[t, A..H];

i101 : coeffOfFamily = substitute(coeffOfFamily, S);

1 3
o101 : Matrix S <--- S

i102 : Sbar = S / (ideal coeffOfFamily);
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Next, we move to the Grassmannian G(1, 3) ⊂ P5. Recall the homogeneous
coordinates on P5 correspond to the 2×2 minors of a 2×4 matrix. We obtain
these minors using the exteriorPower function in Macaulay 2.

i103 : psi = matrix{{t}} | exteriorPower(2,
matrix{{A, B, C, D}, {E, F, G, H}})

o103 = | t -BE+AF -CE+AG -CF+BG -DE+AH -DF+BH -DG+CH |

1 7
o103 : Matrix Sbar <--- Sbar

i104 : PP5 = QQ[t, a..f];

i105 : fanoOfFamily = trim ker map(Sbar, PP5, psi);

o105 : Ideal of PP5

Now, to answer the question, we determine the limit as t tends to 0.
i106 : zeroFibre = trim substitute(saturate(fanoOfFamily, t), {t=>0})

2 2 2 · · ·
o106 = ideal (e*f, d*f, e , f , d*e, a*e + b*f, d , c*d - b*e + a*f, b · · ·
o106 : Ideal of PP5

Let’s transpose the matrix of generators so all of its elements are visible on
the printed page.

i107 : transpose gens zeroFibre

o107 = {-2} | ef |
{-2} | df |
{-2} | e2 |
{-2} | f2 |
{-2} | de |
{-2} | ae+bf |
{-2} | d2 |
{-2} | cd-be+af |
{-2} | bd+ce |
{-2} | ad-cf |
{-2} | a2+b2+c2 |

11 1
o107 : Matrix PP5 <--- PP5

We see that F1(Q0) is supported on the plane conic 〈d, e, f, a2 + b2 + c2〉.
However, F1(Q0) is not reduced; it has multiplicity two. On the other hand,
the generic fiber is

i108 : oneFibre = trim substitute(saturate(fanoOfFamily, t), {t => 1})

2 2 2 · · ·
o108 = ideal (a*e + b*f, d + e + f , c*d - b*e + a*f, b*d + c*e, a*d · · ·
o108 : Ideal of PP5

i109 : oneFibre == intersect(ideal(c-d, b+e, a-f, d^2+e^2+f^2),
ideal(c+d, b-e, a+f, d^2+e^2+f^2))

o109 = true
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Hence, for t 6= 0, F1(Qt) is the union of two conics lying in complementary
planes and F1(Q0) is the double conic obtained when the two conics move
together. ut
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