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Duistermaat and van der Kallen show that there is no nontrivial
complex Laurent polynomial all of whose powers have a zero
constant term. Inspired by this, Sturmfels poses two questions:
Do the constant terms of a generic Laurent polynomial form a
regular sequence? If so, then what is the degree of the associated
zero-dimensional ideal? In this note, we prove that the Eulerian
numbers provide the answer to the second question. The proof
involves reinterpreting the problem in terms of toric geometry.
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1. Motivation and statement of theorem

In [6], J.J. Duistermaat and W. van der Kallen establish that, for any Laurent polynomial f ∈
C[z, z−1] that is neither a polynomial in z nor z−1, there exists a positive power of f that has a
nonzero constant term. Motivated by this result, Sturmfels [15, §2.5] asks for an effective version: Can
we enumerate the Laurent polynomials that have the longest possible sequence of powers with zero
constant terms?

By rephrasing this question in the language of commutative algebra, Sturmfels also offers a two-
step approach for answering it. Specifically, consider the Laurent polynomial

f (z) := z−m + x−m+1 z−m+1 + · · · + xn−1 zn−1 + zn (1)

and, for any positive integer i, let [[ f i]] denote the constant coefficient of the i-th power of f . First,
Problem 2.11 in [15, §2.5], together with computational evidence, suggests the following:

Conjecture 1. The coefficients [[ f 1]], [[ f 2]], . . . , [[ f m+n]] generate the unit ideal in the polynomial ring
C[x−m+1, . . . , xn−1].
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Second, assuming this conjecture, Exercise 13 in [15, §2.6] asks for the degree of the ideal Im,n :=
〈[[ f 1]], [[ f 2]], . . . , [[ f m+n−1]]〉. The zeros of Im,n would be the Laurent polynomials of the form (1) that
have the longest possible sequence of powers with vanishing constant terms.

The goal of this article is to complete the second part. Theorem 2 provides the unexpected and
attractively simple answer. Following [9, §6.2], the Eulerian number

〈 n
k

〉
is the number of permutations

of {1, . . . ,n} with exactly k ascents.

Theorem 2. If Conjecture 1 holds, then the degree of the ideal Im,n is
〈 m+n−1

m−1

〉
.

This result is equivalent to saying that the dimension of the C-vector space C[x−m+1, . . . , xn−1]/
Im,n is

〈 m+n−1
m−1

〉
.

Notably, Theorem 2 gives a new interpretation for the Eulerian numbers:
〈 m+n−1

m−1

〉
enumerates cer-

tain Laurent polynomials. Even without Conjecture 1, we show that these Eulerian numbers count
the solutions to certain systems of polynomial equations; see Proposition 4. Despite superficial sim-
ilarities between our work and other appearances of Eulerian numbers in algebraic geometry (e.g.
[1–3,11,13,14]), we know of no substantive connection.

Our proof of Theorem 2, given in Section 2, recasts the problem in terms of toric geometry—we
construe the degree of Im,n as an intersection number on a toric compactification of the space of
Laurent polynomials of the form (1). Building on this idea, Section 3 provides a recursive formula
for the degree of ideals similar to Im,n that arise from sparse Laurent polynomials. As a by-product,
we give a geometric explanation for a formula expressing

〈 m+n−1
m−1

〉
as a sum of nonnegative integers;

see (3). We list several questions arising from our work in Section 4.

2. Toric reinterpretation

This section proves Theorem 2 by reinterpreting the degree of Im,n as an intersection number on
a projective variety X(m,n). Section 2.1 introduces a homogenization of the ideal Im,n , Section 2.2
describes the toric variety X(m,n), and Section 2.3 computes the required intersection number.

2.1. Homogenization

For positive integers m and n, consider the Laurent polynomial

f̃ := x−m z−m + x−m+1 z−m+1 + · · · + xn−1 zn−1 + xn zn,

and, for any positive integer i, let [[ f̃ i]] denote the constant coefficient of the i-th power of f̃ . Let
S be the polynomial ring C[x−m, . . . , xn] and let J be the S-ideal 〈[[ f̃ 1]], [[ f̃ 2]], . . . , [[ f̃ m+n−1]]〉. The
C-valued points of V( J ) ⊂ Am+n+1 are precisely the Laurent polynomials for which the constant term
of the first m + n − 1 powers vanishes. Since J is contained in the reduced monomial ideal B :=
〈x−m, . . . , x−1〉∩〈x0, x1, . . . , xn〉, the C-valued points of V( J ) not contained in V(B) give rise to Laurent
polynomials that are neither polynomials in z nor z−1.

To understand the ideal J more explicitly, let w := [ −m ··· n ]t ∈ Zm+n+1. If u ∈ Nm+n+1, then the
multinomial theorem [9, p. 168] implies that

[[
f̃ i]] =

∑
|u|=i

w·u=0

(
i

u

)
xu =

∑
|u|=i

w·u=0

(
i

u1, . . . , um+n+1

)
xu1−m xu2−m+1 · · · x

um+n+1
n .

Hence, for all positive integers i, the polynomial [[ f̃ i]] is homogeneous of degree
[ i

0

]
with respect

to the Z2-grading of S induced by setting deg(x j) := [ 1
j

] ∈ Z2 for all −m � j � n. In particular, J is

invariant under the automorphism of S determined by the map f̃ (z) �→ λ f̃ (ξ z) where λ, ξ ∈ C∗ .
Moreover, if x−m and xn are both nonzero, then there exist scalars λ, ξ ∈ C∗ such that the image of f̃
under this (C∗)2-action has the form (1).
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2.2. Toric variety

When m + n > 2, let X(m,n) be the toric variety with total coordinate ring S (a.k.a. the Cox ring)
and irrelevant ideal B; see [5, §2]. The variety X(m,n) provides a toric compactification for the space
of all Laurent polynomials of the form (1). When no confusion is likely, we simply write X in place
of X(m,n). Proposition 2.4 in [5] shows that homogeneous S-ideals (up to B-torsion) correspond to
closed subschemes of X . Hence, the ideal J determines a closed subscheme VX ( J ) of X . If x−mxn is a
nonzerodivisor on VX ( J ), then Section 2.1 shows that the degree of the ideal Im,n equals the degree
of VX ( J ). We prove Theorem 2 by computing the latter degree.

More concretely, X is the toric variety associated to the following strongly convex rational poly-
hedral fan Σ ; see [7, §1.4]. The lattice of one-parameter subgroups is N = Zm+n−1 and the rays (i.e.
one-dimensional cones) in the fan Σ are generated by the columns of the matrix:⎡

⎢⎢⎣
1 −2 1 0 · · · 0
2 −3 0 1 · · · 0
...

...
...

...
. . .

...

m + n − 1 −m − n 0 0 · · · 1

⎤
⎥⎥⎦ . (2)

With the column ordering, we label the rays in Σ by ρ−m, . . . , ρn . For integers 1 � i � m and 0 �
j � n, let σi, j be the cone in Rm+n−1 = N ⊗Z R spanned by all the rays except ρ−i and ρ j . The fan
Σ is defined by taking these σi, j as the maximal cones. By construction, X is a singular simplicial
projective toric variety of dimension m + n − 1.

2.3. Intersection theory

Since X is a simplicial toric variety, its rational Chow ring A∗(X)Q has an explicit presentation;
see [7, §5.2]. Specifically, if D j is the torus-invariant Weil divisor associated to the ray ρ j for all
−m � j � n, then we have

A∗(X)Q = Q[D−m, . . . , Dn]
M + L

where the monomial ideal M := 〈D−m D−m+1 · · · D−1, D0 D1 · · · Dn−1 Dn〉 is the Alexander dual of B ,
and the linear ideal

L := 〈
iD−m − (i + 1)D−m+1 + D−m+i+1: 1 � i � m + n − 1

〉
encodes the rows of the matrix (2).

Choosing a shelling for the fan Σ yields a distinguished basis for A∗(X)Q; again see [7, §5.2]. With
this in mind, we order the maximal cones of Σ by σi, j > σk,� if i + j > k + � or i + j = k + � and
j > �. Let τi, j be the subcone of σi, j obtained by intersecting the maximal cone σi, j with all cones
σk,� satisfying σk,� > σi, j and dimσi, j ∩ σk,� = m + n − 2. We obtain a shelling for Σ (i.e. condition
(∗) in [7, p. 101] is satisfied) because dimσi, j ∩ σk,� = m + n − 2 if and only if i = k and j �= � or i �= k
and j = �, so τi, j = σi, j ∩ (

⋂
k>i σk, j) ∩ (

⋂
�> j σi,�). Hence, the collection {[V(τi, j)]} forms a basis for

A∗(X)Q .
Set D(−i, j) := D−i+1 · · · D−1 · D0 · · · D j−1; the empty product D(−1,0) = 1 is the unit in A∗(X)Q .

The generators of M imply that D(−i, j) = 0 in A∗(X)Q if i > m or j > n. Since τi, j is spanned by the
rays ρ� with −i < � < j, it follows that [V(τi, j)] = D(−i, j) . Thus, D(−i, j) for 1 � i � m and 0 � j � n
forms a basis for A∗(X)Q . The degree of a zero-dimensional subscheme Y of X , denoted deg(Y ), is
the rational number such that [Y ] = deg(Y )D(−m,n) in Am+n−1(X)Q .

The following calculation is the key to proving Theorem 2.

Lemma 3. For 1 � k � m + n − 1, we have

k! Dk
0 =

k∑
i=1

〈
k

i − 1

〉
D(−i,k−i+1) in A∗(X)Q.
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Proof. In the polynomial ring Q[z], Worpitzky’s identity is zk = ∑
i

〈 k
i

〉(z+i
k

)
; see Eq. (6.37) in [9, p. 255]

or for a combinatorial proof see [4, §7]. Rearranging, reindexing, and homogenizing this identity give
the equation

k!zk =
k∑

i=1

〈
k

i − 1

〉(
z + (i − 1)y

)(
z + (i − 2)y

) · · · (z + (i − k)y
)

in the Z-graded polynomial ring Q[z, y] with deg(z) = deg(y) = 1. Under the substitution z �→ D0
and y �→ D1 − D0, we obtain the equation

k! Dk
0 =

k∑
i=1

〈
k

i − 1

〉((
1 − (i − 1)

)
D0 − (i − 1)D1

) · · · ((1 − (i − k)
)

D0 − (i − k)D1
)

in A∗(X)Q . To complete the proof, we observe that the ideal L contains the linear relation Di =
(1 − i)D0 − iD1 for all −m � i � n. �

Using this lemma, we can compute the degree of certain complete intersections in X .

Proposition 4. Let g1, . . . , gm+n−1 be homogeneous elements of S such that deg(g j) = [ j
0

]
for 1 � j �

m + n − 1. If VX (g1, . . . , gm+n−1) is a zero-dimensional subscheme of X, then its degree is
〈 m+n−1

m−1

〉
.

Proof. Each homogeneous polynomial g j defines a hypersurface in X . This Cartier divisor is ratio-

nally equivalent to j D0 because we have deg(g j) = [ j
0

]
for 1 � j � m + n − 1. The subscheme

Z := VX (g1, . . . , gm+n−1) has dimension zero if and only if it is a complete intersection. Hence,
the degree of Z equals the appropriate intersection number, namely the coefficient of D(−m,n) in∏m+n−1

j=1 j D0; see Proposition 7.1 in [8]. Since D(−i,k−i+1) = 0 for i > m or k − i + 1 > n, Lemma 3
yields

m+n−1∏
j=1

j D0 = (m + n − 1)! Dm+n−1
0 =

〈
m + n − 1

m − 1

〉
D(−m,n). �

Proof of Theorem 2. Applying Conjecture 1 for the pairs of positive integers (m,n − 1) and (m − 1,n),
we see that VX ( J ) ∩ VX (x−mxn) = ∅. It follows that [VX ( J )] belongs to the socle of A∗(X)Q and thus
VX ( J ) has dimension zero. Since x−mxn is a nonzerodivisor on VX ( J ), we see that deg(Im,n) equals
deg VX ( J ); see Section 2.2. Therefore, applying Proposition 4 completes the proof. �
3. Sparse Laurent polynomials

In this section, we compute the degree of subschemes of X(m,n) corresponding to certain sparse
Laurent polynomials. Given the recurrence relation that these degrees satisfy, they may be regarded as
a generalized form of Eulerian numbers. This computation also generates a decomposition of

〈 m+n−1
m−1

〉
as a sum of nonnegative integers; see (3).

Fix a pair of positive integers (m,n) and let d be a positive integer dividing m + n. Consider the
closed subscheme Xd of X corresponding to Laurent polynomials of the form

x−m z−m + x−m+d z−m+d + · · · + xn−d zn−d + xn zn.

In other words, Xd is the subscheme of X defined by the monomial ideal generated by the variables
not belonging to {x−m, x−m+d, . . . , xn−d, xn}. When d = 1, we have Xd = X .

For 1 � j � m+n−1, let g j be a generic polynomial in S of degree
[ j

0

]
. These generic polynomials

cut out the subscheme Z := VX (g1, . . . , gm+n−1). Consider Zd := Z ∩ Xd . To compute the degree of Zd ,
we introduce the following notation. If 0 � � � d − 1, then we define
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〈
d − 1

�

〉
d
:=

{
0 if gcd(� + 1,d) �= 1,

1 if gcd(� + 1,d) = 1,

and we extend the definition of
〈 k
�

〉
d for all triples (k, �,d) such that d divides k + 1 via

〈
k
�

〉
d
:= (� + 1)

〈
k − d

�

〉
d
+ (k − �)

〈
k − d
� − d

〉
d
.

It follows that
〈 k
�

〉 = 〈 k
�

〉
1.

Proposition 5. The scheme Zd has dimension zero and degree
〈 m+n−1

m−1

〉
d when gcd(d,n) = 1; otherwise the

scheme Zd is empty.

Before proving this proposition, we record a technical lemma. Let W i be the vector space of all
polynomials in S of degree

[ i
0

]
with support contained in {x−m, x−m+d, . . . , xn−d, xn}. Given a subset

S ⊆ {d,2d, . . . ,m +n − d}, let D(S) be the subscheme of Xd defined by the ideal generated by W i for
all i ∈ S .

Lemma 6. If S ⊆ {d,2d, . . . ,m + n − d}, then dim D(S) � m+n
d − 1 − |S|.

Proof. It suffices to show that D(S) is contained in a finite union of subschemes with dimension
m+n

d −1−|S|. To a point P = [p−m : p−m+d : · · · : pn] in the subscheme D(S), we associate the support
sets E+ := {i � 0 | pi �= 0} and E− := {i > 0 | p−i �= 0}. From the definition of Xd , we deduce that
E+ ⊆ {m,m − d, . . .} and E− ⊆ {n,n − d, . . .}. Observe that P lies in the subspace defined by the ideal
〈xi | i ∈ {−m,−m +d, . . . ,n} \ (E+ ∪ E−)〉 and that this subspace has dimension |E+|+ |E−|− 2. Hence,
it is enough to prove |E+| + |E−| − 2 � m+n

d − 1 − |S| = |S �| where S � := {d,2d, . . . ,m + n − d} \ S .
To accomplish this, we consider the set

P := {i + j | i ∈ E+, j ∈ E−, and i + j � m + n − d} ⊆ {d,2d, . . . ,m + n − d}.
To conclude, one verifies that P ⊆ S � and that |E+| + |E−| − 2 � |P |. �
Sketch of the proof for Proposition 5. To begin, we assume that gcd(d,n) = 1. Let P(W ) := P(Wd) ×
P(W2d) × · · · × P(Wm+n−d) and consider the incidence variety

U := {(
P , (hd, . . . ,hm+n−d)

) ∣∣ hd(P ) = · · · = hm+n−d(P ) = 0
} ⊆ Xd × P(W )

with canonical projection maps π1 : U → Xd and π2 : U → P(W ). We claim that dim U � dim P(W ).
To see this, observe that a general point Q in Xd does not belong to the base locus of any W i ,
so the fiber π−1

1 (Q ) has dimension dim P(W ) − m+n
d + 1. One must also consider the dimen-

sions of the various π−1
1 (D(S)), but Lemma 6 shows that none of these preimages has dimension

greater than dim P(W ). Since Zd equals the fiber of π2 over a general point of P(W ), the inequality
dim U � dim P(W ) implies that Zd has dimension zero. The appropriate modifications to the proofs
of Lemma 3 and Proposition 4 show that the degree of Zd is

〈 m+n−1
m−1

〉
d .

Assume that e := gcd(d,n) > 1. If m′ := m/e, n′ := n/e, and d′ := d/e, then there is an isomor-

phism Xd = X(m,n)d
∼=→ X(m′,n′)d′ = X ′

d′ . Under this identification, Zd is determined by the ideal
〈gd′ , g2d′ , . . . , ge(n′+m′)−d′ 〉. Let U ′ be the incidence variety for the parameters (m′,n′,d′). From the
proof of Lemma 6, we deduce that x−m′ xn′ is a nonzerodivisor on the top dimensional components
of U ′ . Hence, the generic polynomial gm′+n′ is also a nonzerodivisor on U ′ , so the intersection of the
general fibre of π ′

2 : U ′ → P(W ) with the hypersurface defined by gm′+n′ is empty. Therefore, we have
Zd = ∅. �

To obtain a decomposition for the Eulerian numbers, we stratify the generic complete intersection
Z by singularity type. Let X◦

d be the open subscheme of Xd consisting of all singularities of type
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B(Z/dZ) in X . Each point in Z belongs to Xd for some d that divides m + n. Setting Z◦
d := Z ∩ X◦

d , we
obtain〈

m + n − 1
m − 1

〉
= deg(Z) =

∑
d|m+n

deg
(

Z◦
d

)
. (3)

Moreover, Möbius inversion and Proposition 5 yield

deg
(

Z◦
d

) =
∑

c|(m+n)/d

μ(c)

〈
m + n − 1

m − 1

〉
cd

,

where μ is the classical Möbius function; see Eqs. (4.55) and (4.56) in [9, p. 136].
Eq. (3) has an elegant combinatorial refinement which we learnt from Alexander Postnikov; cf.

[12, §6]. To sketch this refinement, we observe that the Eulerian number
〈 n

k

〉
also counts the cir-

cular permutations of {0, . . . ,n} with k + 1 circular ascents. The group Z/(n + 1)Z naturally acts
on this subset of circular permutations; add 1 modulo n + 1 to each element. The cardinalities
of the orbits then give rise to (3). More precisely, deg(Z◦

d) equals the product of (m + n)/d and
the number of orbits with cardinality (m + n)/d. For example, if m = 2 and n = 3, then we have〈 4

1

〉 = 11, deg(Z◦
5) = 1, and deg(Z◦

1) = 10 = 2 · 5. On the other hand, the eleven circular permuta-
tions of {0, . . . ,4} with two circular ascents are partitioned into three Z/5Z-orbits, namely {0 3 2 4 1},
{0 1 4 3 2,0 4 3 1 2,0 4 2 3 1,0 3 4 2 1,0 3 2 1 4}, and {0 2 1 4 3,0 4 1 3 2,0 2 4 3 1,0 4 2 1 3,0 3 2 4 1}.

4. Further questions

4.1. Regular sequence

Theorem 2 underscores the significance of Conjecture 1. To prove this conjecture, it would be
enough to show that VX ([[ f̃ 1]], . . . , [[ f̃ m+n]]) is the empty set. From this perspective, the proof of
Proposition 5 could be viewed as evidence supporting this conjecture: for generic elements g j of S

with degree
[ j

0

]
, the subscheme VX (g1, . . . , gm+n) is indeed empty.

On the other hand, Conjecture 1 is false over a field with positive characteristic. For instance, if
f := z−1 + z ∈ F2[z, z−1], then we have [[ f i]] = 0 for all i. Even if Conjecture 1 holds, the Fp-vector
space Fp[x−m+1, . . . , xn−1]/Im,n may fail to have a finite dimension; this happens when p = 2, m = 1,
and n = 2.

4.2. Combinatorics

The positivity and simplicity of many formulae in this article suggest that we have uncovered
only part of the combinatorial structure. To help orient the search for further structure, we pose two
specific questions:

• Can one find an explicit basis for C[x−m+1, . . . , xn−1]/Im,n together with a bijection to the per-
mutations of [m + n − 1] with exactly m − 1 ascents?

• Does
∑

j�0 dimC( S
〈g1,...,gm+n〉 )[ j

0

] = 〈 m+n−1
m−1

〉
hold for all positive m and n? When m = 3 and n = 3,

we have〈
5
2

〉
= 66 = 1 + 0 + 2 + 3 + 6 + 7 + 9 + 10 + 9 + 7 + 6 + 3 + 2 + 0 + 1.
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