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We study the closed convex hull of various collections of Hilbert functions. Working

over a standard graded polynomial ring with modules that are generated in degree 0, we

describe the supporting hyperplanes and extreme rays for the cones generated by the

Hilbert functions of all modules, all modules with bounded a-invariant, and all mod-

ules with bounded Castelnuovo–Mumford regularity. The first of these cones is infinite-

dimensional and simplicial, the second is finite-dimensional but neither simplicial nor

polyhedral, and the third is finite-dimensional and simplicial.

1 Introduction

Classifying modules is a universal problem in algebra. Within commutative algebra, the

classification of graded modules bifurcates into understanding the space of all modules

with a specified Hilbert function and describing the numerical functions that arise as

the Hilbert function of some module. As a counterpart to multigraded Quot schemes

which parameterize the modules with a fixed Hilbert function (see [13, Section 6.2]), this

paper initiates the study of the closed convex cones generated by the Hilbert functions

of a given collection of modules.
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Cones of Hilbert Functions 10315

There are many collections of modules to consider over the standard graded

ring S := k[x0, x1, . . . , xn] where k is a field. The most naive consists of all finitely

generated N-graded S-modules. In this case, every point in the corresponding closed

convex cone is a unique countable linear combination of the Hilbert functions of the

S-modules S(−i)/〈x0, x1, . . . , xn〉 ∼= k(−i) for i ∈N. Hence, within any relevant topological

vector space, the closed convex hull is the simplicial cone generated by the Hilbert func-

tions of these artinian modules. In other words, it is simply the infinite-dimensional

positive orthant. To actually capture the subtleties of homogeneous coordinate rings,

we concentrate on collections of N-graded S-modules that are generated in degree 0. If

E ⊆QN is a topological Q-vector space that contains the Hilbert functions of all artinian

S-modules generated in degree 0 and the function h: N→Q lies in E , then our first sub-

stantive result is the following.

Theorem 1.1. The closed convex hull of the Hilbert functions of S-modules generated

in degree 0 and contained in E is the intersection of the closed half-spaces defined by

the inequalities

(n+ j + 1)h( j) � ( j + 1)h( j + 1) for j ∈N.

The extreme rays of this simplicial cone are generated by the Hilbert functions of the

S-modules S/〈x0, x1, . . . , xn〉i where i ∈N. �

By design, our approach overcomes limitations in Macaulay’s celebrated

theorem on Hilbert functions. Although [16, Main Theorem] determines those numer-

ical functions which occur as Hilbert functions of a homogeneous quotient of S, the

complexity of this result, as underscored in [2, p. 27; 4, p. 132], makes it unwieldy.

The optimal linear conditions are frequently more useful despite not providing a com-

plete characterization. Moreover, because Macaulay’s Theorem depends inherently on

lex-segment ideals, it cannot be extended to graded rings that do not have analogous

ideals. Closed convex hulls enjoy no such restrictions. These two features, in addition

to the advantages of endowing the set of Hilbert functions with a geometric structure,

motivate our interest in cones of Hilbert functions. In particular, we regard the support-

ing hyperplanes in Theorem 1.1 (also see Theorem 2.1) as the linearization of Macaulay’s

Theorem.

To reveal the properties related to Hilbert polynomials, we need a smaller

collection of modules—one that does not contain artinian modules of arbitrary length.

Requiring that the Hilbert polynomial and Hilbert function agree for all integers

greater than a fixed number a is a straightforward method of making such a collection.
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Equivalently, we restrict to the finite-dimensional Q-vector space Vn,a⊂QN consisting

of all functions h: N→Q satisfying
∑

j∈N h( j)t j = (b0 + b1t+ · · · + ba+nta+n)/(1− t)n for

some b0, b1, . . . , ba+n∈Q. In this context, the primary object of interest is the closed con-

vex hull Qn,a⊂ Vn,a of the Hilbert functions of finitely generated N-graded S-modules

that are generated in degree 0 and have no free summands. Our second major result

characterizes this cone.

Theorem 1.2. If T : QN→QN is the linear operator defined by (T [h])( j) := (n+ j + 1)

h( j)− ( j + 1)h( j + 1) where h: N→Q, then the image T [Qn,a] equals the closed convex

hull of NN ∩ Vn,a.
�

The linear operator T and the supporting hyperplanes for Qn,a arise from the lineariza-

tion of Macaulay’s Theorem. Since Proposition 3.2 describes the extreme rays for the

image T [Qn,a], we also obtain, in Corollary 3.8, a description for the extreme rays of

Qn,a. As Example 3.12 demonstrates, the cone Qn,a is generally neither simplicial nor

polyhedral.

Alternatively, Castelnuovo–Mumford regularity, which is defined for a module

not just its Hilbert function, provides a more sophisticated mechanism for creating a

smaller collection. To be explicit, let Rn,m be the closed convex hull in Vn+1,m of the

Hilbert functions of finitely generated N-graded S-modules that are generated in degree

0, have no free summands, and have regularity at most m. If qh ∈Q[s] denotes the Hilbert

polynomial associated to h∈ Rn,m and ∇ : Q[s]→Q[s] is the backward difference operator

defined by ∇q(s) := q(s)− q(s− 1) for q ∈Q[s], then our third significant result describes

the cone Rn,m.

Theorem 1.3. The closed convex cone Rn,m lies in the subspace Vn,m ⊂ Vn+1,m and is the

intersection of the closed half-spaces given by the inequalities:

(n+ j + 1)h( j) � ( j + 1)h( j + 1) for 0 � j < m,

h(m) � qh(m), and

(n+ 1− i)∇iqh(m) � (n+m+ 1− i)∇i+1qh(m) for 0 � i < n.

The extreme rays of this simplicial polyhedral cone are generated by the Hilbert func-

tions of these

S

〈x0, x1, . . . , xn〉 ,
S

〈x0, x1, . . . , xn〉2 , . . . ,
S

〈x0, x1, . . . , xn〉m ,

S

〈x0, x1, . . . , xn〉m+1
,

S

〈x0, x1, . . . , xn−1〉m+1
, . . . ,

S

〈x0〉m+1
(1)

cyclic modules. �
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Cones of Hilbert Functions 10317

To prove this, we use the natural projection from the cone of Betti tables. It is intriguing

that the extreme rays of Rn,m correspond to modules with linear free resolutions,

arguably the simplest pure Betti tables.

Our progress in describing cones of Hilbert functions points in several

promising directions. For instance, how does one describe the closed convex hull for

other important collections of S-modules. Since convex cones are closed under linear

combinations with positive coefficients and the Hilbert function of a direct sum is

the sum of the Hilbert functions, collections of modules that are closed under finite

direct sums are likely the most pertinent. In contrast, we would also like to generalize

Macaulay’s Theorem to other rings by describing the closed convex hull of the Hilbert

functions of all module generated in degree zero. Following [10], toric rings are the most

prominent candidates among N-graded commutative rings. More generally, what is the

analog of Theorem 1.1 when S is replaced by the homogeneous coordinate ring of a

projective variety and how do the supporting hyperplanes and extreme rays reflect the

geometry of the underlying variety. Considering nonstandard and multigraded polyno-

mial rings branches onto a somewhat different track as [1, 5, 15] establish. Preliminary

work for a standard bigraded polynomial ring, or equivalently the Cox ring for a product

of projective spaces, indicates that an elementary variant of Theorem 1.1 holds. However,

versions over the Cox ring for any smooth projective toric variety appear to be intrin-

sically more complicated. For geometric applications, one should probably exclude all

modules that contain an element annihilated by a power of the irrelevant ideal. Finally,

we have not begun to analyze the semigroup within the closed convex cone formed by

the Hilbert functions of modules.

1.1 Contents of the paper

Section 2 gives both a combinatorial proof and an algebraic proof for the linearization

of Macaulay’s Theorem, also known as Theorem 2.1. Our description of the closed

convex hull of the Hilbert function of artinian S-modules generated in degree 0,

given in Corollary 2.3, and the proof for Theorem 1.1 follow. In Section 3, Propo-

sition 3.2 describes the extreme rays of the closed convex hull of NN ∩ Vn,a. After a

triple of technical lemmas, we prove Theorem 1.2. The section ends with Corollary 3.8,

which explicitly describes the supporting hyperplanes and extreme rays of Qn,a, and

four examples illustrating this corollary. We prove Theorem 1.3 in Section 4 and we

close with Proposition 4.5, which explicitly bounds Betti numbers linearly via Hilbert

functions.
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10318 M. Boij and G. G. Smith

1.2 Conventions

We write N for the set of nonnegative integers and k for an arbitrary field. A set is

countable if it has the same cardinality as N. Throughout the document, the polynomial

ring S := k[x0, x1, . . . , xn] has the standard N-grading induced by setting deg(xi)= 1 for all

0 � i � n. All S-modules are finitely generated and N-graded.

2 Modules Generated in Degree 0

This section considers the closed convex hull of Hilbert functions of S-modules gen-

erated in degree 0. The key result, namely Theorem 2.1, describes the linear inequal-

ities satisfied by the Hilbert function of such a module. By working in appropriate

infinite-dimensional topological vector spaces, we obtain descriptions of the support-

ing hyperplanes and the extreme rays for the closed convex hull of Hilbert functions for

any collection of modules containing all artinian S-modules.

If M is a finitely generated N-graded S-module, then its Hilbert function is the

numerical function hM : N→N defined by hM( j) := dimk Mj.

Theorem 2.1. The Hilbert function of a finitely generated N-graded S-module M gener-

ated in degree 0 satisfies the inequalities

hM( j)

hS( j)
� hM( j + 1)

hS( j + 1)
or (n+ j + 1)hM( j) � ( j + 1)hM( j + 1)

for all j ∈N. �

Proof. We have hS( j)= (n+ j
j

)
for all j ∈N and the Absorption Identity gives k

(
�

k

)= �
(
�−1
k−1

)
for all k, � ∈Z, so the two forms of inequalities are equivalent and it is enough to

prove that

(n+ j + 1)hM( j) � ( j + 1)hM( j + 1). (2)

Since M is generated in degree 0, there is a surjective homomorphism of N-graded

S-modules η : S(m)→M where S(m) is the m-fold direct sum of S for some m ∈N. By

choosing a monomial order on S(m), we see that both M and the quotient of S(m) by the

monomial submodule generated by the leading terms of ker(η) have the same Hilbert

function. In both cases, the monomials not belonging to the initial submodule form a

k-vector spaces basis (see [7, Theorem 15.3]). Hence, it suffices to establish the inequal-

ity (2) in the case M= S/I for some monomial ideal I .
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Cones of Hilbert Functions 10319

We interpret both sides of the inequality (2) as cardinalities of sets and

describe an appropriate injective map. Using the stars-and-bars correspondence

(see [20, Section 1.2]), we identify the set M j+1 of monomials in Sj+1 with the

( j + 1)-subsets of {1, 2, . . . , n+ j + 1}. Consider X ⊆ {1, 2, . . . , j + 1} ×M j+1 consisting

of all pairs (i, σ ) such that i ∈ σ , and let Y := {1, 2, . . . , n+ j + 1} ×M j. Define the map

Φ : X →Y by Φ(i, σ )= (i, σ \ {i}). This map is injective, because we can reconstruct σ

from the pair (i, σ \ {i}). If X ′ ⊆X and Y ′ ⊆Y are the subsets for which the second com-

ponents correspond to monomials not in I , then we have |X ′| = ( j + 1)hS/I ( j + 1) and

|Y ′| = (n+ j + 1)hS/I ( j). Since σ \ { j} corresponds to a monomial not in I whenever σ cor-

responds to a monomial not in I , restricting the map Φ yields the required injection

from X ′ to Y ′. �

This proof is surprisingly elementary and self-contained. One can provide

alternative proofs of Theorem 2.1 by relying on more elaborate algebraic results.

To highlight the differences between Theorem 2.1 and Macaulay’s work, we include one

of these arguments. Unlike the first proof, the second proof clearly depends on the exis-

tence of lex-segment ideals.

Secondary Proof. Generalizing Macaulay’s characterization of Hilbert functions of

N-graded k-algebras (i.e., [16, Main Theorem] or [6, Theorem 4.2.10]), [14, Corollary 6]

implies that the Hilbert function of M is bounded above by the Hilbert function of the

quotient of a free module S(m) by a lexicographic submodule. In particular, if hM( j)

is a multiple of hS( j)= (n+ j
j

)
, then hM( j + 1) is bounded above by the same mul-

tiple of hS( j + 1)= (n+ j+1
j+1

)= n+ j+1
j+1

(n+ j
j

)= n+ j+1
j+1 hS( j). Hence, for an appropriate k∈N,

hM(k) ( j) is a multiple of hS( j) and we obtain khM( j + 1)= hM(k) ( j + 1) �
(

n+ j+1
j+1

)
hM(k) ( j)=

k
(

n+ j+1
j+1

)
hM( j). �

Remark 2.2. If one replaces the symmetric algebra S with an exterior algebra (see

[1, Corollary 4.18]), then the analog of Theorem 2.1 also holds. However, these inequali-

ties do not hold in all rings. For example, if R := k[x0, x1]/〈x2
0 , x0x1〉 and M := R/〈x0〉 ∼= k[x1],

then we have hM(1)/hR(1)= 1
2 < 1= hM(2)/hR(2). �

Let c0 ⊂QN be the Banach space consisting of all convergent real sequences

h: N→Q such that h( j)→ 0 as j→∞ equipped with the sup norm (see [12, p. 31]).

For any finitely generated N-graded artinian S-module M, we have hM ∈ c0, because the

sequence is eventually zero.

Corollary 2.3. The closed convex hull in c0 of the Hilbert functions of artinian

S-modules generated in degree 0 is the intersection of the closed half-spaces defined
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10320 M. Boij and G. G. Smith

by the inequalities (n+ j + 1)h( j) � ( j + 1)h( j + 1) for j ∈N. Moreover, the extreme rays

of this cone are generated by the Hilbert functions of the S-modules S/〈x0, x1, . . . , xn〉i
where i ∈N. �

Proof. Theorem 2.1 shows that the Hilbert function of any S-module M generated

in degree 0 is contained in the intersection of the closed half-spaces determined by

the inequalities (n+ j + 1)hM( j) � ( j + 1)hM( j + 1) for all j ∈N. For brevity, set m :=
〈x0, x1, . . . , xn〉. For i ∈N, we have

hS/mi ( j)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎝n+ j

j

⎞
⎠ if j < i,

0 if j � i.

(3)

These Hilbert functions are linearly independent in c0, so each S/mi corresponds to an

extreme ray of the closed convex cone K generated by {(hS/mi ( j)) : i ∈N}. Equation (3) also

yields (n+ i)hS/mi (i − 1) > (i)hS/mi (i) and, together with the Absorption Identity, shows

that (n+ j + 1)hS/mi ( j)= ( j + 1)hS/mi ( j + 1) for all j �= i − 1. Since 1
�!

(n+�−1
n

)→ 0 as �→∞,

the sequences
�∑

k=0
k�=i

1

k!
hS/mk( j)

converge as �→∞ and the limit lies on the closed hyperplane

(n+ j + 1)h( j)= ( j + 1)h( j + 1)

if and only if j = i − 1. Hence, K is intersection of the closed half-spaces defined

by the inequalities (n+ j + 1)h( j) � ( j + 1)h( j + 1) for j ∈N. Finally, the Krein–Milman

Theorem (e.g., [12, Theorem 1, p. 187; 12, Corollary, p. 189]) establishes that every

extreme ray of the cone of Hilbert functions for artinian S-modules generated in degree

0 corresponds to an S-module S/mi for some i ∈N. �

Remark 2.4. The proof of Corollary 2.3 exploits only the topological vector space struc-

ture of the Banach space c0. �

Remark 2.5. Since every Cohen–Macaulay module has an artinian reduction

(cf. [6, Corollary 4.1.10]), Corollary 2.3 leads immediately to a description of the closed

convex hull of the Hilbert function of Cohen–Macaulay S-modules generated in

degree 0. �
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Cones of Hilbert Functions 10321

By working in a larger space, we can extend Corollary 2.3. Let E ⊆QN be a

topological Q-vector space that contains the Hilbert functions of all artinian S-modules

generated in degree 0. For example, if E is the weighted �∞-space consisting of all

bounded sequences h: N→Q with respect to the norm ‖h‖ := sup j |n− jh( j)|, then the

Hilbert function of every finitely generated N-graded S-module is contained in E .

Proof of Theorem 1.1. Set m := 〈x0, x1, . . . , xn〉. Since every Hilbert function in E can

expressed uniquely as a nonnegative countable linear combination of the Hilbert func-

tions of the S-modules S/mi for i ∈N, the cone of all Hilbert functions in E is generated

by {hS/mi ( j) : i ∈N}. Hence, the assertions follow from Corollary 2.3. �

Remark 2.6. Every point in the cone is a unique countable linear combination of the

Hilbert functions of the S-modules S/〈x0, x1, . . . , xn〉i where i ∈N, so the closed convex

cones described in Theorem 1.1 and Corollary 2.3 are both simplicial (in the sense of

Choquet theory (see [18, Section 10])). �

3 Modules with Bounded a-Invariant

In this section, we replace the ambient infinite-dimensional vector space E appearing in

Section 2 with a finite-dimensional vector space. We accomplish this by concentrating on

S-modules with bounded a-invariant (cf. [6, Definition 4.4.4]). In other words, we insist

that the Hilbert function and Hilbert polynomial agree for all integers greater than a. To

determine the supporting hyperplanes and extreme rays, we related the cone of Hilbert

functions with bounded a-invariant to the cone of nonnegative sequences.

Fix n∈N and let a∈Z satisfy a�−n. Consider the finite-dimensional subspace

Vn,a⊂QN consisting of all sequences h: N→Q such that the associated generating func-

tions are rational functions of the form

∑
j∈N

h( j)t j = b0 + b1t+ · · · + ba+nta+n

(1− t)n
∈Q(t)

for some b0, b1, . . . , ba+n∈Q. Following [20, Corollary 4.3.1], this condition on the

generating function is equivalent to the existence of qh ∈Q[s] such that qh( j)= h( j) for

all j > a. As an abuse of terminology, we refer to qh ∈Q[s] as the Hilbert polynomial of

h∈ Vn,a. We identify a sequence h∈ Vn,a with its generating function
∑

j h( j)t j ∈Q(t) and

regard Vn,a as a subspace of Q(t).

Definition 3.1. Let Pn,a denote the closed convex hull in Vn,a of the intersection NN ∩ Vn,a.

Informally, we say that Pn,a⊂ Vn,a is the cone of nonnegative sequences. �
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10322 M. Boij and G. G. Smith

For j� 0, the sign of the Hilbert function is determined by the sign of the leading

coefficient of the Hilbert polynomial. Hence, the inequalities h( j) � 0 for j ∈N, which

define the cone Pn,a, assert that the leading coefficient of the Hilbert polynomial is

positive.

To give the dual description of Pn,a, it is convenient to introduce a family of poly-

nomials. For a sequence λ := (λ1, λ2, . . . , λr) of integers satisfying λ1 � λ2 � · · ·� λr � 0, we

define

pλ(s) :=
r∏

i=1

(s− λr−i+1 − 2i + 2)(s− λr−i+1 − 2i + 1) ∈Z[s].

Following [20, Section 1.7], we view λ as an integer partition of
∑r

i=1 λi with at most

r parts. Hence, the set {pλ : the integer partition λ has at most r parts} consists of all

monic polynomials of degree 2r with nonnegative integer roots that appear in consecu-

tive pairs.

To give a uniform description of the extreme rays, we introduce an auxiliary

parameter.

Proposition 3.2. Set â := a+max(1,−a). The extreme rays of the nonnegative cone Pn,a

correspond to the polynomials 1, t, . . . , ta and the power series

∑
j�â

(
pλ( j − â)

â−a−1∏
�=1

( j + �)

)
t j,

∑
j�â

(
pμ( j − â− 1)

â−a−1∏
�=0

( j + �)

)
t j,

where λ ranges over all integer partitions with at most �(n− â+ a)/2� parts and μ ranges

over all integer partitions with at most �(n− â+ a− 1)/2� parts. �

Proof. The Binomial Theorem yields both tk= (1− t)−n∑
i

(n
i

)
(−1)itk+i for 0 � k� a and

(1− t)−� = (1− t)−n
∑

i

(
n− �

i

)
(−1)iti for 1 � � � n.

When a� 0, the rational functions ta, ta−1, . . . , 1, (1− t)−1, (1− t)−2, . . . , (1− t)−n form a

triangular basis for Vn,a. Let (c−a, c−a+1, . . . , c0, c1, c2, . . . , cn) denote the coordinates of

h∈ Pn,a with respect to this ordered basis. When a< 0, just the rational functions

(1− t)a, (1− t)a−1, . . . , (1− t)−n form a triangular basis for Vn,a. For consistency, let
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Cones of Hilbert Functions 10323

(c−a, c−a+1, . . . , cn) denote the coordinates of h∈ Pn,a in this situation. Since the Gener-

alized Binomial Theorem implies that (1− t)−� =∑ j

(
�+ j−1
�−1

)
t j, we obtain the inequalities

c− j +
n∑

�=1

(
�+ j − 1

�− 1

)
c� = h( j) � 0 for 0 � j � a and

×
n∑

�=â−a

(
�+ j − 1

�− 1

)
c� = h( j) � 0 for j � â.

The binomial coefficient
(
�+s−1
�−1

)
is a polynomial in Q[s] of degree �− 1. Hence, for s� 0,

the leading coefficient of
∑

�

(
�+s−1
�−1

)
c� determines its sign and we obtain cn � 0.

Since dim(Vn,a)=n+ a+ 1, any extreme ray h∈ Pn,a must satisfy h( j)= 0 for at

least n+ a distinct j ∈N. Suppose that we have at least n equalities h( j)= 0 with j �
â. It follows that c� = 0 for 1 � � � n, because the polynomials {(�+s−1

�−1

)
: 1 � � � n} form a

triangular basis for the vector space of all polynomials in Q[s] with degree at most n− 1.

To obtain a ray, we must also have c− j = h( j)= 0 for all but one j satisfying 0 � j � a.

Hence, we have a� 0 and the extreme rays in this case correspond to the polynomials

1, t, . . . , ta.

Now, suppose that cn > 0 and that we have at most n− â+ a equalities h( j)= 0

with j � â. To obtain a ray, we must have h( j)= 0 for all 0 � j � a and h( j)= 0 for exactly

n− â+ a distinct j satisfying j � â. Hence, the polynomial

q(s) :=
n∑

�=â−a

(
�+ s+ â− 1

�− 1

)
c� ∈Q[s]

has n− â+ a distinct nonnegative integer roots. This polynomial also has â− a− 1

distinct negative integer roots, namely −1,−2, . . . , 1− â+ a. Since deg(q)=n− 1, it is

uniquely determined by its leading coefficient and these integer roots. Furthermore, the

real function q changes sign at each root and the evaluation of q at every nonnegative

integer is nonnegative, so the nonnegative roots of q must come in consecutive pairs.

When n− â+ a is odd, we need an even number of sign changes arising from the nonneg-

ative roots, so 0 itself must be a root of q. Thus, the extreme rays in this case correspond

to the power series

∑
j�â

(
pλ( j − â)

â−a−1∏
�=1

( j + �)

)
t j or

∑
j�â

(
pμ( j − â− 1)

â−a−1∏
�=0

( j + �)

)
t j,

where n− â+ a is even and the integer partition λ has (n− â+ a)/2 parts or n− â+ a is

odd and the integer partition μ has (n− â+ a− 1)/2 parts.
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10324 M. Boij and G. G. Smith

The remaining extreme rays of Pn,a lie in the hyperplane cn= 0 or equivalently

Vn−1,a. Therefore, induction on n completes the proof.
�

The more important cone in Vn,a is generated by Hilbert functions. Specifically,

if M is any finitely generated N-graded S-module without free summands (i.e., dim(M) <

n+ 1), then the Hilbert function hM : N→Q is contained in Vn,a for all a� 0 (see [6,

Corollary 4.1.8]). Moreover, we have hM ∈ Vn,a if and only if the Hilbert function hM( j)

equals the Hilbert polynomial qM( j) for all j > a (see [6, Corollary 4.1.12]). When M is a

k-algebra, the parameter a is the a-invariant (see [6, Definition 4.4.4]).

Definition 3.3. Let Qn,a denote the closed convex hull in Vn,a of the Hilbert functions

of finitely generated N-graded S-modules that are generated in degree 0 and have no

free summands. Informally, we say that Qn,a⊂ Vn,a is the cone of Hilbert functions with

bounded a-invariant.
�

To encode the inequalities appearing in Theorem 2.1, we introduce the linear

operator T : QN→QN defined by (T [h])( j) := (n+ j + 1)h( j)− ( j + 1)h( j + 1) for any

h: N→Q. For an associated generating function, we have T [
∑

j h( j)t j]=∑ j(T [h]( j))t j.

Despite our notation, the operator T depends on the parameter n. Our first lemma shows

that the restriction of T to Vn,a has an elegant reinterpretation.

Lemma 3.4. The subspace Vn,a is T-invariant and T = (n+ 1)− (1− t) d
dt . Moreover, the

rational functions (1− t)i where−n� i � a form an eigenbasis for Vn,a and the eigenvalue

of T corresponding to (1− t)i is n+ 1+ i.
�

Proof. The Binomial Theorem yields (1− t)i = (1− t)−n∑
j

(i+n
j

)
(−1) jt j, so the rational

functions (1− t)i for −n� i � a also form triangular basis for Vn,a. Hence, we have

(
(n+ 1)− (1− t)

d

dt

)⎡⎣∑
j

h( j)t j

⎤
⎦=∑

j

(n+ 1)h( j)t j −
∑

j

jh( j)t j−1 +
∑

j

jh( j)t j

=
∑

j

((n+ 1+ j)h( j)− ( j + 1)h( j + 1))t j

= T

⎡
⎣∑

j

h( j)t j

⎤
⎦

and T [(1− t)i]= (n+ 1)(1− t)i − (1− t)(i)(1− t)i−1(−1)= (n+ 1+ i)(1− t)i.
�

The second lemma calculates the image under T of the Hilbert function for cer-

tain cyclic modules.
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Cones of Hilbert Functions 10325

Lemma 3.5. Let � ∈N and i ∈N satisfy 0 � � � n+ 1 and 1 � i � a+ n− �+ 2. For the

cyclic module M := S/〈x0, x1, . . . , x�−1〉i, we have hM ∈ Vn,a, and the equation

T

⎡
⎣∑

j

hM( j)t j

⎤
⎦= T

[
(1− t)�−1−n

i−1∑
k=0

(
�− 1+ k

k

)
tk

]
= i

(
�− 1+ i

i

)
ti−1(1− t)�−1−n

holds. �

Proof. The monomials not in the ideal 〈x0, x1, . . . , x�−1〉i form a k-vector space basis

for M (see [7, Theorem 15.3]). Since these basis elements in degree j are the disjoint

union of monomials in k[x0, x1, . . . , x�−1]k · k[x�, x�+1, . . . , xn] j−k where 0 � k� i − 1, we have∑
j hM( j)t j = (1− t)�−1−n∑i−1

k=0

(
�−1+k

k

)
tk, so hM ∈ Vn,a when i − 1+ �− 1 � a+ n. Combining

Lemma 3.4 with the Absorption Identity, we obtain

T

⎡
⎣∑

j

hM( j)t j

⎤
⎦=((n+ 1)− (1− t)

d

dt

)[
(1− t)�−1−n

i−1∑
k=0

(
�− 1+ k

k

)
tk

]

= �(1− t)�−1−n
i−1∑
k=0

(
�− 1+ k

k

)
tk − (1− t)�−n

i−1∑
k=1

k

(
�− 1+ k

k

)
tk

= (1− t)�−1−n

(
�+

i−1∑
k=1

(�+ k)

(
�− 1+ k

k

)
tk −

i−2∑
k=0

(k+ 1)

(
�+ k

k+ 1

)
tk

)

= (1− t)�−1−n(�− 1+ i)

(
�+ i − 2

i − 1

)
ti−1

= i

(
�− 1+ i

i

)
ti−1(1− t)�−1−n

as required. �

We concluded our trilogy of lemmas with an elementary positivity result.

Lemma 3.6. Any polynomial f ∈Q[s] of degree r with r distinct negative integer roots

and a positive leading coefficient is a nonnegative Q-linear combination of the polyno-

mials
(s+k

k

)
for 0 � k� r. �

Proof. We proceed by induction on r. If r = 0, then f is the product of the leading

coefficient of f and the polynomial
(s+0

0

)
which establishes the base case. Assume that

r > 0. Since f has r distinct negative integer roots, the smallest root of f equals −r − �
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10326 M. Boij and G. G. Smith

for some � ∈Z satisfying � � 0. It follows that f(s)= (s+ r + �)g(s) where g∈Q[s] has

degree r − 1, r − 1 distinct negative integer roots, and a positive leading coefficient. The

induction hypothesis implies that there exists nonnegative c0, c1, . . . , cr−1 ∈Q such that

g(s)= c0

(
s+ 0

0

)
+ c1

(
s+ 1

1

)
+ · · · + cr−1

(
s+ r − 1

r − 1

)
.

Hence, the Absorption Identity yields

f(s)= (s+ r + �)g(s)=
r−1∑
k=0

(s+ r + �)ck

(
s+ k

k

)

=
r−1∑
k=0

(s+ k+ 1)ck

(
s+ k

k

)
+

r−1∑
k=0

(r − 1− k+ �)ck

(
s+ k

k

)

=
r−1∑
k=0

(k+ 1)ck

(
s+ k+ 1

k+ 1

)
+

r−1∑
k=0

(r − 1− k+ �)ck

(
s+ k

k

)

=
r∑

k=1

kck−1

(
s+ k

k

)
+

r−1∑
k=0

(r − 1− k+ �)ck

(
s+ k

k

)
,

which completes the induction. �

We can now prove Theorem 1.2 by showing that T [Qn,a]= Pn,a.

Proof of Theorem 1.2. Theorem 2.1 together with Lemma 3.4 prove that T [Qn,a]⊆ Pn,a,

so it suffices to show that all of the extreme rays of Pn,a are images under T of ele-

ments in Qn,a. Lemma 3.5 establishes that images under T of Hilbert functions for the

artinian modules S/〈x0, . . . , xn〉i where 1 � i � a+ 1 are scalar multiples of the polyno-

mials 1, t, . . . , ta. As in Proposition 3.2, let â := a+max(1,−a), fix an appropriate integer

partition λ or μ, and let F (t) equal either

∑
j�â

(
pλ( j − â)

â−a−1∏
�=1

( j + �)

)
t j or

∑
j�â

(
pμ( j − â− 1)

â−a−1∏
�=0

( j + �)

)
t j.

We need only exhibit a module M such that the image of its Hilbert series under T is

a scalar multiple of F (t). Since b := â+ λ1 + 2r is the largest root of pλ( j − â− 1), there

is a unique decomposition F (t)= F1(t)+ F2(t) where F1(t) is a polynomial of degree less

than b and F2(t) is a power series in which only the terms of degree larger than b have

nonzero coefficients. It follows from Lemma 3.5 that the image of the Hilbert series an

appropriate direct sum M1 of the artinian modules S/〈x0, . . . , xn〉i for â� i � b maps to
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Cones of Hilbert Functions 10327

c1 F1(t) for some positive c1 ∈Z. Thus, if there exists a module M2 such that its Hilbert

series maps to c2 F2(t) for some positive c2 ∈Z, then the Hilbert series of the module

M=M(c2)
1 ⊕ M(c1)

2 maps to c1c2 F (t) under T .

Establishing the existence of M2 reduces by Lemma 3.5 to proving that F2(t)

equals a finite nonnegative Q-linear combination of the power series tb+1(1− t)−(k+1) =
tb+1∑

j�0

( j+k
k

)
t j for 0 � k� n. By construction, we have F2(t)= tb+1∑

j�0 f2( j)t j where

f2 is a polynomial of degree r � n with r distinct negative integer roots and a positive

leading coefficient. Therefore, Lemma 3.6 completes the argument by showing that f2 is

a nonnegative Q-linear combination of the polynomials
(s+k

k

)
for 0 � k� r � n. �

Remark 3.7. The proof of Theorem 1.2 is constructive. However, the procedure for cre-

ating a module M that generates an extreme ray is rarely effective, because the number

of cyclic summands used is so large. Although each cyclic summand used has the sim-

ple form S/〈x0, x1, . . . , x�−1〉i for some i ∈N and 1 � � � n+ 1, the Hilbert function of each

individual summand does not belong to Vn,a. �

Corollary 3.8. The closed convex cone Qn,a is the intersection of the closed half-spaced

defined by the inequalities (n+ j + 1)h( j) � ( j + 1)h( j + 1) for j ∈N and the limiting

inequality which asserts that leading coefficient of the associated Hilbert polynomial

is positive. If â := a+max(1,−a), then the extreme rays of Qn,a are generated by the

Hilbert functions of the cyclic modules S/〈x0, x1, . . . , xn〉i for 1 � i � a+ 1 and the inverse

images under T of the power series

∑
j�â

(
pλ( j − â)

â−a−1∏
�=1

( j + �)

)
t j,

∑
j�â

(
pμ( j − â− 1)

â−a−1∏
�=0

( j + �)

)
t j,

where λ ranges over all integer partitions with at most �(n− â+ a)/2� parts and μ ranges

over all integer partitions with at most �(n− â+ a− 1)/2� parts. �

Proof. This follows immediately from Proposition 3.2 and Theorem 1.2. �

We end this section with some examples illustrating Corollary 3.8. When the

dimension of the ambient vector space Vn,a is small enough, we can visualize the

cone Qn,a.

Example 3.9. If dim(Vn,a)= 1, then we have n=−a. The cone Qn,−n is the positive cn-axis

generated by (1− t)−n which corresponds to the S-module S/〈x0〉. �
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c0

c−1

H0H1

cn

cn−1

H0H∞

Fig. 1. Cones of Hilbert functions when dim(Vn,a)= 2.

Example 3.10. If n= 0, then we have S= k[x0] and a� 0. Since the associated generating

functions for elements of V0,a have the form c−ata+ c−a+1ta−1 + · · · + c−1t+ c0, the linear

half-spaces defining Q0,a are c− j � c− j−1 for 0 � j < a and c−a � 0. The extreme rays are

generated by 1+ t+ · · · + ti−1 for 0 � i � a+ 1 which corresponds to the S-module S/〈x0〉i.
In particular, Q0,a is a simplicial polyhedral cone. �

Example 3.11. If dim(Vn,a)= 2, then we have a=−n+ 1. The case n= 0 is described in

Example 3.10, so we may assume that n� 1. Since we have

cn−1

(1− t)n−1
+ cn

(1− t)n
=
∑
j∈N

(
cn−1

(
n+ j − 2

n− 2

)
+ cn

(
n+ j − 1

n− 1

))
t j

the linear half-spaces defining Qn,−n+1 are 2(n− 1)cn−1 + (n+ j − 1)cn � 0 for j ∈N.

In this degenerate case, the two linear half-spaces 2cn−1 + cn � 0 and cn � 0 coming from

j = 0 and j =∞ suffice. The extreme rays are generated by (1− t)−n+1

−(1− t)−n+1 + 2(1− t)−n

which correspond to the S-modules S/〈x0, x1〉 and S/〈x0〉2. Once again, Qn,−n+1 is a sim-

plicial polyhedral cone.

In Figure 1, the case Q0,1 appears on the left and the cases Qn,−n+1 for n≥ 1

appear on the right. The supporting hyperplanes Hj are represented by thick black lines

(that fade to white as j increase), the cone is represented by the gray region, and the

generators of the extreme rays are represented by black circles. �

Example 3.12. If n= 3 and a=−1, then dim(V3,−1)= 3. Since we have

c1

(1− t)
+ c2

(1− t)2
+ c3

(1− t)3
=
∑
j∈N

(
c1

(
j

0

)
+ c2

(
j + 1

1

)
+ c3

(
j + 2

2

))
t j,
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c2

c1

H32

H16

H8

H4

H2

H1

H0

H∞

Fig. 2. Cyclic cross-section of Q3,−1.

the linear half-spaces defining Q3,−1 are

(3+ j + 1)h( j)− ( j + 1)h( j + 1)= 3c1 + 2( j + 1)c2 + 1
2 ( j + 1)( j + 2)c3 � 0 for j � 0.

To visualize this closed convex cone, we intersect with the hyperplane c1 + c2 + c3 = 1;

for a cyclic module, we have h(0)= 1. Points in this cross-section are determined by the

coordinates (c2, c1), and the linear half-spaces in these coordinates are

Hj : ( j − 1)( j + 4)c1 + ( j − 2)( j + 1)c2 − ( j + 1)( j + 2) � 0

for j � 0. As j→∞, we also obtain H∞ : c1 + c2 − 1 � 0. In Figure 2, the supporting hyper-

planes corresponding to Hj are represented by thick black lines (that fade to white as j

increases) and the cross-section of the cone is represented by the gray region.

The extreme points of the cross-section are represented by black circles in

Figure 2. More precisely, the supporting hyperplanes corresponding to Hi and Hi+1 meet

at the point (c2, c1)= 3
i2+2 (−(i + 2), 1

3 (i + 1)(i + 2)) for i � 0, and the supporting hyper-

planes corresponding to H0 and H∞ meet at the point (c2, c1)= (3,−2). As i→∞, we also

obtain the point (0, 1). Hence, the extreme rays of Q3,−1 are generated by

1

(1− t)
, − 2

(1− t)
+ 3

(1− t)2
, and

3

i2 + 2

(
(i + 1)(i + 2)

3(1− t)
− (i + 2)

(1− t)2
+ 2

(1− t)3

)
.
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10330 M. Boij and G. G. Smith

Moreover, these extreme rays correspond to integer partitions with at most 1-part:

T
[

1

(1− t)

]
=
∑
j∈N

t j ←→ λ=∅

T
[
− 2

(1− t)
+ 3

(1− t)2

]
=
∑
j∈N

jt j ←→ λ=∅

T
[
(i + 1)(i + 2)

3(1− t)
− (i + 2)

(1− t)2
+ 2

(1− t)3

]
=
∑
j∈N

( j − i)( j − i − 1)t j ←→ λ= (i) .

The cone Q3,−1 is neither simplicial nor polyhedral.

The minimal number of generators for the modules lying on the extreme rays is

unbounded. Specifically, by considering the linear term, we see that the smallest multi-

ple of the rational function

3

i2 + 2

(
(i + 1)(i + 2)

3(1− t)
− (i + 2)

(1− t)2
+ 2

(1− t)3

)

that could be the Hilbert function of a module has constant term i2 + 2. Hence, any

module that corresponds to a point on this ray has at least i2 + 2 generators in degree 0.�

4 Modules with Bounded Regularity

This final section examines our third cone of Hilbert functions. By bounding the

Castelnuovo–Mumford regularity of S-modules, we provide an alternative condition

which guarantees that the Hilbert functions lie in a finite-dimensional vector space. To

enumerate the supporting hyperplanes and extreme rays for the cone of Hilbert func-

tions with bounded regularity, we use the natural projection from the cone of Betti

tables.

For a finitely generated N-graded S-module M, the graded Betti numbers are

βi, j(M) := dimk(Tori(M, k) j), and we have βi, j(M)= 0 for all i > n+ 1 (see [8, Theorem 1.1]).

The graded Betti numbers of M determine its Hilbert series via the formula

∑
j∈N

hM( j)t j =
∑

j∈N
∑n+1

i=0 βi, j(M)t j

(1− t)n+1
. (4)

The Betti table β(M) is the matrix in
⊕∞

j=−∞
⊕n+1

i=0 Q whose entry in the jth row and

ith column is βi,i+ j(M); see [8, Proposition 1.9] for an explanation of this convention.

The Castelnuovo–Mumford regularity is the largest index of a nonzero row in the Betti

table β(M) or equivalently reg(M) :=max{ j ∈Z : βi,i+ j(M) �= 0}. The Hilbert function hM( j)
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Cones of Hilbert Functions 10331

equals the Hilbert polynomial qM( j) for all j > reg(M) (see [8, Theorem 4.2]). Hence, if

m � reg(M), then Equation (4) shows that hM ∈ Vn+1,m.

Definition 4.1. Let Rn,m denote the closed convex hull in Vn+1,m of the Hilbert functions

of finitely generated N-graded S-modules that are generated in degree 0, have no free

summands, and have Castelnuovo–Mumford regularity at most m. Informally, we say

that Rn,m ⊂ Vn+1,m is the cone of Hilbert functions with bounded regularity. �

As in Section 3, let qh ∈Q[s] be the Hilbert polynomial of the sequence h∈ Rn,m.

The backward difference operator ∇ : Q[s]→Q[s] is defined by ∇q(s) := q(s)− q(s− 1)

where q ∈Q[s]. We write ∇i for the i-fold composition of ∇ with itself.

Proof of Theorem 1.3. We first show that the cone Rn,m is generated by the Hilbert

functions of the cyclic modules appearing in the list (1). Our indirect proof exploits

the Betti tables for certain modules over the smaller polynomial ring S′ := S/〈xn〉 =
k[x0, x1, . . . , xn−1].

Let Ψ be the linear map from the rational vector space of Betti tables for

S-modules to the rational vector space of Betti tables for S′-modules defined by

(Ψ (β))i, j := jβi+1, j (cf. [19, Definition 4.5]). Following [3, Definition 2.1], the pure Betti

table with degree sequence d0 < d1 < · · ·< de satisfies βi,di =
∏

j �=i
1

|dj−di | for 0 � i � e. Hence,

the map Ψ sends the pure Betti table with degree sequence 0 < d1 < d2 < · · ·< de to the

pure Betti table with degree sequence d1 < d2 < · · ·< de. Since [3, Theorems 3.7 and 4.1]

establish that the closed convex cones of Betti tables are generated by the pure Betti

tables, the map Ψ induces a surjection from the closed convex cone of Betti tables for

S-modules to the closed convex cone of Betti tables for S′-modules. Moreover, the kernel

of Ψ is generated by the Betti table for the free module S. Therefore, the Betti tables for

the modules associated to the generators of the cone Rn,m correspond to the Betti tables

for finitely generated N-graded S′-modules that are generated in degree at least 0 and

have regularity at most m.

Consider a finitely generated N-graded S′-module M′ that is generated in degrees

at least 0 and has regularity at most m. Any such module M′ has the same Hilbert

function as the S′-module

M′′ :=
m−1⊕
j=0

k(− j)⊕hM′ ( j) ⊕ M′�m, (5)

where the truncation M′�m equals
⊕

j�m M′j. Eisenbud and Goto [9, Proposition 1.1

and Theorem 1.2] establish that M′�m has a linear resolution such that βi,i+m(M′�m)=
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10332 M. Boij and G. G. Smith

βi,i+m(M′′) for 0 � i � n. The Koszul complex is also linear, in addition to being the

minimal free resolution of the S′-module k, so it follows that βi,i+ j(M′′)= hM′( j)
(n

i

)
for

0 � j < m. Since the Betti table of a direct sum is the sum of Betti tables and the relation

(4) holds, we deduce that the Hilbert function of M′ can be expressed as a nonnegative

integer combination of Hilbert functions of modules with linear resolutions.

As each cyclic modules appearing in the list (1) is the quotient of S by a

Borel-fixed ideal, the minimal free resolution is given by an appropriate Eliahou–

Kervaire resolution (see [17, Section 2.3]). Miller and Sturmfels [17, Theorem 2.18] implies

that the map Ψ sends β(S/〈x0, x1, . . . , x�〉d) to a pure resolution with degree sequence

d< d+ 1 < · · ·< d+ �. In other words, the image of β(S/〈x0, x1, . . . , x�〉d) is a Betti table of

a linear resolution. Taking the inverse image under Ψ for our expression for the Hilbert

function of M′, we conclude that each generator of the cone Rn,m is a nonnegative ratio-

nal combination of the Hilbert functions of the cyclic modules appearing in the list (1).

We next describe the supporting hyperplanes to the cone Rn,m. As in Propo-

sition 3.2, the Binomial Theorem establishes both tk= (1− t)−n−1∑
i

(n+1
i

)
(−1)itk+i for

0 � k� m and

(1− t)−�tm+1 = (1− t)−n−1
∑

i

(
n− �+ 1

i

)
(−1)iti+m+1 for 1 � � � n+ 1.

Hence, the rational functions 1, t, . . . , tm, (1− t)−1tm+1, (1− t)−2tm+1, . . . , (1− t)−n−1tm+1

form a triangular basis for Vn+1,m. Let (c0, c1, . . . , cm, c−1, c−2, . . . , c−n−1) denote the coordi-

nates of h∈ Vn+1,m with respect to this ordered basis. Lemma 3.5 implies that the Hilbert

series of the S-module Mn,i := S/〈x0, x1, . . . , xn〉i for 1 � i � m+ 1 is

∑
j

hMn,i ( j)t j =
i−1∑
k=0

(
n+ k

k

)
tk=

i−1∑
k=0

(
n+ k

n

)
tk,

so the coordinates are ck=
(n+k

k

)
for 0 � k� i − 1 and ck= 0 for i � k� m or k< 0. Similarly,

the Hilbert series of M�,m+1 := S/〈x0, x1, . . . , xn+1−�〉m+1 for 1 � � � n+ 1 is

∑
j

hM�,m+1( j)t j = (1− t)1−�

m∑
k=0

(
n+ 1− �+ k

k

)
tk

=
(

(1− t)−�

m∑
k=0

(
n− �+ k

k

)
tk

)
−
(

n+ 1− �+m

m

)
(1− t)−�tm+1

=
∑

j

hM�+1,m+1( j)t j −
(

n+ 1− �+m

m

)
(1− t)−�tm+1,
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so the coordinates are ck=
(n+k

n

)
for 0 � k� m, c−k=

(n+1−k+m
m

)
for 1 � k� �, and c−k= 0 for

� � k� n+ 1. Since the coordinate vectors are all truncations of the coordinate vector of

hMn+1,m+1 ∈ Rn,m, the inequalities defining this cone are simply

ck(n+k
n

) � ck+1(n+k+1
n

) for 0 � k� m− 1,
cm(n+m
n

) � c−1(n+m
m

) ,
c−k(n+1−k+m
m

) � c−k−1(n−k+m
m

) for 1 � k� n, and c−n−1 = 0.

The equation c−n−1 = 0 implies that Rn,m ⊂ Vn,m.

To complete the proof, we explicitly relate the coordinates to the Hilbert func-

tion. For h∈ Vn+1,m, we have

∑
j

h( j)t j = c0 + c1t+ · · · + cmtm + c−1
tm+1

(1− t)
+ c−2

tm+1

(1− t)2
+ · · · + c−n−1

tm+1

(1− t)n+1
,

so h( j)= cj for 0 � j � m and the Generalized Binomial Theorem shows that

qh(s)=
n+1∑
k=1

c−k

(
k+ s−m− 2

k− 1

)
∈Q[s].

The Addition Formula for binomial coefficients yields ∇iqh(s)=
∑n+1

k=i+1 c−k
(k+s−m−2−i

k−1−i

)
from which we obtain ∇iqh(m)= c−i−1 for 0 � i � n. Using the Absorption Identity, the

inequalities defining the cone Rn,m ⊂ Vn,m become

(n+ j + 1)h( j) � ( j + 1)h( j + 1) for 0 � j � m− 1

h(m) � qh(m), and

(n+ 1− i)∇iqh(m) � (n+m+ 1− i)∇i+1qh(m) for 0 � i � n− 1

as required. �

Remark 4.2. The coefficients appearing the supporting hyperplanes of Rn,m have an

intrinsic interpretation in terms of the Hilbert function of the underlying ring. Specif-

ically, the Hilbert polynomial of S is qS(s)=
(n+s

n

)
and the Addition Formula yields

∇iqS(m)= (n+m−i
m

)
, so Rn,m is the intersection of the closed half-spaces given by the
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inequalities:

h( j)

hS( j)
� h( j + 1)

hS( j)
for 0 � j < m,

h(m)

hS(m)
� qh(m)

qS(m)
,

∇iqh(m)

∇iqS(m)
� ∇

i+1qh(m)

∇i+1qS(m)
for 0 � i < n, and ∇nqh(m)= 0.

This form for the inequalities may be more amenable to generalization. �

Remark 4.3. Corollary 3.8 and Theorem 1.3, together with Lemma 3.4, establish that

Rn,m ⊆ Qn,m. Moreover, the artinian cyclic modules S/〈x0, x1, . . . , xn〉i for 1 � i � m+ 1

generate extreme rays in both cones. However, the simplicial cone Rn,m is generally a

proper subcone of Qn,m. �

The techniques used in the proof of Theorem 1.3 lead to descriptions of other

cones closed related to Rn,m.

Remark 4.4. Restricting to modules of dimension at most d and regularity at most m

yields a subcone of Rn,m generated by the Hilbert functions of the cyclic modules:

S

〈x0, x1, . . . , xn〉 ,
S

〈x0, x1, . . . , xn〉2 , . . . ,
S

〈x0, x1, . . . , xn〉m ,

S

〈x0, x1, . . . , xn〉m+1
,

S

〈x0, x1, . . . , xn−1〉m+1
, . . . ,

S

〈x0, x1, . . . , xn−d〉m+1
.

For the dual description, we need to add the equalities

∇dqh(m)=∇d+1qh(m)= · · · = ∇nqh(m)= 0.

Similarly, one can describe the restriction to modules with projective dimension at most

� and regularity at most m by relating it to R�−1,m via the backward difference operator

∇n+1−�. �

The techniques also yield explicit bounds for the Betti numbers of modules with

a fixed Hilbert function and bounded regularity.

Proposition 4.5. If the S-module M is generated in degree 0, has no free summands, and

has Castelnuovo–Mumford regularity at most m, then the Betti numbers are bounded by

the inequalities

βi,i+ j(M) � 1

i + j

(
n

i − 1

)(
(n+ 1+ j)hM( j)− ( j + 1)hM( j + 1)

)
= 1

i + j

(
n

i − 1

)(
T [hM]

)
( j)
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for 0 � j < m, 1 � i � n+ 1, and

βi,i+m(M) � n+m+ 1

i +m

(
n

i − 1

)
hM(m)+

i∑
k=1

(−1)k

(
n+ 1

i − k

)
hM(m+ k)

for 1 � i � n+ 1. Moreover, these bounds are sharp for some positive multiple of the

Hilbert function hM. �

Proof. Hulett [14, Theorem 1] establishes that the module M′′, defined in Equation (5),

has the largest possible Betti numbers among all S′-modules with a given Hilbert func-

tion (up to scaling) and regularity at most m. The matrix with respect to the standard

basis of the linear map Ψ has nonnegative entries, so the Betti table Ψ −1(β(M′′)) is max-

imal among all S-modules that are generated in degree 0, have no free summands, have

regularity at most m, and have a given Hilbert function. We compute Ψ −1(β(M′′)) from

the expansion of hM as a nonnegative linear combination of the extreme rays. Ordering

the extreme rays as in the list (1), the coefficients α0, α1, . . . , αm, α−1, α−2, . . . , α−n in the

unique such expansion are

α j = hM( j)(n+ j
n

) − hM( j + 1)(n+ j+1
n

) for 0 � j < m, αm = hM(m)− qM(m)(n+m
n

) , and

α−i = ∇
i−1qM(m)(n+m+1−i

m

) − ∇iqM(m)(n+m−i
m

) for 1 � i � n.

Since each of the extreme rays corresponds to a cyclic S-module with a linear resolution

and well-known Betti numbers (see [6, Theorem 4.1.15]), the Absorption Identity gives

βi,i+ j(M) � α j · βi,i+ j

(
S

〈x0, x1, . . . , xn〉 j+1

)

=
(

hM( j)(n+ j
n

) − hM( j + 1)(n+ j+1
n

)
)
·
(

i

i + j

)(
n+ j + 1

n+ 1

)(
n+ 1

i

)

= ((n+ j + 1)hM( j)− ( j + 1)hM( j + 1))

(
1

i + j

)(
n

n− i

)

= 1

i + j

(
n

n− i

)
(T [hM])( j)
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for 0 � j < m, 1 � i � n+ 1. Since we have ∇nqM(m)= 0, the Absorption Identity and the

Addition Formula give

βi,i+m(M) � αm · βi,i+m

(
S

〈x0, x1, . . . , xn〉m+1

)
+

n∑
k=1

α−k · βi,i+m

(
S

〈x0, x1, . . . , xn−k〉m+1

)

=
(

hM(m)− qM(m)(n+m
n

)
)
·
(

i

i +m

)(
n+m+ 1

n+ 1

)(
n+ 1

i

)

+
n∑

k=1

(
∇k−1qM(m)(n+m+1−k

m

) − ∇kqM(m)(n+m−k
m

)
)
·
(

i

i +m

)(
n+ 1− k+m

n+ 1− k

)(
n+ 1− k

i

)

= (n+m+ 1)hM(m)

i +m

(
n

i − 1

)
− (n+m+ 1)qM(m)

i +m

(
n

i − 1

)

+
n∑

k=1

(n+ 1− k)∇k−1qM(m)

i +m

(
n− k

i − 1

)

−
n∑

k=1

(n+m+ 1− k)∇kqM(m)

i +m

(
n− k

i − 1

)

= n+m+ 1

i +m

(
n

i − 1

)
hM(m)+

n∑
k=0

∇kqM(m)

i +m

(
(n− k)

(
n− k− 1

i − 1

)

−(n+m+ 1− k)

(
n− k

i − 1

))

= n+m+ 1

i +m

(
n

i − 1

)
hM(m)−

n∑
k=0

∇kqM(m)

(
n− k

i − 1

)

for 1 � i � n+ 1. Combining the binomial identity
∑r

k=0

(r−k
�

)(k
i

)= ( r+1
�+i+1

)
with the higher-

order difference formula yields

n∑
k=0

∇kqM(m)

(
n− k

i − 1

)
=

n∑
k=0

k∑
�=0

(−1)�

(
k

�

)(
n− k

i − 1

)
qM(m− �)

=
n∑

�=0

(−1)�

(
n+ 1

�+ i

)
qM(m− �).
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Since ∇n+1qM(s)= 0 and qM( j)= hM( j) for all j > m, we obtain

n∑
k=0

∇kqM(m)

(
n− k

i − 1

)
=

n+1−i∑
�=−i

(−1)�

(
n+ 1

�+ i

)
qM(m− �)−

−1∑
�=−i

(−1)�

(
n+ 1

�+ i

)
qM(m− �)

=∇n+1qM(m+ i)−
i∑

�=1

(−1)�

(
n+ 1

i − �

)
qM(m+ �)

=−
i∑

�=1

(−1)�

(
n+ 1

i − �

)
hM(m+ �),

which establishes the second family of inequalities. Because the inequalities are

equalities for an appropriate direct sum of the modules appearing in the list (1),

we conclude that the bound is sharp for some positive multiple of the Hilbert

function hM. �

We end by illustrating the final proposition in an example.

Example 4.6. Let n= 3 and let M be an S-module generated in degree 0 and satisfying

hM( j)= 3 j + 1 for all j ∈N. If the Castelnuovo–Mumford regularity of M is bounded by

1 or 2, respectively, then Proposition 4.5 produces

0 1 2 3 4

0 1 . . . .

1 . 3 2 . .

0 1 2 3 4

0 1 . . . .

1 . 3 6 9
2

6
5

2 . 4 9
2

6
5 .

as the entrywise bounds on the Betti tables. �
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