Problem Set #2

- **1.** Solve the initial value problem where $\frac{dy}{dx} \frac{y}{x} = xe^x$ and y(1) = e 1.
- **2.** Find the value y_0 for which the solution of the initial value problem

$$y' - y = 1 + 3\sin(t)$$
 $y(0) = y_0$

remains finite as $t \to \infty$.

- **3.** Solve the differential equation $(1+t^2)\frac{dx}{dt} = t^2 1 4tx$.
- **4.** Consider a tank in which 1 g of chlorine is initially present in 100 m³ of a solution of water and chlorine. A chlorine solution concentrated at $0.03 \text{ g} \cdot \text{m}^{-3}$ flows into the tank at a rate of $1 \text{ m}^3 \cdot \text{min}^{-1}$, while the uniformly mixed solution exits the tank at $2 \text{ m}^3 \cdot \text{min}$. At what time is the maximum amount of chlorine present in the tank, and how much is present?
- 5. Newton's law of cooling states that the temperature of an object changes at a rate proportional to the difference between its temperature and that of its surroundings. A object at a temperature of 80°C is placed in a refrigerator maintained at 5°C. If the temperature of the object is 75°C at 20 min after it is placed in the refrigerator, determine the time (in hours) the object will reach 10°C.
- **6.** Determine the largest interval in which the following initial value problem is certain to have a unique twice differentiable solution. Do not attempt to find the solution.

$$(x-3)y'' + xy' + (\ln|x|)y = 0 y(1) = 0 y'(1) = 1$$

- 7. For each pair, compute the Wronskian and determine if the functions are linearly dependents.
 (a) {sin²(x) + cos²(x), 3}
 (b) {x² cos(ln(x)), x² sin(ln(x))}
- 8. Find the solution to the initial value problem where 2y'' 3y' + y = 0, y(0) = 2, and $y'(0) = \frac{1}{2}$. Determine the maximum value of the solution.
- 9. Solve the initial value problem

$$x'' - x' + \frac{1}{4}x = 0 \qquad x(0) = 2 \qquad x'(0) = A$$

Determine the critical value of A that separates solutions that always remain positive from those that eventually become negative.

10. Solve the initial value problem

$$u'' + 2u' + 6u = 0$$
 $u(0) = 2$ $u'(0) = B \ge 0$.

Find *B* so that u(1) = 0.

- 11. Verify that the functions 1, t, e^{-t} , and te^{-t} are solutions to $y^{(4)} + 2y''' + y'' = 0$ and determine their Wronskian.
- **12.** Solve $y^{(4)} 7y''' + 6y'' + 30y' 36y = 0$.