Problems 01 Due: Tuesday, 15 September 2020

1. Let *X* and *Y* be two sets. The identity map $\operatorname{id}_X : X \to X$ is defined by $x \mapsto x$ and the map $\pi_1 : X \times Y \to X$ is defined by $(x, y) \mapsto x$. Given two maps $\varphi : X \to X$ and $\psi : X \to X$, the map $\varphi \parallel \psi : X \to X \times X$ is defined by $x \mapsto (\varphi(x), \psi(x))$ and the map $\varphi \times \psi : X \times X \to X \times X$ is defined by $(x, y) \mapsto (\varphi(x), \psi(y))$. For the one-element set $\{\emptyset\}$, there exists a unique map $\eta : X \to \{\emptyset\}$ defined by $\eta(x) = \emptyset$.

Suppose that *X* is nonempty and consider the maps $\beta : X \times X \to X$, $\varepsilon : \{\emptyset\} \to X$, and $\iota : X \to X$ satisfying the following three conditions:

- (i) $\beta \circ (\beta \times id_X) = \beta \circ (id_X \times \beta)$
- (ii) $\beta \circ (\mathrm{id}_X \times \varepsilon) = \mathrm{id}_X \circ \pi_1$
- (iii) $\beta \circ (\operatorname{id}_X || \iota) = \varepsilon \circ \eta.$

Prove that the quadruple $(X, \beta, \varepsilon, \iota)$ defines a group.

2. For all nonnegative integers *n*, the *sign function* sgn : $\mathfrak{S}_n \to \mu_2 = \{-1, 1\}$ is defined by $sgn(\sigma) := (-1)^{n-c}$ where the permutation σ is the product of *c* disjoint cycles.

(i) For any permutation $\sigma \in \mathfrak{S}_n$ and any transposition $\varpi \in \mathfrak{S}_n$, prove that

$$\operatorname{sgn}(\varpi\sigma) = -\operatorname{sgn}(\sigma).$$

- (ii) For any two permutations $\sigma, \tau \in \mathfrak{S}_n$, prove that $\operatorname{sgn}(\sigma \tau) = \operatorname{sgn}(\sigma) \operatorname{sgn}(\tau)$.
- (iii) When σ is the product of *m* transpositions, prove that $sgn(\sigma) = (-1)^m$.
- **3.** The *quaternion group* is the subgroup of $SL(2, \mathbb{C})$ generated by the eight matrices:

$e := \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix},$	$i := \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix},$	$j := \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix},$	$k := \begin{bmatrix} 0 & \mathrm{i} \\ \mathrm{i} & 0 \end{bmatrix},$
$\bar{e} := \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix},$	$\bar{\iota} := \begin{bmatrix} -i & 0 \\ 0 & i \end{bmatrix},$	$\bar{j} := \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix},$	$\bar{k} := \begin{bmatrix} 0 & -i \\ -i & 0 \end{bmatrix}.$

- (i) Determine the order of the quaternion group.
- (ii) Find a minimal set of generators for the quaternion group.
- (iii) Show that the quaternion group is not isomorphic to the dihedral group D_4 of order 8.

