Problems 01
 Due: Tuesday, 15 September 2020

1. Let X and Y be two sets. The identity map $\operatorname{id}_{X}: X \rightarrow X$ is defined by $x \mapsto x$ and the map $\pi_{1}: X \times Y \rightarrow X$ is defined by $(x, y) \mapsto x$. Given two maps $\varphi: X \rightarrow X$ and $\psi: X \rightarrow X$, the map $\varphi \| \psi: X \rightarrow X \times X$ is defined by $x \mapsto(\varphi(x), \psi(x))$ and the map $\varphi \times \psi: X \times X \rightarrow X \times X$ is defined by $(x, y) \mapsto(\varphi(x), \psi(y))$. For the one-element set $\{\varnothing\}$, there exists a unique map $\eta: X \rightarrow\{\varnothing\}$ defined by $\eta(x)=\varnothing$.
Suppose that X is nonempty and consider the maps $\beta: X \times X \rightarrow X, \varepsilon:\{\varnothing\} \rightarrow X$, and $\iota: X \rightarrow X$ satisfying the following three conditions:
(i) $\beta \circ\left(\beta \times \mathrm{id}_{X}\right)=\beta \circ\left(\mathrm{id}_{X} \times \beta\right)$
(ii) $\beta \circ\left(\mathrm{id}_{X} \times \varepsilon\right)=\mathrm{id}_{X} \circ \pi_{1}$
(iii) $\beta \circ\left(\mathrm{id}_{X} \| \iota\right)=\varepsilon \circ \eta$.

Prove that the quadruple ($X, \beta, \varepsilon, \iota$) defines a group.
2. For all nonnegative integers n, the sign function $\operatorname{sgn}: \mathbb{S}_{n} \rightarrow \mu_{2}=\{-1,1\}$ is defined by $\operatorname{sgn}(\sigma):=(-1)^{n-c}$ where the permutation σ is the product of c disjoint cycles.
(i) For any permutation $\sigma \in \mathbb{S}_{n}$ and any transposition $\varpi \in \mathbb{S}_{n}$, prove that

$$
\operatorname{sgn}(\varpi \sigma)=-\operatorname{sgn}(\sigma) .
$$

(ii) For any two permutations $\sigma, \tau \in \Im_{n}$, prove that $\operatorname{sgn}(\sigma \tau)=\operatorname{sgn}(\sigma) \operatorname{sgn}(\tau)$.
(iii) When σ is the product of m transpositions, prove that $\operatorname{sgn}(\sigma)=(-1)^{m}$.
3. The quaternion group is the subgroup of $\operatorname{SL}(2, \mathbb{C})$ generated by the eight matrices:

$$
\begin{array}{llll}
e:=\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right], & i:=\left[\begin{array}{cc}
\mathrm{i} & 0 \\
0 & -\mathrm{i}
\end{array}\right], & j:=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right], & k:=\left[\begin{array}{cc}
0 & \mathrm{i} \\
\mathrm{i} & 0
\end{array}\right], \\
\bar{e}:=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right], & \bar{\imath}:=\left[\begin{array}{cc}
-\mathrm{i} & 0 \\
0 & \mathrm{i}
\end{array}\right], & \bar{j}:=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right], & \bar{k}:=\left[\begin{array}{cc}
0 & -\mathrm{i} \\
-\mathrm{i} & 0
\end{array}\right] .
\end{array}
$$

(i) Determine the order of the quaternion group.
(ii) Find a minimal set of generators for the quaternion group.
(iii) Show that the quaternion group is not isomorphic to the dihedral group D_{4} of order 8 .

