1.12  Groups of Small Order

1.12.1 Lemma. Letp be a prime number. Any group with k subgroups of
order p has k(p — 1) elements of order p.

Proof. In a group of order p, all non-identity elements have order
p- The Lagrange Theorem implies that distinct subgroups of order
p must intersect trivially. Each subgroup of order p has a distinct
set of p — 1 elements of order p, so the total number of elements of
order pis k(p — 1). O

1.12.2 Definition. For any n € N, the alternating group A, is the
group of even permutations of the finite set [n] := {1, 2, ..., n}.

1.12.3 Proposition. Groups of order 12 have five isomorphism classes:
« the product of cyclic groups Z/(3) X Z/{4) = Z/(12),

« the product of cyclic groups Z/{2) X Z/(2) x Z/(3),

« the alternating group A,,

« the dihedral group Dy,

« the group generated by two elements f, g with relations f* =1,g3 =1

and fg = g*f.

Proof. Let G be a group of order 12 = 22 - 3. Consider a Sylow
2-subgroup H and a Sylow 3-subgroup K. Since |H| = 4 and |K| = 3,
Example 1.6.12 establishes that H =~ Z/(4) or H = Z/(2) x Z/{2), and
K = 7Z/(3). The Third Sylow Theorem shows that the number of
Sylow 2-subgroups is either 1 or 3, and that the number of Sylow
3-subgroups is either 1 or 4.

We first claim that at least one of H or K is normal. Suppose
that K is not normal. Hence, the subgroup K has four conjugate
subgroups K; := K, K,, K3, K,. Lemma 1.12.1 implies that there
are 4 - 2 = 8 elements of order 3. We deduce that H consists of
remaining 12 — 8 = 4 elements. This shows that there is only one
Sylow 2-subgroup, so the subgroup H is normal.

Since H N K = {e}, each element in HK has a unique expression
as a product hk where h € H and k € K. As |G| = 12, it follows
that G = HK. If H is normal, then the group K acts on H by conju-
gation. We claim that this action, together with the structure of H
and K, determine the structure of G. Similarly, when K is normal,
the group H acts on K and this action determines G.

Case 1: Suppose that both subgroups H and K are normal. It follows

that G2 HXx K so G = Z/(3)yxZ/{4)or G = Z/2y X Z/{(2) X Z[{3).
Case 2: Suppose that the subgroup H is normal but the subgroup K

isnot. Conjugation action of the group G on theset{K;, K, ..., K;}

determines a group homomorphism ¢ : G - &,. We claim that

the map ¢ defines an isomorphism from G to the alternating
group A, C ©,.
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Since A, is the kernel of the group
homomorphism sgn: &, —» u,,itisa
normal subgroup of €,,.

When H is normal and K is not, the
subgroup H is the Klein 4-group, as it
is the Sylow 2-subgroup of A,.
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The stabilizer of the subgroup K; under the conjugation ac-
tion is the normalizer N(K;) which contains K;. Example 1.9.13
shows that |[N(K;)| = 3, so N(K;) = K;. Since the only element
common to all K; is the identity, only the identity stabilizes all of
these subgroups. Thus, the map ¢ is injective and the group G is
isomorphic to its image in ©,.

Since G has four subgroups of order 3, it contains 8 elements
of order 3 and these elements certainly generate the group. If
g € Ghasorder 3, then ¢(g) is a permutation of order 3in €,. The
permutations of order 3 are even. Therefore, we have Im(¢) C A,.
Since |G| = |A4|, the two groups are equal.

Case 3: Suppose that the subgroup K is normal, but the subgroup
H is not. The subgroup H acts on subgroup K by conjugation
and conjugation by an element of H is an automorphism of K.
Let g € G be a generator for K, so we have g> = e. There are
precisely two automorphisms of subgroup K: the identity and
the automorphism that interchanges g and g2.

Suppose that the subgroup H is cyclic. Let f € G be a gener-
ator for H, so we have f* = e. Since G is not abelian, fg # gf
and so conjugation by f is not the trivial automorphism of K. It
follows that fgf~! = g2. One verifies that these relations define
a group of order 12.

The last possibility is that H is isomorphic to the Klein 4-group.
Since there are only two automorphisms of the group K, there is
anonidentity element f € H that acts trivially: fgf~! = g. Since
G is not abelian, there is also an element 1 € H which operates
nontrivially: hgh~! = g2. The elements of H are {1, f, h, fh} and
the relations f2 = h? = eand fh = hf hold. The element fg has
order 6 and h(fg)h™! = fg? = g>f = (fg)~'. Finally, the three
relations (fg)® = e, h? = e, and h(fg)h™' = (fg)~! define the
dihedral group Dy. O

1.12.4 Remark. It is possible to completely classify finite groups of

There are 49 487365 422 of order 1024. small order up to isomorphism. For example, the SmallGrp package
in the GAP software system gives access to the 423164 062 groups
of order at most 2000 (except groups of order 1024).

Table 1.1: Number of groups of given
order

+0 +1 +2 43 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15 +16 +17 +18 +19

o+ 0 1.1 1 2 1 2 1 5 2 2 1 5 1 2 1 14 1 5 1
20+ 5 2 2 1 1 2 2 5 4 1 4 1 51 1 2 1 14 1 2 2
40+|14 1 6 1 4 2 2 1 52 2 5 1 5 1 15 2 13 2 2 1
60+ 13 1 2 427 1 4 1 5 1 4 1 50 1 2 3 4 1 6 1
80+({52 1 2 1 15 1 2 112 1 10 1 4 2 2 1 231 1 5 2



1.13 Simple Groups

A group that contains a proper normal subgroup can be broken into
smaller groups. From this perspective, the basic building blocks of
all finite groups are those groups without a proper normal subgroup

1.13.1 Definition. A group is simple when it is nontrivial and its only
normal subgroups are the trivial subgroup and the whole group.

1.13.2 Proposition. A nontrivial group G is simple if and only if every
nontrivial group homomorphism from G is injective.

Proof.

(=) Suppose that G is a simple group. Let ¢ : G — H is a nontrivial
group homomorphism. There exists g € G such that ¢(g) # ey,
so the kernel of ¢ is a proper subgroup of G. Since G is simple,
the kernel of ¢ is trivial which means that ¢ is injective.

(<) Suppose that all nontrivial group homomorphisms from G are
injective. Given a proper normal subgroup K of G, the canoni-
cal group homomorphism 77 : G — G/K has kernel K. Since
is injective, the kernel of 77 must be trivial, so G is simple. [

1.13.3 Proposition. An abelian group is simple if and only if its order is
a prime number.

Proof.

(=) Suppose that p is prime number and G is a group of order p.
By the Lagrange Theorem, any subgroup has order dividing p.
Hence, the only subgroups are {e;} and G.

(<) Suppose that the abelian group G is simple. Every subgroup of
G is normal, because G is abelian. Choose e # g € G. Since
G is simple, it follows that G = (g) as otherwise (g) is a proper
subgroup. Were g to have infinite order, all powers of g would
be distinct and (g2) would be a proper subgroup of G which con-
tradicts the simplicity hypothesis. Hence, g has finite order m.
Were m to have a nontrivial factorization m = k¢, the subgroup
(gk > would be proper which again contradicts the simplicity hy-
pothesis. We conclude that G has prime order. O

1.13.4 Theorem. Every simple group of order 60 is isomorphic to As.

Proof. Let G be a simple group of order 60 = 22-3-5. First, suppose
that G has asubgroup H such that [G: H] = 5. Left multiplication of
the group G on the coset space G/H gives a group homomorphism
¢: G - ©g,g = ©5. The kernel of the map ¢ is anormal subgroup of
G. Since G is simple, this kernel is either {e} or G. Given g € Ker(¢p),
we have gH = H or g € H, so we deduce that Ker(¢) = {e}. Thus,
the map ¢ embeds G into &;
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The classification of finite simple
groups proves that every finite simple
group is either cyclic, alternating,
belongs to a infinite class called the
groups of Lie type (essentially matrix
groups over finite fields), or else it

is one of twenty-six sporadic groups.
The smallest sporadic group has order
24.32.4.11 = 7920 and the largest,
known as the Monster group, has
order 246.320.59.76.112.132.17.19-
23-29-31-41-47-59-71 ~8-10%.
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Since the number of Sylow
2-subgroups in As is 5, we learn a
posteriori that ng = 5.

Next, suppose that ¢(G) ¢ As. It follows that the image ¢(G)
contains an odd permutation and the map sgn |y, : $(G) = K, is
surjective. The kernel of this restriction is a normal subgroup of
@(G) having index 2. However, the group G = ¢(G) is simple, so
such a subgroup cannot exist. Thus, all elements in the image ¢(G)
are even permutations and ¢(G) C As. Since |G| = 60 = |A;|, we
conclude that ¢(G) = A; and G = As,.

We still must show that the subgroup H exists. To that end, we
claim that each proper subgroup of G has index at least 5. Suppose
that H' is a subgroup of G such that r := [G : H']. As above, left
multiplication of the group G on the coset space G/H give a injective
group homomorphism ¢’ : G - ©g,qr = ©,. Since the Lagrange
Theorem implies that |G| = 60 divides r! = |&,|, we see that r > 5.

It remains to show that G has a subgroup of index 5. For any
prime number p, let n, denote the number of Sylow p-subgroups in
G. The Lagrange Theorem and Third Sylow Theorem establish that
n, €{1,3,5,15}, n; € {1,4,10}, and n; € {1, 6}. Since G is simple, the
nontrivial Sylow subgroups are not normal, so n,, n;, and n; are all
larger than 1. Example 1.9.13 demonstrates that each n, is the index
of a subgroup of G, so the previous paragraph implies that n,, ns,
and ns are all larger than or equal to 5. Thus, we need to consider
the cases n, € {5,15}, n; € {10}, and n; € {6}.

« Suppose that n; = 5. Example 1.9.13 already proves that there is a
subgroup of G with index 5.

« Suppose that n; = 15. Lemma 1.12.1 shows that the group G has
n; -2 = 20 elements of order 3 and n; -4 = 24 elements of order 5.
This leaves at most 60— (20+24) = 16 elements that can belong to
the Sylow 2-subgroups. The 15 Sylow 2-subgroups are squeezed
into this 16-element subset of G. Each Sylow 2-subgroup of G
has order 4 and thus is abelian. The Sylow 2-subgroups cannot
all have trivial pairwise intersections (otherwise they would con-
tain 3 - 15 = 45 nonidentity elements). Choose two distinct Sylow
2-subgroups P and Q which have a nontrivial intersection. Set
I:= Pn Q. Both P and Q are abelian, so I is a normal subgroup
in each. It follows that the normalizer of I in G contain both P
and Q, so it has size properly divisible by 4. The normalizer of I is
not all of G because the group G has no proper nontrivial normal
subgroups. Since proper subgroups of G have order 1, 2, 3, 4, 6,
or 12, the normalizer of I has order 12andwe have [G:I] =5. O



