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8.2 Rational Generating Functions

The numerical sequences whose generating series are rational
functions have an appealing characterization.

Theorem 8.2.1. Fix a positive integer d. Given complex numbers
€1, €y, ..., Cq SUCh thatcy # 0, consider the polynomial

q(x) =14 ¢, X+ x% + - + cq x4
=1 -4 x)MA =2, x)"2 - (1 — A x)™

where the nonzero complex numbers AT, A5, ..., A;;* are the distinct
roots and m; denotes the multiplicity of/lj‘1 foralll < j < k. For any
sequence (ay,Q;, Q,, ... ) of complex numbers, the following conditions
are equivalent:

(R1) The generating series is a rational function such that

_p(x)
,;N“” " q

where p(x) is a polynomial in C[x] of degree less thand.
(R2) For any nonnegative integer n, we have the recurrence

Qpid +C1Apyd—1 +C20pyg2+ - +C4a, =0.

(R3) Foralll £ i < k, there exists polynomials g;(x) of degree less
than m; such that, for all nonnegative integers n, we have the
closed-formulaa, = Zle gi(n) AL

Algebraic proof. For alll < ¢ < 3, consider the C-vector space V,

of all sequences satisfying condition (R¢); each set is clearly closed

under taking linear combinations. Moreover, each C-vector space

V, has dimension d:

+ in (R1), the d coefficients of p(x) € C[x] are arbitrary;

« in (R2), the initial values a,, a,, ..., @4_; are arbitrary;

« in (R3), the m; coefficients of the polynomial g; € C[x] are
arbitrary and we have m; + m, + --- + my, = d.

To prove V; = V}, it suffices to show that I C V. Hence, it

is enough to consider two cases. Suppose that the sequence

(ag, ay,ay,..) liesin V.

V; C V,: Extracting the coefficient of x"*? from both sides of the
equation

q(x) [Z ap X”] = p(x)
neN
produces the recurrence in (R2), so V; C V.
V, € V5. Consider the partial fraction decomposition

Z(mi +n— 1>/len]
! .
nen i=1 neny M- 1

k
Z a, x" = Z gl/(‘tx;)m Z gl()C)[
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100 Foundations of Enumerative Combinatorics

Writing g;(X) := gi0 + 81X + -+ + &i,m,—1X™ !, We obtain

k [mj—-1
c mi+n—1\,_j
S o= 5[5 (i)
neN neN Li=1 \ j=1 L
so we deduce that I} C V5. O

Eulerian numbers arise as the coefficients in the numerator for
a simple rational generating series.

Problem 8.2.2 (Carlitz identity). For any nonnegative integer m,
show that N

Z nmxh = Zkez<k>x

= (1 — x)m+1
Inductive solution. Since ),
to show that

ey BT XM = (x%)m((l—x)‘l), it suffices

(xi)m( 1 ) _ Dk ()X
dx) \1—-x (1—x)m+r ~

Whenm = 0,wehavel = ¥, _, (})x* because (g) = 1and
(g) = 0 for all nonzero integers n. Hence, the base case holds.
Assume that the identity holds for some nonnegative integer m.
The induction hypothesis and the addition formula [3.3.4] for
Eulerian numbers give

(a) " ()
()T (L)
_ ( i) [Zkez<k>xk+1]

X dx (1 = x)m+1

-

R PR e DR

= W ::;Z(k + 1)<7§>xk+1 + g:z(m - k)<r£>xk+2]

= W r}é((k+ 1)<7§> +(m—-k+ 1)<kn_11>) xk“]

= Zkez<ml:rl>xk+l .
1 — x)m+2

Using a recurrence relation to create a sequence of complex
numbers for all integer subscripts has a useful interpretation in
terms of rational functions.

Corollary 8.2.3. Fix a positive integer d and consider complex num-
berscy, Cy, ..., Cq Such thatcy # 0. Given the doubly-infinite sequence
(wra_y,a_q,a9,0,,Q,,..) of complex numbers satisfying

Apid + C1Apyd-1 +C20pyg2+ - +C4a, =0
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for all integers n, the generating series

fx):= ) a,x" and gx) =Y a_,_, x"

neN neN
are both rational functions. Moreover, we have g(x) = —f(l/x) as
rational functions.

Sketch of proof. Theorem 8.2.1 establishes that f(x) = p(x)/q(x)
where q(x) = 1+ ¢; x + ¢; X? + --- + ¢4 x4. The hypothesis on the
doubly-infinity sequence implies that q(x) (}},., @, X") = 0. Since
multiplication by the polynomial g(x) is linear, we obtain

q(x) [Z Ay X‘"‘l] = —q(x) [Z ay X"] = —p(x).

neN neN

Hence, the substitution x — 1 / X gives

1/x
DA, XM = _p(_/) = —f(1/x). O
neN q(l/X)
Corollary 8.2.3 is a statement about the equality of rational
functions. For example, when a; = 1 for all integers j, we have

fxX)=3,,X"=Q0Q-x)""and g(x) := 3, X" = x(1-x)7!, s0

—f(1/x) = l—ll/x =TT = Tox = 8w
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Hypergeometric Functions

9.0 Hypergeometric Series

The ratio of consecutive terms in a geometric series ZkeN ay is
constant: for any nonnegative integer k, we have a,,,/a; = r for
some fixed complex number r. It follows that, for all nonnegative
integers k, we have a;, = a, rk. Generalizing this observation, we
introduce a new class of series.

Definition 9.0.1. In a hypergeometric series };, _, ti, the ratio of
consecutive terms is a fixed rational function in the summation
index: for any nonnegative integer k, we have

L _ p(k)
te  qk)’

where p(x) and q(x) are polynomials in C[x].
Problem 9.0.2. Verify that these series are hypergeometric:
i !
S xn, S ki, 2j+ 71
neN keN jeN (J - 3)'

Solution. Since

n+1 |
X (k+1) _

k41, Qj+9r (-3 _ ©2j+92j+9)

G=-2 Qj+7) j—-2

we see that all three series are hypergeometric. O

xn ’ k!

b

When we normalize the series by assuming that t, = 1, there
is an accepted notation for a hypergeometric function. In the
ratio of consecutive terms, factor the numerator and denominator
completely as

teer _ P(k) _ (k+a)k+ay)--(k+a,) x
te ~ qk)  (k+b)k+by)--(k+b,) k+1

where a,,a,, ..., ay,;, by, by, ..., by, x € C. The hypergeometric series
with the terms ¢t is denoted by

al a2 e am al az ces am
F ; =_F ; = .
(b1 b, - bn’x> m n<b1 b, .- b, x) 2t

keN

The distinguished factor (k + 1) in the denominator is a historical
tradition. If there were no factor of (k + 1) in the denominator of

your ratio of consecutive terms, then put it in and compensate by
putting extra factor in the numerator.
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Problem 9.0.3. Describe exp(x) and Y}, _, 2¢/(k!)? in terms of
standard notation for a hypergeometric series.

Proof. Since

xk+l okl X
= d — =
exp(x) = ,;N Kl an k+DIxk k+1
we see that exp(x) = F(Z;x) = F(};x). Similarly, we have
2k+1 (k|)2 _ 2

((k+ 1)) 28— (k+1)2°

so it follows that Z
keN

2k _ )
W_F(l,Z)_F(1 1,2). O
Remark 9.0.4. We do not change a hypergeometric function if

we cancel a parameter that occurs in both the numerator and
denominator or conversely if we insert two identical parameters.

Problem 9.0.5. Demonstrate that

ri1 _\_ 1 —-r 1 ) r
Proof. The generalized binomial theorem states that
_ ¥ r
(1-x) ’:;((k))xk and (1+x)’:2(k)xk,
eN keN

so the ratio of consecutive terms are

PRl xktl r(r + D(r +2) - (r + k) x**! _ (k+1)x
(k+1)! pkxk k+D)@ME+DFr+2)--(r+k-1)xk  (k+1)
PRttt r(r = 1)(r = 2) - (r — k) xk+1 _r=kx (k+(=n)(=x)
(k+D! rkxk ~ (k+D(Nr-1DFr-2)--(r—k+1xk  (k+1) (k+1)
Since the initial terms are 1, we deduce the given formula. O

Problem 9.0.6. Is the Bessel function

3 ( l)k( )2k+p
Tp(x) = kze:N k! (k + p)!

a hypergeometric function?

Proof. The ratio of consecutive terms is
(_1)k+1(%)2k+2+p ki (k+p) _;
(k+ D! (k+p+DI(=1)k(Z)+  (k+1)(k+p+1)

and initial term is p,( ), s0J,(x) = —( ) F(p+1,——2 O

Proposition 9.0.7. The general hypergeometric series is

F<a1 a, - Q. ): akak ... ak, xk
by by - by e BEBE .. bE K
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Proof Since ! = (a)(a+1)---(a+k—1)(a +k) = a“(a + k), the
ratio of consecutive terms is

a’f?ak_‘”1 o gkHl xkt bk bk ... bgﬂ _(a;+Kk)a,+ k) (an+k) x
b+t phrt L pket (K + D!\ gk g .. gk XK (b + )b+ k) (by+ ) K+

and the initial term is 1. Therefore, the right side is the specified
hypergeometric function. O

Remark 9.0.8. If any of the upper parameters a;,a,, ..., a,, is a
nonpositive integer, then the general hypergeometric series is a
polynomial, otherwise is a power series.

Remark 9.0.9. There are some surprisingly simple identities for
differentiating hypergeometric functions:

kqk ... gk yk
(v v B[4 & ) = 5, Geraatad - af
dx b, b, --- b, o= bllc blzc ... bk k!

a(a;+Dkak - ak xk (a1+1 a, - am.x)
1 9

=T by by - by
d a, a, -+ ay a; a, - Qy
—~— +b,—-1|F ; =(b;—-1)F ;
(xdx +h ) <b1 b, . b X) =T DF L p T
Exercises

Problem 9.0.10. A Gaussian hypergeometric series is given by

F(@ b..\._ ak bk xk
(%7x) x K
ken C :

(i) Show that the Gaussian hypergeometric function is a solu-
tion to the differential equation

2
x(l—x)%+(c—(a+b+l)x)g—§:—aby:O.

(ii) Establish the reflection identity
1 F(ab- —x)_Fac—b‘x
(1-x}@ \€¢’'1-x/" "\ ¢ )

9.1 Indefinite Sums

The indefinite summation problem asks when s, := ZZ:) t, has

a closed form that does not involve the summation sign. For any
nonnegative integer n, we regard the indefinite sum s, as the
discrete analogue of an antiderivative. Instead of its derivative
being the integrand, its difference is the summand: s,,; — s, = t,,.
This equation implies that

L+ _ Sn+2 — Sn41 _ Sn+2/sn+1 -1

tn Sp+1 ~ Sn 1- Sn/Sn+1
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It follows that, when s,, is hypergeometric, ¢, is also hypergeomet-
ric. In 1970’s, Bill Gosper discovered a procedure for finding sums
of hypergeometric terms that are hypergeometric.

Algorithm 9.1.1 (Gosper).

input: a hypergeometric term £,

output: a hypergeometric term s,, such that s, — s, = t,
if one exists, otherwise null.

Write t’t'zl = gé:)) hg{é:)l) where f, g, h € C[x] and ged(f(n), g(n + j)) = 1 for all nonnegative integers j.

If there exists a nonzero polynomial p(n) such that f(n) p(n + 1) — g(n — 1) p(n) = h(n)
then return % t,

else return null.

Remark 9.1.2. The Gosper algorithm determines the indefinite
sum up to a constant: §,, — ZZ:) t, € C.

Before analyzing the correctness of this algorithm, we first
illustrate it with a few examples.

n-1
Problem 9.1.3. Can ), k(k!) be expressed in closed form?
k=0

Solution. Following the Gosper algorithm, we have

thy1 _ M+ Dn+1)  (n+1)(n+1) _ n+1> n+1)_ f(m)h(n+1)
t (@) n _< 1 ( n ) gn) hn)

and ged(n + 1,1) = 1. The constant polynomial p(n) = 1 satisfies

f(mp(n+1)—pn) =(+1)Q) = 1) =n=h(n),
so we conclude that s, := (nn!)/n = n! satisfies

Spri—Sp=m+ D) —nl=(m+1-1)(n!) =(n)n).
n—1
Thus, we have Y k(k!) = n! — 1 for all nonnegative integers n. [J
k=0
Problem 9.1.4. Can the sum

n-1
D (k? + 3k + 1)(k!)
k=0

be expressed in closed form?

Solution. Following the Gosper algorithm, we have

ther  (M+ 12 +3(n+ 1)+ 1)(n+1)! _<n+1 ((n+1)2+3(n+1)+1 _ fm) h(n+1)
t, (n2 +3n+ 1)(n) U1 ) n2+3n+1 )_g(n) h(n)

and ged(n +1,1) = 1. If p(n) = an + B and

fMp(n+1)—pn)=m+1(a(n+1)+6)—(an+p)

zan*+(a+pBn+a=n>+3n+1=h(n),
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we see that p(n) = n + 2. Hence, the expression

s .= 8 =1 pn)
. h(n)
_ n+2
T n2+3n+1

tn
(n? +3n+1)n!) =(xn+2)n!
satisfies

Spe1 — Sp = (M +3)((n + 1)) — (n + 2)(n!)
=((n+3)(n+1)—(n+2))(n)
= +3n+1)(n!)=t,

and ZZ;;(kz + 3k + 1)(k!) = (n + 2)(n!) — 2 for all nonnegative
integers n. O

To establish the correctness of the Gosper algorithm, we first
collect a few preliminary results.

Lemma 9.1.5. The maximality of the degree of the polynomial h im-
plies that ged(f(n), g(n + j)) = 1 for all nonnegative integers j.

Proof by contradiction. For some positive integer j, suppose that
q(n) = ged(f(n),g(n + j)) # 1. It follows that q(n) divides f(n)
and q(n — j) divides g(n). Hence, by setting f(n) = q(n) f*(n) and
g(n) = q(n — j) g*(n), we obtain

f) _ qn) qin—-1) qn—-j+1) f*(n)
g(n) qn-1)q(n-2) qn—-j) g’

and moving the product q(n)q(n — 1) ---q(n — j + 1) into h(n)

contradicts the maximality of the degree. O
Lemma 9.1.6. The outputs,, = g(';lzrgt" p(n) is hypergeometric if and

only if p(n) is a rational function.

Proof.
=: Suppose thats, = % p(n) is hypergeometric. It follows
that
h(n)s
(n) = ——=—
P g(n - 1) Ly
h(n)s, h(n)

T8 =D (Spi—50)  gn—D(1—2x)

so p(n) is a rational function.
«: Suppose that p(n) is a rational function. The sequence s, is
hypergeometric because

Spy1 _ 8Nty p(n+1) h(n) _ gm) h(n) p(n+1)ty,
S, h(n+1) gn—1t,p(n) gln-1h(n+1) ph) t,

and ¢, is also hypergeometric. O
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Lemma 9.1.7. If the rational function p(n) satisfies

f(m)p(n+1) —g(n —1)p(n) = h(n),

then the output s,, = %p(n) satisfies Sy 41 — Sy = ty.
Proof. Since 2L = %%, we have
¢ g —8MWtpin+l) gn-1t,p(n)
mil o on h(n +1) h(n)
— (f(n) p(n+1) gn-— 1)P(”))
" h(n) h(n)
tn

h(n)

It remains to show that p(n) must be a polynomial.

(f(m)p(n+1)—gn—-1)p(n)) =t,.
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