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7.3 Partition Identities from Series

Generating series also provide new insights into identities involv-
ing Stirling subset numbers and integer partitions. For complete-
ness, we start by reproving Theorem 3.0.4.

Proposition 7.3.1 (Stirling series). For any nonnegative integer k, we

have
ML

neN

xk
1—001-2%)-(1-kx) _

Inductive series proof. For any nonnegative integer k, set

Sk(x):= D] {Z}x”.

neN

When k = 0, we have So(x) = 1because {J} = 1and {"{'} = 0 for
all nonnegative integers n. The addition formula [3.0.3] for Stirling
subset numbers gives

Si1(0) = Z{kil}xn :%[{Z}J’("“){kil}]xn

[ gl )

= xSi(x) + (k + 1)x Sp1(x)
We deduce that (1 — (k + 1)x)Sk,1(x) = xSi(x). The induction
hypothesis states that S;(x) = H?ﬂ ﬁ,
Sr1(x) = Hf: l—xjx' =
Problem 7.3.2. For all nonnegative integers n and k,

{ZI}}: i{,{}(kﬂ)n-ﬁ

j=0

so we conclude that

Series solution. The Stirling series is

k

k
— il on_ X = X
Sic(x) = Z{k}x _lelll—jx (-0 -2x)(1—kx)’

neN

Since {k21} = 0 for all nonnegative integers Kk, it follows that

AR AN

neN

xk 1
- ((1 (1 —2x) (1= kx))(l —(k+ 1)x>
RISHRTNE
=,§N[j§){’]<}(k+l)n_j] Xn.

Extracting the coefficient of x" from both sides of the equation
establishes the identity. O
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Problem 7.3.3. For all nonnegative integers n and k, demonstrate
that X
n .
k!{ } _ Z(—l)k‘l< .)j".
k jeN J
Series solution. Consider the partial fraction expansion

1 &
(1-x)1=2x)---(1—-kx) _J.zll—jx'

To solve for a, a5, ..., &y, multiply both sides of this equation by
1 —ix forsomel < i< kandsetx =i"!toobtain
_ 1
- 1 2 i—1 i+1 k
C-P-D--D-F)-0-5
ik—l (_1)k—i ik—l

T E-DE-2) - MDY (k=D G- Dik—Dl

Extracting the coefficient of x" from the generating series gives

a;
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n n xk _ n— 1
{k} =[x ][(1 — (1 —2x) - (1— kx)] =[x k][(1 - x)(1 =2x)-- (1 —kx)

— [yh—k : o{j — : n—k 1 — ‘ in—k
= [x"7¥] ;lm —j;aj[x ] 1—jx —jz_:_lajj

k k-1
— N (_1)k-J J ik _ 1 _1yk=i (K in
= X G T m e O ()

For integer partitions with k parts, there is a very similar expres-
sion for the generating series. As a consequence, the generating
series for all integer partitions is expressed as an infinite product.

Proposition 7.3.4 (Integer partition series). For all nonnegative
integers k, we have

k

dopmyxn=1] - _xxj and ) p(n)x" = Hﬁ

neN Jj=1 neN jeN

Inductive proof of first identity. For all nonnegative integer k, set

Gi(x):= ), pr(n) x".
neN
When k = 0, we see that G,(x) = 1 because we have py(0) = 0
and po(n + 1) = 0 for all nonnegative integers n. The addition
formula [4.0.3] for integer partitions gives

Grs1(x) = Z Pr+1(n) x" = Z (pk(n -1+ pra(n—k-— 1)) x"

neN neN
= X Gi(x) + X**1 Gypy (%),

and we deduce that (1 — x*¥*1) G;,1(x) = x Gi(x). The induction
hypothesis states that G, (x) = H?:l x (1 = x/)~1, so we conclude

that Gy, (x) = TT,5x (1 = %), -
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Counting proof of the second identity. For all nonnegative integer j,

we have
1 ) .
- — (G+D)(n+1) | — ;
ord[l_xj+1 1 _ord[%x ] =Jj+1.
It follows that
1 =]
[x”][ —] = [x"] —]
gl—xlﬂ L]__:I:J(;l_x]+1

=[x (A 4+x+x2+ X3+ )A+x2+xt+x0+ ) T+ X"+ X+ X3+ -0)),

and this infinite product is a well-defined element in the formal
power series ring Z[[x]]. Moreover, we see that the coefficient of
x™ is the number of solutions (ay, a;, ..., a,_;) € N" to the equation
n =aq+2a; + 3a, + --- + na,_;. Thus, this solution set consists of
the partitions (n%-1,...,2% 1%) of the integer n. O

Problem 7.3.5. For any nonnegative integers n, Let g(n) be the
number of partitions of n into distinct parts and let pyqq(12) be the
number of partitions of n into odd parts. Demonstrate that

q(n) = poaa(n).
Sketch of proof. Since the respective generatoring series are

D q(m)x" = 1+ x)(1+x)A +x%) - = [JA + x/*)

neN JjeN
1
n — 2 4 ... 3 6 4 ... 5 10 o ...)... = -
r;Npodd(n)x =Q4+x+x24+-)Q+x3+x0+ - )A+x>+x10+--.) _Hl—x2f+1’
jen
we have

. 1— x2(j+1)
J+1) — -~
[T+ =TT (450 )
JjeN JjeN
—_ H]EN(l - x2(j+1)) _ H 1 O
HJEN(I —xit) 1 — x2i+l’

JjeN

Exercises

Problem 7.3.6. For any nonnegative integer n, use the power
conversion identity to show that

vy =3 {000 e,

=, m+1

Problem 7.3.7. For any nonnegative integer n, prove that
n+1 } _ (n) { k }
{m +1 IEZ k/lm
Problem 7.3.8. For any nonnegative integer n, prove that

% (%] ()

n+1]_
kez

m+1
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Recurrence Relations

8.0 Bernoulli Numbers

A famous sequence of rational numbers leads to a formula for the
sum of m-th powers of the first n positive integers. We begin by
examining the first three cases.

Problem 8.0.1. For any nonnegative integer n, verify that
k=0 2
Algebraic solution. By summing twice, we obtain -
ne1 0 1 1 S I B S
2<§ok>=(+<n—1>i(n—z>i333i(no_ ) " '
=( m-D+(n-D+- +(n-1)) area = 1(n-1)2 + L(n - 1)

=Y m-1)=m-1)0n). O
k=0

Problem 8.0.2. For any nonnegative integer n, prove that

n-1
, (m-1n2n-1)
k? = .

6
k-1 k-1
Algebraic solution. Since k? = k[z 1] = Z k, we have
j=0 j=0

n-1 n-1k-1
3 k2=3) >k
k=0 k=0 j=0
I +( 2 + 2 H+-+((m-D+ =1+ + (n-1))
:(+ m-D+( n-D+ n=-2))++( n-D+ (n=-2)+-+ 1 ))
+(m-D+( m=-2)+ m-D)+-+( 1 + 2 +-+ (n-1))
)

=( @n-D+(@En-D+@n-1D)+ +(@n-D+@n-1)+- +(2n-1)

n—1k-1 n—1k-1
=X >@n-1)=02n-1)) Y1
k=0 j=0 k=0 j=0
=(2n—1)§k=(2n—1)@. O
k=0

Problem 8.0.3. For any nonnegative integer n, show that
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1 1x12
2 2522 Figure 8.1: Triangular region used
n-1,3
to compute the sum )}, _ k
3 3x32
n—-1 (n—=1)x(n—1)>2

(n-n

Geometric solution. We show that ZZ:) k? = %(Z)(n — 1)(n) by
computing the area of the triangular region in Figure 8.1. O

We now consider the general case. For all nonnegative integers
m and n, set B,,(n) := ZZ;; k™. To understand this finite sum, we
create a telescoping sum, use the binomial theorem, and reorder
the sums to obtain

n—1 n—1m-1 m—1
= Y (G —ken) = 3 3 (M) = 3 () 8,00,
k=0 k=0 j=0 J j=0
Hence, we have the following matrix equation
n 1 0 o - 0 B,(n)
n? 1 2 o - 0 B,(n)
n® | = 1 3 3 -~ 0 B,(n)
nrr't+1 (mg—l) (m'+1) (m;i—l) (m:i—l %m'(n)

To invert the ((m + 1) X (m + 1))-matrix, suppose that

1 0 0 - 0 B, 1
1 2 0 - 0 B, 0
1 3 3 .. 0 B,| =10
(" (" (") - ("aD1BR] Lo

("™+')B; = &y for all nonnegative

or, equivalently, that Z;."zo ;
integers m. For any nonnegative integer j, the Bernoulli number

Bj is defined by this implicit recurrence relation. The first few

s

values are
J ‘ 0 1 2 3 4 5 6 17 8 9 10 11 12
1 ) ) ) . ol Table 8.1: Bernoulli numbers
B; ‘ 1 =3 50 -5 0 53 0 —-55 0 & 0 —35

Proposition 8.0.4. For any nonnegative integers m and n, we have

me(n): i::(m"‘l) =i
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Algebraic proof. It is enough to demonstrate that the inverse of
the ((m + 1) x (m + 1))- matrix whose (j, k)-entry is (j“) is the
matrix whose (j, k)-entry is J+1 J“ )BJ k- By reindexing the sum,
using the absorption, symmetry, and trinomial revision identities
on binomial coefficients, and recognizing the defining Bernoulli
recurrence, we see that the (i, k)-entry in the matrix product is

i . . i-k .
i+1\ 1 /(j+1\, _ 1 i+1 €+k+1)
J;{( J )j+1(j—k)BJ—" Z:te+k+1<€+k)< ¢ B

=0

ii‘ 1 ( i+2 >(€+k+1)B
2 ¢+k+1)\ k+1 ¢

+

1 2\ (i-k+1
Ti+2 <k+1)2< Y >B"

1 i+2

Exercises

Problem 8.0.5. For any nonnegative integer n, the Bernoulli num-
ber B, is defined the recurrence

(n+1)B, = HZI (” ; I)Bk

and the initial condition B, = 1.
(i) Prove that

exp(x)—l Z JJ"

jeN

(ii) Use the part (i) to demonstrate that B,j,; = 0 forall j > 1

8.1 Solving Recurrences

Generating series are made so solve recurrences. We illustrate
this feature with two examples.

Definition 8.1.1. For any nonnegative integer n, the Chebyshev
polynomials (of the first kind) are defined by the recurrence
Tpia(x) = 2x T, 1(x) — T,(x) and the initial conditions Ty(x) = 1
and T;(x) = x. The next few Chebyshev polynomials are

T,(x) =2x> -1, Ty(x) =8x*—8x2+1,
T;(x) = 4x? - 3x, Ts(x) = 16x° — 20x3 + 5x.

Problem 8.1.2. For any nonnegative integer n, verify that

T,(cos(6)) = cos(nb).
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Inductive proof. When n = 0 and n = 1, we have
To(cos(6)) =1 = cos((0)8) T;(cos(6)) = cos(8) = cos((1)6),

so the base cases hold. Assume that the formula holds for all
nonnegative integers less than n + 2. Using the trigonometric
identity 2 cos(@) cos(pp) = cos(® + ) + cos(¢ — V), the defining
recurrence, and the induction hypothesis gives

Tpi2(cos(8)) = 2(cos(8)) T,41(cos(8)) — Ty(cos(8))
= 2cos(6) cos((n+1)6) — cos(nb)
= cos((n+1)6 + 6) + cos((n+1)6 — 8) — cos(no)
= cos((n+2)6). O

Remark 8.1.3. The same trigonometric identity also implies that,
for all nonnegative integers m and n satisfying m > n, we have

2T,(x) T, (x) = 2T, (cos(8)) Ty, (cos(6))
= 2 cos(m®) cos(nb)
= cos(mb + nb) + cos(mb — nb)
= Tpran(6) + Ton().

Remark 8.1.4. Since cos((2k — 1)3) for all integers k, we see that
the zeros of T,,(x) € Z[x] are cos(%ﬂ) foralll <k < n.

Proposition 8.1.5 (Chebyshev series). Setting
()= ) To(x)t" € Qx][[t]],
neN

we have

1— xt
w() = 1—2xt+¢2°

Series proof. The basic maneuvers with generating series give

W(t) = To(x) — T, (x)t

12 = Z Tn+2(x) t"
neN
=2x ) T (X) 1" = D) Tu(x)
neN neN
= 2x (M) —¥()
so we obtain (1 — 2xt + t2) W(t) = 1 + xt — 2xt = 1 — xt. O

Problem 8.1.6. Find a closed-form for T, (x).

Series solution. Viewing 1 — 2xt + t? as a polynomial in t, we see

that t = 3(2x +1/4x2 — 4) = x +/x2 — 1 and we obtain
I-2xt+t2=(1-(x-Vx2-1t)1-(x+Vx2-1)t).
The partial fraction decomposition of the Chebyshev series is

1— xt B

x
= + .
—2xt+ g (x—yx2—1)t 1-(x+Vx2- Dt

w() = <
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Asa(l —(x +Vx2—=1)t) + B(1 — (x — Vx2 — 1)t) = 1 — xt, we have

t= = -2 - s - e= (2E)EE) S
e R e ) R b~ B R G o) = RS

Hence, expanding W(t) as a power series produces

W(x) = &

1 1
2[1—(x—\/x2—1)t " 1—(x+\/x2—1)t]
-y [(x—\/ﬁ)”+(x+\/ﬁ)"]tn
- 2

neN

which yields T, (x) = 3[(x —Vx2 = 1)" + (x + vV x2 — 1)"]. Using the

binomial theorem, we also obtain

Tn(x) = % [(x —Vx2-1)" + (x + \/ﬁ)"]

[ 5

_ x? [Z<Z>(—1)"<@)k + Z(Z)(@)k]

kez kez
-3 (1) Vo2 — 1)
- E\2k X

(V4

n )(xz _ 1)k xn2k,

I
™
—
N
&

which the desired closed-form expression. O
Remark 8.1.7. From the closed-form expression, we see that
T,(=x) = (—1)" T,,(x) for all nonnegative integers n.

Problem 8.1.8. For any nonnegative integer n, solve the simul-
taneous recurrences a,,, = 5a, + 12b, and b, = 2a, + 5b,
satisfying the initial conditions ¢, = 1 and b, = 0.

Series solution. Let f:= 3} _ a,x"and g:=};
maneuvers with generating functions give

nen Dn X™. The basic

f-a _ DA X" =5 a, X" +12 ) b, x" =5f +12g
x nen nen nen
-b
g = by x"=2> a,x"+5) b,x"=2f+5g,
X neN neN neN
so(1—-5x)f—12g =1and2x f + (5x — 1) g = 0. Hence, we have
g==_fand f = (1_5;);22(2@ = I_Rfixz. Consider the partial

fraction decompositions

fo_1l-s5x a + B
1-10x+x2 " 1 _(5-2v6)x 1—(5+2V6)x
g 2x _ |4 S

T 1-10x + x2

1—(5—2\/E)x+1—(5+2\/6)x'
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Since a(1 — (5 + 2V/6)x) + B(1 — (5 — 2¢/6)x) = 1 — 5x and
¥(1 = (5 +2/6)x) + 8(1 — (5 — 21/6)x) = 2x, we have

x= o a(1-350) =1 «=(30)(58) =
(-8 ar r=(SR)(50)= ¥

x= iz B(1-ER) = 1o B () (5R) =
5<1 - ;29 =t 0 (sévz)(tj?) =%

Expanding f and g as power series produces

=1< 1 1 ) %[(5—2\/_)"+(5+2\/_)"

1—(5—2\/€)x 1—(5+2V6)x 2
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|

§=13 12

1—(5+2\/E)x 1-(5-2V6)x
Therefore, we deduce that

a, = Z (Z) gn—2k (24)k

keN

=2 Z( )5"—2k—1 k. O
keN
Exercises

Problem 8.1.9. For all nonnegative integer n, the Laguerre polyno-
mials are defined by the recurrence

(n+2)Lpyy(x) = (2(n + 1) + (1 = X)) Lpya (%) = (n + 1) Lu(x),

and the initial conditions Ly(x) = 1and L;(x) =1 — x.
(i) Show that the Laguerre series is

O(t):= Y Ly(x)t" = %exp( 1x_tt> .

neN

(ii) Find a closed formula for L,(x).

\/€< 1 1 ) HEN[\/_((S+2\/_)"—(5—2\/_)”)]



