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Generating Functions

By encoding a sequence of numbers as the coefficients of a formal
power series, we gain access to a range of algebraic techniques.
As a consequence, these generating series are often useful for
finding a closed-form expressions for the elements in a sequence,
analyzing the asymptotic properties, and proving identities.

7.0 Generating Series

In his well-known book Generatingfunctionology, Herbert Wilf de-
scribes a generating series as “a clothesline on which we hang up
a sequence of numbers for display.”

Definition 7.0.1. For any countable sequence (ay, a;, a5, ...) of Generating series were introduced by
1 tsi d in R. th di di ti Abraham de Moivre in 1730 to solve

elements in a domain R, the corresponding ordinary generating the general linear recurrences.

series is the formal power series f := ZJGN a; x’ in R[[x]].

Problem 7.0.2. For any nonnegative integer j, consider the integer

sequence a; defined by the recurrence a;,; = 2a; + 1 and the

initial condition a, = 0. Find a closed-form expression for a;.

Series solution. Consider the generating series f := ), jen
Z[x]. The recurrence implies that, for all nonnegative integers j,
we have a;,; X/ = (2a; + 1) xJ. It follow that

a; xJ in

f;ao :Zaj+1xj=Z(2aj+1)xj=2[2ajxl] + [ij] =2f+1ix'

JjeN JjeN JjeN JjeN

Hence, we obtain the functional equation

(525 =G-2)=1=% = F=a=s0=35"

To find a formula for a;, we expand f as a power series:

X 2 1 : . ; :
I=a=m»a-m =x(1_2x - m) =J§g(2x)] _gfoxj =j§‘(21_1)x1,

soa; = 2/ — 1 for all nonnegative integers j. O

Problem 7.0.3. For any nonnegative integer j, consider the integer
sequence a; defined by the recurrence a;,; = 2a; + jand the
initial condition a, = 1. Find a closed-form expression for a;.



82 Foundations of Enumerative Combinatorics Copyright © 2021 by Gregory G. Smith

Series solution. Setting f:=}}._\ @; x/ in Z[x], the recurrence gives

JeN

=D X =) Qaj+ =2 axi+ Y jxi=2f+ ——

JeN JeN JeN JjeN ( )2

Hence, we obtain

() =G-9 =t *s

o (x*+(Q=x)x  1-2x+2x2
= T x(1-x)2(1-2x)  (1-x201-2x)"

To find an explicit formula for a;, we first find a partial fraction
decomposition

o 1-2x+2x* _ « B 4
f_(1—x)2(1—2x)_(l—x)2+1—x+1—2x'

Since a(1 —2x) + B(1 — x)(1 —2x) + y(1 — x)* = 1 — 2x + 2x2, we
have

1 a(-1)=1 > a=-1

=3 G =1-1+; = y=2
x=0: -1+8+2=1 > B=0.

Hence, expanding f as a power series produces

F= 1—2x+2x* (-1 42

T (1-x21-2x) (Q1-x2 1-2x

=-Y(+Dx+2)@x)) =)@ -j-1)x],

JjeN jeN JjeN

so a; = 2/*! — j — 1 for all nonnegative integers j. O

Proposition 7.0.4 (Fibonacci series). For any nonnegative integer n,

let F,, denote the n-th Fibonacci number. Setting F(x) := 3, _ F, X",
we have X
PO ===
Proof. The Fibonacci recurrence gives
F(x)—-F F(x)—-F
( ) xo ZFn+2x Z(Fn+l+Fn)xn=%+F(x)-
neN neN
Using the initial conditions F;, = 0 and F; = 1, we obtain
1-—x—x? 1 1
(T)F<x> =(m-z YF@ =1
> F(x)= —2> 0
T 1l-x-—-x2"

Problem 7.0.5. Use Fibonacci series to determine a closed-form
for the Fibonacci numbers.

Series solution. We first find a partial fraction decomposition for
the Fibonacci series. By setting ¢, := %(1 +1/5), it follows that
1-x-x?=01-¢,x)(1 - ¢_x), sowe obtain

b o B

le—x—x2:1—go+x+1—go_x'
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Since (1 — ¢_ x) + (1 — ¢, x) = X, we have

— 1. _P=y— L — L% y_ L
x_¢+.cx(1 <0+)_<0+ = oz—¢+ ¢+—¢_)_\/§’

x:%:ﬁ(l—%):% = ﬁ:(p%((p_q’_—qo*_):—%.

Hence, expanding f as a power series produces

F(x)=%<1_10+x_ 1—10_x)

- %[Z(q"* x)" = 2 (9- X>"] =3 Rt —pn)xn

neN neN neN

soF, =

HES - H(E

7 =\2 )n for all nonnegative integers j. O

Problem 7.0.6. For all nonnegative integers n, let F,, denote the
n-th Fibonacci number. Show that Fy+ F, +F,+---+F, = F,,,—1.

Series solution. Combining Problem 6.3.3 and Proposition 7.0.4
shows that

n — F(X) _ X
EN(FO+F1+F2+...+F,1)x ol cvrs Rl comn e

On the other hand, we also have

F-Fy—Fx 1
X2 T 1-x
1 1 1
T x(1-x-x2) x 1-x
_1=-x)-Q-x—-x)1—x)—x(1—x—x?)
- x(1 —x)(1 - x —x2)

Z(Fn+2_1)xn =

neN

3 x
T 1-x)(1-x-x2)"

Comparing coefficients of x" in these two formal power series
yields the identity. O

7.1 Identities from Generating Series

We illustrate the power of generating series by proving and reprov-
ing combinatorial identities.

Problem 7.1.1. For any nonnegative integer n, let F,, be the n-th
Fibonacci number. Prove that F; + F3 + Fs + --- + Fy, 01 = Fyp 0.

Series solution. Proposition 7.0.4 gives F(x) = —— = ¥, F,x".
Since nen

1 1 1 1
E(F(x) - F(-x)) = X Z E(Fn —(=1)"Fp)x" = X Z Fopy X" = Z Foppr X2,
neN neN neN

83
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Problem 6.3.3 shows that the generating series for the left side of
the desired identity is

F(x) — F(—x)
%(Pl 4 Fyt o+ Fyppy) (327 + X2041) = O
_ 1 ( X + X >_ 1+x—x24+1-—x—x?
T2x(Q=x)\1=-x—-x2  1+x-x2/" 20 -x)1—-x—-x2)(1 + x — x2)

14+ x
Q-x—-x2)1+x-—x2)"

Similarly, we have

%(F(x) +F(-x))= 3 %(F,, +(—1F)x" = 3 Fy x,

neN neN

so the generating series for the right side is

1+x
X Fanea (7 4 32741) = (SEX) (FG) + F(-)
neN X
_1+x( X B X )_1+x 1+x—x>—14x+x?
To2x2 \1=x-x2 1+4+x-x2)" 2x \(1-x-x)1+x—x2)

14+ x
Q-x—-x2)0+x-x2)"

By extracting the coefficients of x?" or x2"*!, we establish the
desired identity on Fibonacci numbers. O

Alternative solution. Because we have

= =X )
1—3x2+ x4 1—3x2+x4+1—3x2+x4

S Foxt = X 1+x—x? X+ x*—x3 1-—x? x?
T T l—x—x2\1+4+x—x2

neN

extracting even and odd powers shows

X 1-—x
2P =y ge and ) P ¥ =y
nenN neN

Hence, the generating series for the left side is
1-Xx 1

Z(Fl +F3+4 -+ Fpp) X" =

neN

(1—-x)(1 -3x+ x2) T1-3x+x2’
and the generating series for the right side is

b 1

F x" = = .
2, Fansa x(1-3x+x2) 1-3x+x2

neN

The two generating series equal the same rational function, so the
desired identity holds. O

Problem 7.1.2. For any nonnegative integer n, let F,, denote the
n-th Fibonacci number. Prove that

F2+F4+F5+“‘+F2n:F2n+1—1.
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Series solution. The alternative solution above shows that the
generating series for the right side is

_ 2 .2
Z(an+1—1)x”: 1_1 X _ 1 — 1-x) 1+3x—x _ X

et 3x+x2 1-—-x (1—-x)(1—3x+ x2) (1-x)(1-3x+ x2)

and the generating series for the left side is

D (Fo+ Fy+ -+ + Fpp) X"

neN

x
(1 —x)(1-3x+x2)°

The two generating series equal the same rational function, so the
desired identity holds. O

Proposition 7.1.3 (Catalan series). For any nonnegative integer n, let
C, be the n-th Catalan number. Setting C(x) := ), _ C, X", we have
Cy = == =2,

Proof. Since Cy = 1 and the Catalan recurrence [1.2.5] asserts that
Cpny1 = ZZ:O CiC,,_x, we obtain

C(x) =Y Cpxt= Y [2 CiCr_ k]x = (C)

neN neN

It follows that x(C(x))* — C(x) + 1 = 0and C(x) = =14

2x
Since the binomial theorem [6.2.5] for complex exponents gives

VY1—4x=1-2x+ ---, we have
1+yl—4x 1+(Q—-2x+--) 1
2x -

== =1+,
2X X
1-vV1—-4x 1-(1-2x+-)
— =1+,
2X 2X
and we conclude that C(x) = 1_“2;_4x- 0

From the Catan series, we can recover the closed-formula for
the individual Catalan numbers.

Corollary 7.1.4. For any nonnegative integer n, we have
co- 1 (2n>_ eny 1 (2n+1)_l< Zn)
"T"n+1\n/) nm+1) 2n+1\ n ) n\n-1)

Proof. The binomial theorem [6.2.5] for complex exponents and
the absorption identity [2.1.3] for binomial coefficients give

vi—ax =3 (") 2 =1+ % o e [CHLES

=1+ Z:l % ((—z)(—z —(1):1()—'7 —n+ 2)>(_4)nxn
_ 2" (DA +2)---(1+2n—-4)
=1- ,;1 n ( (n—=1)! )
(D)(2)A +2)(4)---(2n —3)(2n — 2)
22 (n - DiCn - D) )

=1-2) (2” 2) _1—22n+1(2")x"+1

n>1 neN
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we obtain C(x) = %(1—\/1—4x)= D> n-li-l(zr:l)xn' O
neN

Exercises

Problem 7.1.5. For any nonnegative integer n, let C,, denote the
n-th Catalan number and set C(x) := Y, _ C, x". Use generating
series to prove the identity

neN

n
Z Coxk Cz(n—k) =4"C,.
k=0

Problem 7.1.6. For any nonnegative integer n, let C,, be the n-th

Catalan number and set C(x) := ), _ C, x". Prove that

1—x+xtC(t)
n¢n n _
%x e (e@)” = 1—x+ x2t

7.2 Binomial Identities from Series

Generating series provide independent verification of the key
identities involving binomial and multichoose coefficients.

Theorem 7.2.1 (Binomial). For any nonnegative integer n, we have

14 x)" = Z(Z)xk

keN

Inductive proof. For any nonnegative integer n, set

P, (x):= Z(Z)xk

keN

When n = 0, we see that Py(x) = 1 because (§) = land (,2,) = 0
for all nonnegative integers k. The addition identity [2.0.6] for
binomial coefficients gives

rer=("3)- 300 B R+ (21 <

k>1

= Z(Z)xk + Z(Z)xk“ = [Pn(x) - (g)] + xP,(x).

k>1 keN

Since ("#') = 1 = (}), we deduce that P,,,,(x) = (1 + x) P,(x).
The induction hypothesis is P, (x) = (1 + x)", so we conclude that
Prn(X) = (1 + %)™, 0

Problem 7.2.2. For all nonnegative integers k, n, and m, reprove
the trinomial revision identity [2.1.4]:

(&) (2 2m)= () (%)
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Series solution. Using the binomial theorem four times gives

Dt PR 1 (9] Dol Gl I PO (AR

keN jeN keN JeN keN

A+0)+y)"=0+x+y)"=(x+0Q+y)"

Z(Z)x"‘m(uy)’":Z<m>xnm[z< ) ] ZZ( )( ) s

meN meN keN meN keN

Extracting the coefficient of x*~™y* proves the trinomial revision
identity. This argument also explains the name. O

Problem 7.2.3. For all nonnegative integers m and n, reprove the
parallel sum identity [2.3.4] for binomial coefficients:

é(m;—j>:<m+:+1>.

Series solution. The generalized binomial theorem [6.2.3] states

that (1-x)""1 =, _ ("+")x". Hence, extracting the coefficient

of x" from both sides of the equation

2 [Z<m+1)]x = ((1 —ch)m+1>(lix> = —)1c)m+2

neN j=0 J
m+n+1 m+n+1
= xn = xn’
AV EED) (i

neN neN

establishes the parallel sum identity. O

Problem 7.2.4. For all nonnegative integers m and n, re-confirm
the upper sum identity [2.0.8] for binomial coefficients:

()= (ni)

=0 m m+1

Series Solution. The generalized binomial theorem [6.2.3], together
with the symmetry [2.0.5] of binomial coefficients, implies that

(1—§c)m+1 - Z(m:zrn)xn - Z<m; n>xn'

neN neN

Multiplying both sides by x™ and reindexing the sum yields

(1 = x)m+1 x)erl E\,( )
Hence, the generating function for the left side the identity is

2 [Zn:<:ja>] xh= ((1 —x$m+1)(1 - x) - a —x:)m“

neN (j=0

and the generating function for the right side is

Z ()" = 3o ()] =

neN

The two generating series equal the same rational function, so the
desired identity holds. O
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Problem 7.2.5. For all nonnegative integers k and n, reprove the
parallel sum identity [2.3.3] for multichoose coefficients:
k
o )=205)
(( k o \J

Series solution. The generalized binomial theorem [6.2.3] and Prob-
lem 6.3.3 give

Z«nzl))xk e —ic)”“ = ((1 —lx)n>(1ix> = %[i((?))] x*,

keN j=0

Extracting the coefficients of x* proves the identity. O

Theorem 7.2.6 (Generalized binomial). For any nonnegative integer

n, we have
1
a-xm %((Z»xk

Inductive proof. For any nonnegative integer n, set

e 52

keN

When n = 0, we have My(x) = 1because ((3)) = Land (,2,) = 0
for all nonnegative integers k. The addition formula [2.2.5] for
multichoose coefficients gives

("8 )22 )< =B ()¢

n+1 n n
= (" e B = 2o+ 100 ()
keN k>1
Since ("#') = 1 = (), we deduce that (1 — x) M,,,,(x) = M, (x).
The induction hypothesis states that M,(x) = (1 — x)™", so we
conclude that M, .;(x) = (1 — x)~"*"L O

Exercises

Problem 7.2.7. For all nonnegative integers m and n, the Delannoy
numbers D,, , satisfy Dy, 11,41 = D1 + Dipi1n + Dy and the
initial conditions D,, g = Dy, = 1.
(i) Express the generating series D(x,y):= ), > D, ,x™y"as
a rational function. meNneN
(ii) Show that Dy, , = ¥, (%) ("™ ).

Problem 7.2.8. For all nonnegative integers m and n, use generat-
ing series to demonstrate that

()" = 2 (R

keN keN



