7

Generating Functions

By encoding a sequence of numbers as the coefficients of a formal power series, we gain access to a range of algebraic techniques. As a consequence, these generating series are often useful for finding a closed-form expressions for the elements in a sequence, analyzing the asymptotic properties, and proving identities.

7.0 Generating Series

In his well-known book *Generatingfunctionology*, Herbert Wilf describes a generating series as "a clothesline on which we hang up a sequence of numbers for display."

Definition 7.0.1. For any countable sequence $(a_0, a_1, a_2, ...)$ of elements in a domain R, the corresponding *ordinary generating series* is the formal power series $f := \sum_{i \in \mathbb{N}} a_i x^j$ in R[[x]].

Problem 7.0.2. For any nonnegative integer j, consider the integer sequence a_j defined by the recurrence $a_{j+1} = 2a_j + 1$ and the initial condition $a_0 = 0$. Find a closed-form expression for a_j .

Series solution. Consider the generating series $f := \sum_{j \in \mathbb{N}} a_j x^j$ in $\mathbb{Z}[x]$. The recurrence implies that, for all nonnegative integers j, we have $a_{j+1} x^j = (2a_j + 1) x^j$. It follow that

$$\frac{f - a_0}{x} = \sum_{j \in \mathbb{N}} a_{j+1} x^j = \sum_{j \in \mathbb{N}} (2a_j + 1) x^j = 2 \left(\sum_{j \in \mathbb{N}} a_j x^j \right) + \left(\sum_{j \in \mathbb{N}} x^j \right) = 2f + \frac{1}{1 - x}.$$

Hence, we obtain the functional equation

$$\left(\frac{1-2x}{x}\right)f = \left(\frac{1}{x}-2\right)f = \frac{1}{1-x} \quad \Rightarrow \quad f = \frac{x}{(1-x)(1-2x)}.$$

To find a formula for a_i , we expand f as a power series:

$$f = \frac{x}{(1-x)(1-2x)} = x\left(\frac{2}{1-2x} - \frac{1}{1-x}\right) = \sum_{j>0} (2x)^j - \sum_{j>0} x^j = \sum_{j\in\mathbb{N}} (2^j - 1) x^j,$$

so $a_i = 2^j - 1$ for all nonnegative integers j.

Problem 7.0.3. For any nonnegative integer j, consider the integer sequence a_j defined by the recurrence $a_{j+1} = 2a_j + j$ and the initial condition $a_0 = 1$. Find a closed-form expression for a_j .

Generating series were introduced by Abraham de Moivre in 1730 to solve the general linear recurrences. *Series solution.* Setting $f := \sum_{i \in \mathbb{N}} a_i x^i$ in $\mathbb{Z}[x]$, the recurrence gives

$$\frac{f - a_0}{x} = \sum_{j \in \mathbb{N}} a_{j+1} x^j = \sum_{j \in \mathbb{N}} (2a_j + j) x^j = 2 \sum_{j \in \mathbb{N}} a_j x^j + \sum_{j \in \mathbb{N}} j x^j = 2 f + \frac{x}{(1 - x)^2}.$$

Hence, we obtain

$$\left(\frac{1-2x}{x}\right)f = \left(\frac{1}{x} - 2\right)f = \frac{x}{(1-x)^2} + \frac{1}{x}$$

$$\Rightarrow f = \frac{(x^2 + (1-x)^2)x}{x(1-x)^2(1-2x)} = \frac{1-2x+2x^2}{(1-x)^2(1-2x)}.$$

To find an explicit formula for a_i , we first find a partial fraction decomposition

$$f = \frac{1 - 2x + 2x^2}{(1 - x)^2(1 - 2x)} = \frac{\alpha}{(1 - x)^2} + \frac{\beta}{1 - x} + \frac{\gamma}{1 - 2x}.$$

Since $\alpha(1-2x) + \beta(1-x)(1-2x) + \gamma(1-x)^2 = 1 - 2x + 2x^2$, we have

$$x = 1$$
: $\alpha(-1) = 1$ $\Rightarrow \alpha = -1$
 $x = \frac{1}{2}$: $\gamma(\frac{1}{2})^2 = 1 - 1 + \frac{1}{2}$ $\Rightarrow \gamma = 2$
 $x = 0$: $-1 + \beta + 2 = 1$ $\Rightarrow \beta = 0$.
canding f as a power series produces

Hence, expanding f as a power series produces

$$f = \frac{1 - 2x + 2x^2}{(1 - x)^2 (1 - 2x)} = \frac{(-1)}{(1 - x)^2} + \frac{2}{1 - 2x}$$
$$= -\sum_{j \in \mathbb{N}} (j + 1) x^j + 2 \sum_{j \in \mathbb{N}} (2x)^j = \sum_{j \in \mathbb{N}} (2^{j+1} - j - 1) x^j,$$

so $a_j = 2^{j+1} - j - 1$ for all nonnegative integers j.

Proposition 7.0.4 (Fibonacci series). *For any nonnegative integer n*, let F_n denote the n-th Fibonacci number. Setting $F(x) := \sum_{n \in \mathbb{N}} F_n x^n$, we have

$$F(x) = \frac{x}{1 - x - x^2}.$$

Proof. The Fibonacci recurrence gives

$$\frac{F(x) - F_0 - F_1 x}{x^2} = \sum_{n \in \mathbb{N}} F_{n+2} x^n = \sum_{n \in \mathbb{N}} (F_{n+1} + F_n) x^n = \frac{F(x) - F_0}{x} + F(x).$$

Using the initial conditions $F_0 = 0$ and $F_1 = 1$, we obtain

$$\left(\frac{1-x-x^2}{x^2}\right)F(x) = \left(\frac{1}{x^2} - \frac{1}{x} - 1\right)F(x) = \frac{1}{x}$$

$$\Rightarrow F(x) = \frac{x}{1-x-x^2}.$$

Problem 7.0.5. Use Fibonacci series to determine a closed-form for the Fibonacci numbers.

Series solution. We first find a partial fraction decomposition for the Fibonacci series. By setting $\varphi_{\pm} := \frac{1}{2}(1 \pm \sqrt{5})$, it follows that $1 - x - x^2 = (1 - \varphi_+ x)(1 - \varphi_- x)$, so we obtain

$$F = \frac{x}{1 - x - x^2} = \frac{\alpha}{1 - \varphi_+ x} + \frac{\beta}{1 - \varphi_- x}$$

Since $\alpha(1 - \varphi_{-} x) + \beta(1 - \varphi_{+} x) = x$, we have

$$x = \frac{1}{\varphi_+}: \quad \alpha \left(1 - \frac{\varphi_-}{\varphi_+}\right) = \frac{1}{\varphi_+} \quad \Rightarrow \quad \alpha = \frac{1}{\varphi_+} \left(\frac{\varphi_+}{\varphi_+ - \varphi_-}\right) = \frac{1}{\sqrt{5}},$$

$$x = \frac{1}{\varphi_-}: \quad \beta \left(1 - \frac{\varphi_+}{\varphi_-}\right) = \frac{1}{\varphi_-} \quad \Rightarrow \quad \beta = \frac{1}{\varphi_-} \left(\frac{\varphi_-}{\varphi_- - \varphi_+}\right) = -\frac{1}{\sqrt{5}}.$$

Hence, expanding f as a power series produces

$$F(x) = \frac{1}{\sqrt{5}} \left(\frac{1}{1 - \varphi_{+} x} - \frac{1}{1 - \varphi_{-} x} \right)$$

$$= \frac{1}{\sqrt{5}} \left(\sum_{n \in \mathbb{N}} (\varphi_{+} x)^{n} - \sum_{n \in \mathbb{N}} (\varphi_{-} x)^{n} \right) = \sum_{n \in \mathbb{N}} \frac{1}{\sqrt{5}} (\varphi_{+}^{n} - \varphi_{-}^{n}) x^{n}$$

so
$$F_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n - \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n$$
 for all nonnegative integers j .

Problem 7.0.6. For all nonnegative integers n, let F_n denote the *n*-th Fibonacci number. Show that $F_0 + F_1 + F_2 + \cdots + F_n = F_{n+2} - 1$.

Series solution. Combining Problem 6.3.3 and Proposition 7.0.4 shows that

$$\sum_{n\in\mathbb{N}} (F_0 + F_1 + F_2 + \dots + F_n) x^n = \frac{F(x)}{(1-x)} = \frac{x}{(1-x)(1-x-x^2)}.$$

On the other hand, we also have

$$\begin{split} \sum_{n \in \mathbb{N}} (F_{n+2} - 1) \, x^n &= \frac{F - F_0 - F_1 \, x}{x^2} - \frac{1}{1 - x} \\ &= \frac{1}{x(1 - x - x^2)} - \frac{1}{x} - \frac{1}{1 - x} \\ &= \frac{(1 - x) - (1 - x - x^2)(1 - x) - x(1 - x - x^2)}{x(1 - x)(1 - x - x^2)} \\ &= \frac{x}{(1 - x)(1 - x - x^2)} \, . \end{split}$$

Comparing coefficients of x^n in these two formal power series yields the identity.

Identities from Generating Series 7.1

We illustrate the power of generating series by proving and reproving combinatorial identities.

Problem 7.1.1. For any nonnegative integer n, let F_n be the n-th Fibonacci number. Prove that $F_1 + F_3 + F_5 + \cdots + F_{2n+1} = F_{2n+2}$.

Series solution. Proposition 7.0.4 gives $F(x) = \frac{x}{1-x-x^2} = \sum_{n \in \mathbb{N}} F_n x^n$.

$$\frac{1}{2x}(F(x) - F(-x)) = \frac{1}{x} \sum_{n \in \mathbb{N}} \frac{1}{2}(F_n - (-1)^n F_n) x^n = \frac{1}{x} \sum_{n \in \mathbb{N}} F_{2n+1} x^{2n+1} = \sum_{n \in \mathbb{N}} F_{2n+1} x^{2n},$$

Problem 6.3.3 shows that the generating series for the left side of the desired identity is

$$\sum_{n\in\mathbb{N}} (F_1 + F_3 + \dots + F_{2n+1})(x^{2n} + x^{2n+1}) = \frac{F(x) - F(-x)}{2x(1-x)}$$

$$= \frac{1}{2x(1-x)} \left(\frac{x}{1-x-x^2} + \frac{x}{1+x-x^2} \right) = \frac{1+x-x^2+1-x-x^2}{2(1-x)(1-x-x^2)(1+x-x^2)}$$

$$= \frac{1+x}{(1-x-x^2)(1+x-x^2)}.$$

Similarly, we have

$$\frac{1}{2}(F(x) + F(-x)) = \sum_{n \in \mathbb{N}} \frac{1}{2}(F_n + (-1)^n F_n) x^n = \sum_{n \in \mathbb{N}} F_{2n} x^{2n},$$

so the generating series for the right side is

$$\sum_{n \in \mathbb{N}} F_{2n+2}(x^{2n} + x^{2n+1}) = \left(\frac{1+x}{2x^2}\right) \left(F(x) + F(-x)\right)$$

$$= \frac{1+x}{2x^2} \left(\frac{x}{1-x-x^2} - \frac{x}{1+x-x^2}\right) = \frac{1+x}{2x} \left(\frac{1+x-x^2-1+x+x^2}{(1-x-x^2)(1+x-x^2)}\right)$$

$$= \frac{1+x}{(1-x-x^2)(1+x-x^2)}.$$

By extracting the coefficients of x^{2n} or x^{2n+1} , we establish the desired identity on Fibonacci numbers.

Alternative solution. Because we have

$$\sum_{n\in\mathbb{N}}F_n\,x^n=\frac{x}{1-x-x^2}\left(\frac{1+x-x^2}{1+x-x^2}\right)=\frac{x+x^2-x^3}{1-3x^2+x^4}=x\frac{1-x^2}{1-3x^2+x^4}+\frac{x^2}{1-3x^2+x^4}\,,$$

extracting even and odd powers shows

$$\sum_{n \in \mathbb{N}} F_{2n} x^n = \frac{x}{1 - 3x + x^2} \quad \text{and} \quad \sum_{n \in \mathbb{N}} F_{2n+1} x^n = \frac{1 - x}{1 - 3x + x^2}.$$

Hence, the generating series for the left side is

$$\sum_{n\in\mathbb{N}} (F_1 + F_3 + \dots + F_{2n+1}) x^n = \frac{1-x}{(1-x)(1-3x+x^2)} = \frac{1}{1-3x+x^2},$$

and the generating series for the right side is

$$\sum_{n\in\mathbb{N}} F_{2n+2} x^n = \frac{x}{x(1-3x+x^2)} = \frac{1}{1-3x+x^2}.$$

The two generating series equal the same rational function, so the desired identity holds.

Problem 7.1.2. For any nonnegative integer n, let F_n denote the n-th Fibonacci number. Prove that

$$F_2 + F_4 + F_5 + \cdots + F_{2n} = F_{2n+1} - 1$$
.

Series solution. The alternative solution above shows that the generating series for the right side is

$$\sum_{n \in \mathbb{N}} (F_{2n+1} - 1) x^n = \frac{1 - x}{1 - 3x + x^2} - \frac{1}{1 - x} = \frac{(1 - x)^2 - 1 + 3x - x^2}{(1 - x)(1 - 3x + x^2)} = \frac{x}{(1 - x)(1 - 3x + x^2)}$$

and the generating series for the left side is

$$\sum_{n\in\mathbb{N}} (F_0 + F_2 + \dots + F_{2n}) x^n = \frac{x}{(1-x)(1-3x+x^2)}.$$

The two generating series equal the same rational function, so the desired identity holds.

Proposition 7.1.3 (Catalan series). *For any nonnegative integer n, let* C_n be the n-th Catalan number. Setting $C(x) := \sum_{n \in \mathbb{N}} C_n x^n$, we have

$$C(x) = \frac{1 - \sqrt{1 - 4x}}{2x} \,.$$

Proof. Since $C_0 = 1$ and the Catalan recurrence [1.2.5] asserts that $C_{n+1} = \sum_{k=0}^{n} C_k C_{n-k}$, we obtain

$$\frac{C(x) - C_0}{x} = \sum_{n \in \mathbb{N}} C_{n+1} x^n = \sum_{n \in \mathbb{N}} \left(\sum_{k=0}^n C_k C_{n-k} \right) x^n = (C(x))^2$$

It follows that $x(C(x))^2 - C(x) + 1 = 0$ and $C(x) = \frac{1 \pm \sqrt{1 - 4x}}{2x}$. Since the binomial theorem [6.2.5] for complex exponents gives $\sqrt{1 - 4x} = 1 - 2x + \cdots$, we have

$$\frac{1+\sqrt{1-4x}}{2x} = \frac{1+(1-2x+\cdots)}{2x} = \frac{1}{x}-1+\cdots,$$

$$\frac{1-\sqrt{1-4x}}{2x} = \frac{1-(1-2x+\cdots)}{2x} = 1+\cdots,$$

and we conclude that $C(x) = \frac{1-\sqrt{1-x}}{2}$

From the Catan series, we can recover the closed-formula for the individual Catalan numbers.

Corollary 7.1.4. For any nonnegative integer n, we have

$$C_n = \frac{1}{n+1} {2n \choose n} = \frac{(2n)!}{n!(n+1)!} = \frac{1}{2n+1} {2n+1 \choose n} = \frac{1}{n} {2n \choose n-1}.$$

Proof. The binomial theorem [6.2.5] for complex exponents and the absorption identity [2.1.3] for binomial coefficients give

$$\begin{split} \sqrt{1-4x} &= \sum_{n\in\mathbb{N}} \binom{1/2}{n} (-4x)^n = 1 + \sum_{n\geqslant 1} \frac{1}{2n} \binom{-1/2}{n-1} (-4)^n x^n \\ &= 1 + \sum_{n\geqslant 1} \frac{1}{2n} \left(\frac{\left(-\frac{1}{2}\right)\left(-\frac{1}{2}-1\right)\cdots\left(-\frac{1}{2}-n+2\right)}{(n-1)!} \right) (-4)^n x^n \\ &= 1 - \sum_{n\geqslant 1} \frac{2^n}{n} \left(\frac{(1)(1+2)\cdots(1+2n-4)}{(n-1)!} \right) x^n \\ &= 1 - 2 \sum_{n\geqslant 1} \frac{1}{n} \left(\frac{(1)(2)(1+2)(4)\cdots(2n-3)(2n-2)}{(n-1)!(n-1)!} \right) x^n \\ &= 1 - 2 \sum_{n\geqslant 1} \frac{1}{n} \binom{2n-2}{n-1} x^n = 1 - 2 \sum_{n\in\mathbb{N}} \frac{1}{n+1} \binom{2n}{n} x^{n+1} \end{split}$$

we obtain
$$C(x) = \frac{1}{2x} (1 - \sqrt{1 - 4x}) = \sum_{n \in \mathbb{N}} \frac{1}{n+1} {2n \choose n} x^n$$
.

Exercises

Problem 7.1.5. For any nonnegative integer n, let C_n denote the n-th Catalan number and set $C(x) := \sum_{n \in \mathbb{N}} C_n x^n$. Use generating series to prove the identity

$$\sum_{k=0}^{n} C_{2k} C_{2(n-k)} = 4^{n} C_{n}.$$

Problem 7.1.6. For any nonnegative integer n, let C_n be the n-th Catalan number and set $C(x) := \sum_{n \in \mathbb{N}} C_n x^n$. Prove that

$$\sum_{n \in \mathbb{N}} x^n t^n (C(t))^n = \frac{1 - x + xt C(t)}{1 - x + x^2 t}.$$

7.2 Binomial Identities from Series

Generating series provide independent verification of the key identities involving binomial and multichoose coefficients.

Theorem 7.2.1 (Binomial). *For any nonnegative integer n, we have*

$$(1+x)^n = \sum_{k \in \mathbb{N}} \binom{n}{k} x^k$$

Inductive proof. For any nonnegative integer n, set

$$P_n(x) := \sum_{k \in \mathbb{N}} \binom{n}{k} x^k.$$

When n = 0, we see that $P_0(x) = 1$ because $\binom{0}{0} = 1$ and $\binom{0}{k+1} = 0$ for all nonnegative integers k. The addition identity [2.0.6] for binomial coefficients gives

$$\begin{split} P_{n+1}(x) - \binom{n+1}{0} &= \sum_{k \ge 1} \binom{n}{k} x^k = \sum_{k \ge 1} \left(\binom{n}{k} + \binom{n}{k-1} \right) x^k \\ &= \sum_{k \ge 1} \binom{n}{k} x^k + \sum_{k \in \mathbb{N}} \binom{n}{k} x^{k+1} = \left(P_n(x) - \binom{n}{0} \right) + x P_n(x) \,. \end{split}$$

Since $\binom{n+1}{0} = 1 = \binom{n}{0}$, we deduce that $P_{n+1}(x) = (1+x)P_n(x)$. The induction hypothesis is $P_n(x) = (1+x)^n$, so we conclude that $P_{n+1}(x) = (1+x)^{n+1}$.

Problem 7.2.2. For all nonnegative integers k, n, and m, reprove the trinomial revision identity [2.1.4]:

$$\binom{n}{k}\binom{n-k}{n-m} = \binom{n}{m}\binom{m}{k}.$$

Series solution. Using the binomial theorem four times gives

$$\sum_{k \in \mathbb{N}} \sum_{j \in \mathbb{N}} \binom{n}{k} \binom{n-k}{j} x^{j} y^{k} = \sum_{k \in \mathbb{N}} \binom{n}{k} \left(\sum_{j \in \mathbb{N}} \binom{n-k}{j} x^{j} \right) y^{k} = \sum_{k \in \mathbb{N}} \binom{n}{k} (1+x)^{n-k} y^{k}$$

$$= ((1+x)+y)^{n} = (1+x+y)^{n} = (x+(1+y))^{n}$$

$$= \sum_{m \in \mathbb{N}} \binom{n}{m} x^{n-m} (1+y)^{m} = \sum_{m \in \mathbb{N}} \binom{n}{m} x^{n-m} \left(\sum_{k \in \mathbb{N}} \binom{m}{k} y^{k} \right) = \sum_{m \in \mathbb{N}} \sum_{k \in \mathbb{N}} \binom{n}{m} \binom{m}{k} x^{n-m} y^{k}.$$

Extracting the coefficient of $x^{n-m}y^k$ proves the trinomial revision identity. This argument also explains the name.

Problem 7.2.3. For all nonnegative integers *m* and *n*, reprove the parallel sum identity [2.3.4] for binomial coefficients:

$$\sum_{j=0}^{n} {m+j \choose j} = {m+n+1 \choose n}.$$

Series solution. The generalized binomial theorem [6.2.3] states that $(1-x)^{-m-1} = \sum_{n \in \mathbb{N}} {m+n \choose n} x^n$. Hence, extracting the coefficient of x^n from both sides of the equation

$$\sum_{n \in \mathbb{N}} \left(\sum_{j=0}^{n} {m+j \choose j} \right) x^n = \left(\frac{1}{(1-x)^{m+1}} \right) \left(\frac{1}{1-x} \right) = \frac{1}{(1-x)^{m+2}}$$
$$= \sum_{n \in \mathbb{N}} {m+n+1 \choose m+1} x^n = \sum_{n \in \mathbb{N}} {m+n+1 \choose n} x^n,$$

establishes the parallel sum identity.

Problem 7.2.4. For all nonnegative integers *m* and *n*, re-confirm the upper sum identity [2.0.8] for binomial coefficients:

$$\sum_{j=0}^{n} \binom{j}{m} = \binom{n+1}{m+1}.$$

Series Solution. The generalized binomial theorem [6.2.3], together with the symmetry [2.0.5] of binomial coefficients, implies that

$$\frac{1}{(1-x)^{m+1}} = \sum_{n \in \mathbb{N}} {m+n \choose n} x^n = \sum_{n \in \mathbb{N}} {m+n \choose m} x^n.$$

Multiplying both sides by x^m and reindexing the sum yields

$$\frac{x^m}{(1-x)^{m+1}} = \sum_{j \in \mathbb{N}} {j \choose m} x^j.$$

Hence, the generating function for the left side the identity is

$$\sum_{n \in \mathbb{N}} \left(\sum_{j=0}^{n} {j \choose m} \right) x^n = \left(\frac{x^m}{(1-x)^{m+1}} \right) \left(\frac{1}{1-x} \right) = \frac{x^m}{(1-x)^{m+2}}$$

and the generating function for the right side is

$$\sum_{n \in \mathbb{N}} \binom{n+1}{m+1} x^n = \frac{1}{x} \left(\frac{x^{m+2}}{(1-x)^{m+2}} - \binom{0}{m+1} \right) = \frac{x^m}{(1-x)^{m+2}}.$$

The two generating series equal the same rational function, so the desired identity holds.

Problem 7.2.5. For all nonnegative integers k and n, reprove the parallel sum identity [2.3.3] for multichoose coefficients:

$$\left(\binom{n+1}{k} \right) = \sum_{j=0}^{k} \left(\binom{n}{j} \right).$$

Series solution. The generalized binomial theorem [6.2.3] and Problem 6.3.3 give

$$\sum_{k \in \mathbb{N}} \binom{n+1}{k} x^k = \frac{1}{(1-x)^{n+1}} = \left(\frac{1}{(1-x)^n}\right) \left(\frac{1}{1-x}\right) = \sum_{k \in \mathbb{N}} \left(\sum_{j=0}^k \binom{n}{j}\right) x^k,$$

Extracting the coefficients of x^k proves the identity.

Theorem 7.2.6 (Generalized binomial). *For any nonnegative integer* n, we have

$$\frac{1}{(1-x)^n} = \sum_{k \in \mathbb{N}} \binom{n}{k} x^k.$$

Inductive proof. For any nonnegative integer *n*, set

$$M_n(x) := \sum_{k \in \mathbb{N}} \binom{n}{k} x^k$$
.

When n = 0, we have $M_0(x) = 1$ because $\binom{0}{0} = 1$ and $\binom{0}{k+1} = 0$ for all nonnegative integers k. The addition formula [2.2.5] for multichoose coefficients gives

$$\begin{split} M_{n+1}(x) - \binom{n+1}{0} &= \sum_{k \ge 1} \binom{n+1}{k} x^k = \sum_{k \ge 1} \left[\binom{n+1}{k-1} + \binom{n}{k} \right] x^k \\ &= \sum_{k \in \mathbb{N}} \binom{n+1}{k} x^{k+1} + \sum_{k \ge 1} \binom{n}{k} x^k = x M_{n+1}(x) + M_n(x) - \binom{n}{0}. \end{split}$$

Since $\binom{n+1}{0} = 1 = \binom{n}{0}$, we deduce that $(1-x)M_{n+1}(x) = M_n(x)$. The induction hypothesis states that $M_n(x) = (1-x)^{-n}$, so we conclude that $M_{n+1}(x) = (1-x)^{-n-1}$.

Exercises

Problem 7.2.7. For all nonnegative integers m and n, the **Delannoy** numbers $D_{m,n}$ satisfy $D_{m+1,n+1} = D_{m,n+1} + D_{m+1,n} + D_{m,n}$ and the initial conditions $D_{m,0} = D_{0,n} = 1$.

- (i) Express the generating series $D(x,y):=\sum_{m\in\mathbb{N}}\sum_{n\in\mathbb{N}}D_{m,n}\,x^m\,y^n$ as a rational function.
- (ii) Show that $D_{m,n} = \sum_{k \in \mathbb{N}} {m \choose k} {m+n-k \choose m}$.

Problem 7.2.8. For all nonnegative integers *m* and *n*, use generating series to demonstrate that

$$\sum_{k \in \mathbb{N}} {m \choose k} {n+k \choose m} = \sum_{k \in \mathbb{N}} {m \choose k} {n \choose k} 2^k.$$