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6.1 Laurent Series

The field of fractions of a commutative domain is the smallest
field containing it. The construction of the field of fractions is
modeled on the relationship between the ring of integers and the
field of rational numbers.

Definition 6.1.1 (Field of fractions). Fix a commutative domain 𝐴.
Let 𝐴× ∶= 𝐴 ⧵ {0} denote the set of nonzero elements in 𝐴. Define
the binary relation ∼ on 𝐴 × 𝐴× by setting (𝑎0, 𝑏0) ∼ (𝑎1, 𝑏1) when𝑎0𝑏1 − 𝑏0𝑎1 = 0. Since 𝐴 is a commutative ring, this relation is
clearly reflective and symmetric. For any (𝑎0, 𝑏0) ∼ (𝑎1, 𝑏1) and any(𝑎1, 𝑏1) ∼ (𝑎2, 𝑏2), we have

0 = 𝑏2(0)+𝑏0(0) = 𝑏2(𝑎0𝑏1−𝑏0𝑎1)+𝑏0(𝑎1𝑏2−𝑏1𝑎2) = 𝑏1(𝑎0𝑏2−𝑏0𝑎2) .
Since 𝑏1 ≠ 0 and 𝐴 is a domain, it follows that 𝑎0𝑏2 − 𝑏0𝑎2 = 0 and(𝑎0, 𝑏0) ∼ (𝑎2, 𝑏2), so this relation is also transitive. In other words,
we have an equivalence relation on the product 𝐴 × 𝐴×. The set of
equivalence classes is denote by Frac(𝐴). Traditionally, one writes𝑎0/𝑏0 for the equivalence class of the pair (𝑎0, 𝑏0).

For any two elements 𝑎0/𝑏0 and 𝑎1/𝑏1 in Frac(𝐴), we define
addition and multiplication by𝑎0𝑏0 + 𝑎1𝑏1 ∶= 𝑎0𝑏1 + 𝑎1𝑏0𝑏0𝑏1 and (𝑎0𝑏0 ) (𝑎1𝑏1 )∶= 𝑎0𝑎1𝑏0𝑏1 .
Observe that the elements (𝑎0𝑏1 + 𝑎1𝑏0)/𝑏0𝑏1 and 𝑎0𝑎1/𝑏0𝑏1 in
Frac(𝐴) depend only on the equivalence classes 𝑎0/𝑏0 and 𝑎1/𝑏1.
Indeed, if (𝑎0, 𝑏0) ∼ (𝑎2, 𝑏2) then we have 𝑎0𝑏2 = 𝑎2𝑏0 and

(𝑎0𝑏1 + 𝑎1𝑏0)(𝑏2𝑏1) = (𝑎0𝑏2𝑏21 + 𝑎1𝑏0𝑏1𝑏2)= (𝑎2𝑏0𝑏21 + 𝑎1𝑏0𝑏1𝑏2) = (𝑎2𝑏1 + 𝑎1𝑏2)(𝑏0𝑏1) ,(𝑎0𝑎1)(𝑏2𝑏1) = 𝑎0𝑏2𝑎1𝑏1 = 𝑎2𝑏0𝑎1𝑏1 = (𝑎2𝑎1)(𝑏0𝑏1) ,
which imply that (𝑎0𝑏1 + 𝑎1𝑏0)/(𝑏0𝑏1) = (𝑎2𝑏1 + 𝑎1𝑏2)/(𝑏2𝑏1)
and (𝑎0𝑎1)(𝑏0𝑏1) = (𝑎2𝑎1)/(𝑏2𝑏1). Because these definitions
immediately imply that01 + 𝑎0𝑏0 = 𝑎0𝑏0 (11) (𝑎0𝑏0 ) = 𝑎0𝑏0 ,
the additive identity is 0/1 and the multiplicative identity is 1/1.
One easily verifies that these binary operations endow Frac(𝐴)
with the structure of a field. Since we also have𝑎01 + 𝑎11 = 𝑎0 + 𝑎11 (𝑎01 ) (𝑎11 ) = 𝑎0𝑎11 ,
the canonical map from 𝐴 to Frac(𝐴), which sends 𝑎 ↦ 𝑎/1, is
compatible with addition and multiplication making Frac(𝐴) into
an 𝐴‑algebra.
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For our combinatorial applications, there are three important
special cases of this general construction.
• The field ℚ of rational numbers is the field of fractions for the

ring ℤ of integers.
• The field 𝑅(𝑥) of rational functions is the field of fractions for

the ring 𝑅[𝑥] of polynomials in the variable 𝑥 with coefficients
in 𝑅.

• The field 𝑅((𝑥)) of Laurent series is the field of fractions for
the ring 𝑅[[𝑥]] of formal power series in the variable 𝑥 with
coefficients in 𝑅.

To describe a normal form for the elements in 𝑅((𝑥)), we first
identify the units in 𝑅[[𝑥]].
Lemma 6.1.2. A formal power series ∑𝑗∈ℕ 𝑎𝑗 𝑥𝑗 ∈ 𝑅[[𝑥]] has an
inverse if and only if the constant term 𝑎0 has an inverse in 𝑅.

Proof. The existence of a formal power series ∑𝑗∈ℕ 𝑏𝑗 𝑥𝑗 in 𝑅[[𝑥]]
satisfying

1 = (∑𝑗∈ℕ𝑎𝑗 𝑥𝑗)(∑𝑗∈ℕ 𝑏𝑗 𝑥𝑗) = ∑𝑗∈ℕ (
𝑗∑𝑘=0 𝑎𝑘𝑏𝑗−𝑘) 𝑥𝑗 ,

is equivalent to having a solution to the system of equations:

𝑎0𝑏0 = 1 , 𝑎0𝑏1 + 𝑎1𝑏0 = 0 , … , 𝑗∑𝑘=0 𝑎𝑘 𝑏𝑗−𝑘 = 0
for all positive integers 𝑗. Using this observation, we prove both
directions of the claim as follows.⇐: When 𝑎0 has an inverse in 𝑅, it follows that

𝑏0 = 𝑎−10 , 𝑏1 = −𝑎−10 (𝑎1𝑏0) , 𝑏2 = −𝑎−10 (𝑎1𝑏1 + 𝑎2𝑏0) , ⋯
The coefficients of the inverse are given recursively by 𝑏0 = 𝑎−10
and 𝑏𝑗 = −𝑎−10 ∑𝑗𝑘=1 𝑎𝑘𝑏𝑗−𝑘 for all positive integers 𝑗.⇒: When 𝑎0 does not have an inverse in 𝑅, the equation 𝑎0𝑏0 = 1
has no solutions.

Proposition 6.1.3. Assume that 𝑅 is a field. For any nonzero Laurent
series ℎ ∈ 𝑅((𝑥)), there exists a unique integer ℓ and a unique formal
power series ∑𝑗∈ℕ 𝑐𝑗 𝑥𝑗 ∈ 𝑅[[𝑥]] such that 𝑐0 ≠ 0 and

ℎ = 𝑥ℓ⎧⎪⎩∑𝑗∈ℕ 𝑐𝑗 𝑥𝑗⎫⎪⎭ = ∑𝑗⩾ℓ 𝑐𝑗−ℓ 𝑥𝑗 .
Proof. Consider nonzero Laurent series ℎ ∈ 𝑅((𝑥)). By definition,
there exists 𝑓 ∈ 𝑅[[𝑥]] and a nonzero 𝑔 ∈ 𝑅[[𝑥]] such that ℎ = 𝑓/𝑔.
Setting 𝑚∶= ord(𝑓) and 𝑛 ∶= ord(𝑔), we have 𝑓 = ∑𝑗∈ℕ 𝑎𝑗 𝑥𝑗 and𝑔 = ∑𝑗∈ℕ 𝑏𝑗 𝑥𝑗 where 𝑎𝑚 ≠ 0, 𝑎𝑗 = 0 for all 0 ⩽ 𝑗 < 𝑚, 𝑏𝑛 ≠ 0, and𝑏𝑘 = 0 for all 0 ⩽ 𝑘 < 𝑛. The lemma establishes that the formal
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power series 𝑓∗ ∶= ∑𝑗∈ℕ 𝑎𝑚+𝑗 𝑥𝑗 and 𝑔∗ ∶= ∑𝑗∈ℕ 𝑏𝑛+𝑗 𝑥𝑗 are units in𝑅[[𝑥]]. Let 𝑞 ∈ 𝑅[[𝑥]] be the inverse of 𝑔∗, so 𝑞(0) ≠ 0. Hence, we
obtain ℎ = 𝑓𝑔 = 𝑥𝑚 𝑓∗𝑥𝑛 𝑔∗ = 𝑥𝑚 𝑓∗ 𝑞𝑥𝑛 𝑔∗ 𝑞 = 𝑥𝑛−𝑚(𝑓∗ 𝑞) ,
so setting ℓ∶= 𝑛−𝑚 and ∑𝑗∈ℕ 𝑐𝑗 𝑥𝑗 ∶= 𝑓∗ 𝑞 proves existence.

To see uniqueness, suppose that we have

ℎ = 𝑥ℓ⎧⎪⎩∑𝑗∈ℕ 𝑐𝑗 𝑥𝑗⎫⎪⎭ = 𝑥ℓ′⎧⎪⎩∑𝑗∈ℕ 𝑐′𝑗 𝑥𝑗⎫⎪⎭
where 𝑐0 ≠ 0 and 𝑐′0 ≠ 0. Choosing 𝑘 >⩾ max(|ℓ| , |ℓ′|), we see
that 𝑥𝑘+ℓ ∑𝑗∈ℕ 𝑐𝑗 𝑥𝑗 = 𝑥𝑘+ℓ′ ∑𝑗∈ℕ 𝑐′𝑗 𝑥𝑗 are nonzero elements in𝑅[[𝑥]]. Comparison of orders shows that 𝑘 + ℓ = 𝑘 + ℓ′ which
means ℓ = ℓ′. Finally, dividing by 𝑥ℓ, which is a unit in 𝑅((𝑥)), we
conclude that ∑𝑗∈ℕ 𝑐𝑗 𝑥𝑗 = ∑𝑗∈ℕ 𝑐′𝑗 𝑥𝑗.
Remark 6.1.4. The polynomial ring 𝑅[𝑥] is canonical embedded
into algebra of formal power series 𝑅[[𝑥]] defined by sending the
polynomial 𝑎0 +𝑎1 𝑥+⋯+𝑎𝑛 𝑥𝑛 ∈ 𝑅[𝑥] to the formal power series𝑎0 + 𝑎1 𝑥 + ⋯ + 𝑎𝑛 𝑥𝑛 + ∑𝑗>𝑛 0𝑥𝑗 ∈ 𝑅[[𝑥]]. This map induces a
canonical embedding of 𝑅(𝑥) into 𝑅((𝑥)), so we may regard any
rational function as a Laurent series.

Problem 6.1.5 (Geometric series). Show that the rational function(1 − 𝑥)−1 in ℤ(𝑥) equals the formal power series ∑𝑗∈ℕ 𝑥𝑗 in ℤ((𝑥)).
Solution. We have

(1 − 𝑥)(∑𝑗∈ℕ𝑥𝑗) = ∑𝑗∈ℕ𝑥𝑗 − ∑𝑗⩾1 𝑥𝑗 = 1 +∑𝑗⩾1 𝑥𝑗 − ∑𝑗⩾1 𝑥𝑗 = 1 .
Exercises

Problem 6.1.6. Let 𝐾 be a field of characteristic zero and consider
the 𝐾‑algebra 𝐾((𝑥)) of formal Laurent series. The formal residue
map Res∶ 𝐾((𝑥)) → 𝐾 is defined by Res(𝑓) ∶= [𝑥−1](𝑓). For any
two 𝑓, 𝑔 ∈ 𝐾((𝑥)), prove the following:

(i) Res(𝑑𝑓𝑑𝑥 ) = 0; Hint : Differentiation is defined term‑by‑term.

(ii) Res(𝑑𝑓𝑑𝑥 𝑔) = −Res(𝑓 𝑑𝑔𝑑𝑥); Hint : Assume the product rule holds.

(iii) Res( 1𝑓 𝑑𝑓𝑑𝑥 ) = ord(𝑓) for all 𝑓 ≠ 0.

6.2 Formal Derivatives

A surprising amount of calculus extends to formal power series.

Definition 6.2.1. For any formal power series 𝑓 ∶= ∑𝑗∈ℕ 𝑎𝑗 𝑥𝑗 in𝑅[[𝑥]], its derivative is 𝑑𝑓𝑑𝑥 ∶= ∑𝑗∈ℕ(𝑗 + 1) 𝑎𝑗+1 𝑥𝑗 ∈ 𝑅[[𝑥]].
This operation satisfies the usual rules.
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Proposition 6.2.2 (Differentiation rules). For all 𝑓, 𝑔 ∈ 𝑅[[𝑥]] and
all 𝑟, 𝑠 ∈ 𝑅, we have the following:

(Linearity) 𝑑𝑑𝑥(𝑟𝑓 + 𝑠𝑔) = 𝑟 𝑑𝑓𝑑𝑥 + 𝑠 𝑑𝑔𝑑𝑥 ,
(Product rule) 𝑑𝑑𝑥(𝑓𝑔) = 𝑑𝑓𝑑𝑥 𝑔 + 𝑓 𝑑𝑔𝑑𝑥 ,

(Kernel) The equation 𝑑𝑓𝑑𝑥 = 0 implies that 𝑓 = 𝑓(0) ∈ 𝑅.

Proof. When 𝑓∶= ∑𝑗∈ℕ 𝑎𝑗 𝑥𝑗 and 𝑔∶= ∑𝑗∈ℕ 𝑏𝑗 𝑥𝑗, we have

𝑑𝑑𝑥(𝑟𝑓 + 𝑠𝑔) = 𝑑𝑑𝑥⎧⎪⎩∑𝑗∈ℕ(𝑟 𝑎𝑗 + 𝑠𝑏𝑗) 𝑥𝑗⎫⎪⎭ = ∑𝑗∈ℕ(𝑗 + 1)(𝑟 𝑎𝑗+1 + 𝑠𝑏𝑗+1) 𝑥𝑗
= 𝑟⎧⎪⎩∑𝑗∈ℕ(𝑗 + 1) 𝑎𝑗+1 𝑥𝑗⎫⎪⎭+ 𝑠⎧⎪⎩∑𝑗∈ℕ(𝑗 + 1) 𝑏𝑗+1 𝑥𝑗⎫⎪⎭ = 𝑟𝑓′ + 𝑠𝑔′ .

and

𝑑𝑑𝑥(𝑓𝑔) = 𝑑𝑑𝑥⎧⎪⎩∑𝑗∈ℕ(
𝑗∑𝑘=0 𝑎𝑘 𝑏𝑗−𝑘) 𝑥𝑗⎫⎪⎭ = ∑𝑗∈ℕ((𝑗 + 1) 𝑗+1∑𝑘=0 𝑎𝑘 𝑏𝑗+1−𝑘) 𝑥𝑗

= ∑𝑗∈ℕ(
𝑗+1∑𝑘=0𝑘𝑎𝑘 𝑏𝑗+1−𝑘 + (𝑗 + 1 − 𝑘)𝑎𝑘 𝑏𝑗+1−𝑘) 𝑥𝑗

= ∑𝑗∈ℕ⎧⎪⎩(
𝑗∑𝑘=0(𝑘 + 1)𝑎𝑘+1 𝑏𝑗−𝑘) + ( 𝑗∑𝑘=0(𝑗 + 1 − 𝑘)𝑎𝑘 𝑏𝑗+1−𝑘)⎫⎪⎭𝑥𝑗

= ⎧
⎪⎩
∑𝑗∈ℕ(𝑗 + 1) 𝑎𝑗+1 𝑥𝑗⎫⎪⎭⎧⎪⎩∑𝑗∈ℕ𝑏𝑗 𝑥𝑗⎫⎪⎭+ ⎧

⎪⎩
∑𝑗∈ℕ𝑎𝑗 𝑥𝑗⎫⎪⎭⎧⎪⎩∑𝑗∈ℕ(𝑗 + 1) 𝑏𝑗+1 𝑥𝑗⎫⎪⎭

= 𝑑𝑓𝑑𝑥 𝑔 + 𝑓 𝑑𝑔𝑑𝑥 .
The equation 𝑑𝑓/𝑑𝑥 = 0 implies that, for all 𝑗 ∈ ℕ, we have(𝑗 + 1) 𝑎𝑗+1 = 0. Since the coefficient ring 𝑅 is a domain having
characteristic zero, the number 𝑗 + 1 is a nonzerodivisor in 𝑅.
Therefore, we deduce that 𝑎𝑗+1 = 0 for all 𝑗 ∈ ℕ, so 𝑓 = 𝑎0.

Having built a rigorous foundation, we return to the variant of
the binomial theorem [2.3.5] for multichoose coefficients.

Theorem 6.2.3 (Generalized binomial). For any nonnegative integer𝑛, we have

1(1 − 𝑥)𝑛 = ∑𝑗∈ℕ ((𝑛𝑗 ))𝑥𝑗 = ∑𝑗∈ℕ (𝑛 + 𝑗 − 1𝑗 )𝑥𝑗 .
Inductive proof. When 𝑛 = 0, we have 1 = ∑𝑗∈ℕ ((0𝑗 )) 𝑥𝑗, so the base
case holds. Suppose that given identity holds from some nonnega‑
tive integer 𝑛. Differentiating the induction hypothesis and using
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the absorption identity [2.3.1] for multichoose coefficients gives

𝑑𝑑𝑥 ( 1(1 − 𝑥)𝑛 ) = 𝑑𝑑𝑥 ⎧
⎪
⎪⎩
∑𝑗∈ℕ ((𝑛𝑗 ))𝑥𝑗

⎫
⎪
⎪⎭⇔ 𝑛(1 − 𝑥)𝑛+1 = ∑𝑗∈ℕ (𝑗 + 1) (( 𝑛𝑗 + 1))𝑥𝑗

⇔ 𝑛(1 − 𝑥)𝑛+1 = ∑𝑗∈ℕ 𝑛 ((𝑛 + 1𝑗 ))𝑥𝑗
⇔ 1(1 − 𝑥)𝑛+1 = ∑𝑗∈ℕ ((𝑛 + 1𝑗 ))𝑥𝑗 = ∑𝑗∈ℕ (𝑛 + 𝑗𝑗 )𝑥𝑗 .

Differentiation allows one to extract coefficients.

Proposition 6.2.4 (Maclaurin series). Assume that the coefficient
ring 𝑅 contains ℚ. For any formal power series 𝑓 ∈ 𝑅[[𝑥]], we have

𝑓 = ∑𝑗∈ℕ 1𝑗! (𝑑𝑗𝑓𝑑𝑥𝑗 |||𝑥=0) 𝑥𝑗 .
Proof. Consider the formal power series 𝑓 ∶= ∑𝑗∈ℕ 𝑎𝑗 𝑥𝑗 ∈ 𝑅[[𝑥]].
For any nonnegative integer 𝑘, repeated differentiation gives𝑑𝑘𝑓𝑑𝑥𝑘 = ∑𝑗∈ℕ(𝑗 + 1)(𝑗 + 2)⋯(𝑗 + 𝑘)𝑎𝑗+𝑘 𝑥𝑗 ,
so we deduce that 𝑑𝑘𝑓𝑑𝑥𝑘 ||𝑥=0 = 𝑘! 𝑎𝑘. Since 𝑅 contains ℚ, we may
divide by 𝑘!.

As an application, we extend the binomial theorem to any com‑
plex exponent.

Problem 6.2.5. For any complex number 𝑟, show that

(1 + 𝑥)𝑟 = ∑𝑗∈ℕ (𝑟𝑗 ) 𝑥𝑗 = ∑𝑗∈ℕ 𝑟
𝑗𝑗! 𝑥𝑗 ∈ ℂ[[𝑥]] .

Solution. For any nonnegative integer 𝑚, we obtain

𝑑𝑚𝑑𝑥𝑚(∑𝑗∈ℕ𝑎𝑗 𝑥𝑗)||||𝑥=0 = (∑𝑗⩾𝑚𝑎𝑗(𝑗)(𝑗 − 1)⋯(𝑗 −𝑚+ 1)𝑥𝑗−𝑚)||||𝑥=0 = 𝑚!𝑎𝑚 ,
𝑑𝑚𝑑𝑥𝑚 ((1 + 𝑥)𝑟)||𝑥=0 = 𝑟(𝑟 − 1)(𝑟 − 2)⋯(𝑟 −𝑚+ 1)(1 + 𝑥)𝑟−𝑚||𝑥=0 = 𝑟𝑚 ,
𝑑𝑚𝑑𝑥𝑚(∑𝑗∈ℕ 𝑟

𝑗𝑗! 𝑥𝑗)||||𝑥=0 = (∑𝑗⩾𝑚 𝑟𝑗𝑗! 𝑗(𝑗 − 1)⋯(𝑗 −𝑚)𝑥𝑗−𝑚)||||𝑥=0 = 𝑟𝑚𝑚! 𝑚! = 𝑟𝑚 .
Comparing coefficients establishes the desired equality.

Remark 6.2.6. The ring of polynomial differential operators (also
known as the Weyl algebra) is not commutative. For example, the
product rule implies that( 𝑑𝑑𝑥𝑥 − 𝑥 𝑑𝑑𝑥)𝑓 = 𝑑𝑑𝑥(𝑥𝑓) − 𝑥( 𝑑𝑑𝑥𝑓) = (𝑓 + 𝑥𝑑𝑓𝑑𝑥 ) − 𝑥𝑑𝑓𝑑𝑥 = 𝑓 ,
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so 𝑑𝑑𝑥𝑥 − 𝑥 𝑑𝑑𝑥 = 1. As a consequence, we have

(𝑥 𝑑𝑑𝑥)2 = (𝑥 𝑑𝑑𝑥)(𝑥 𝑑𝑑𝑥) = 𝑥( 𝑑𝑑𝑥𝑥) 𝑑𝑑𝑥 = 𝑥(𝑥 𝑑𝑑𝑥 + 1) 𝑑𝑑𝑥 = 𝑥2 𝑑2𝑑𝑥2 + 𝑥 𝑑𝑑𝑥 .
Problem 6.2.7. Let 𝜕 ∶= 𝑑𝑑𝑥 denote the basic differential operator
on ℚ[[𝑥]]. For any nonnegative integer 𝑛, prove that

(𝑥𝜕)𝑛 = ∑𝑘∈ℕ {𝑛𝑘}𝑥𝑘 𝜕𝑘 and 𝑥𝑛𝜕𝑛 = ∑𝑘∈ℕ (−1)𝑛−𝑘 [𝑛𝑘](𝑥𝜕)𝑘 .
Solution. For the first identity, we proceed by induction on 𝑛.
When 𝑛 = 0, we have (𝑥𝜕)0 = 1 = ∑𝑘∈ℤ { 0𝑘 } 𝑥𝑘 𝜕𝑘, so the base
case holds. Assume that the formula holds for some nonnegative
integer 𝑛. The induction hypothesis, the product rule, reindex‑
ing the sum, and the addition formula [3.0.3] for Stirling subset
numbers give

(𝑥𝜕)𝑛+1 = (𝑥𝜕)(𝑥𝜕)𝑛 = 𝑥𝜕⎧⎪⎩∑𝑘∈ℕ {𝑛𝑘}𝑥𝑘 𝜕𝑘⎫⎪⎭= ∑𝑘∈ℤ𝑘 {𝑛𝑘}𝑥𝑘 𝜕𝑘 + ∑𝑘∈ℤ {𝑛𝑘}𝑥𝑘+1 𝜕𝑘+1= ∑𝑘∈ℤ (𝑘 {𝑛𝑘} + { 𝑛𝑘 − 1})𝑥𝑘 𝜕𝑘 = ∑𝑘∈ℤ {𝑛 + 1𝑘 }𝑥𝑘 𝜕𝑘 .
For any two nonnegative integers 𝑚 and 𝑛, Stirling inver‑

sion [5.2.4] asserts that ∑𝑘∈ℤ(−1)𝑛−𝑘 [𝑛𝑘 ] { 𝑘𝑚} = 𝛿𝑚,𝑛. Hence, the
first identity implies that

∑𝑘∈ℤ (−1)𝑛−𝑘 [𝑛𝑘](𝑥𝜕)𝑘 = ∑𝑘∈ℤ (−1)𝑛−𝑘 [𝑛𝑘]⎧⎪⎩∑𝑚∈ℤ { 𝑘𝑚}𝑥𝑚 𝜕𝑚⎫⎪⎭
= ∑𝑚∈ℤ

⎧
⎪⎩
∑𝑘∈ℤ (−1)𝑛−𝑘 [𝑛𝑘] { 𝑘𝑚}⎫⎪⎭𝑥𝑚 𝜕𝑚

= ∑𝑚∈ℤ𝛿𝑚,𝑛 𝑥𝑚 𝜕𝑚 = 𝑥𝑛 𝜕𝑛 .
Exercises

Problem 6.2.8. The exponential power series is defined to be

exp(𝑥)∶= ∑𝑛∈ℕ 𝑥𝑛𝑛! ∈ ℚ[[𝑥]] .
(i) Let 𝑓 ∈ ℚ[[𝑥]]. If 𝑑𝑓𝑑𝑥 = 𝑓, then show that there exists 𝑐 ∈ ℚ

such that 𝑓 = 𝑐 exp(𝑥).
(ii) By extracting coefficients, show that the binomial theorem is

equivalent to the identity

exp(𝑡(𝑥 + 𝑦)) = exp(𝑡𝑥) exp(𝑡𝑦) ∈ ℚ[[𝑡, 𝑥, 𝑦]] .
(iii) For all nonnegative integers 𝑘 and 𝑛, use a similar approach

to prove the multinomial theorem

(𝑥1 + 𝑥2 +⋯+ 𝑥𝑘)𝑛 = ∑𝑗1+𝑗2+⋯+𝑗𝑘=𝑛
𝑛!𝑗1!𝑗2!⋯𝑗𝑘!𝑥𝑗11 𝑥𝑗22 ⋯𝑥𝑗𝑘𝑘 .
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6.3 Coefficient Extraction

The operators that isolate individual coefficients from a formal
power series provide the crucial tools for our applications.

Definition 6.3.1. For any nonnegative integer 𝑚, the coefficient
extraction function [𝑥𝑚]∶𝑅[[𝑥]]→𝑅 is defined by

[𝑥𝑚](∑𝑗∈ℕ𝑎𝑗 𝑥𝑗) = 𝑎𝑚 .
The definition of addition and multiplication in 𝑅[[𝑥]] establish
that this are 𝑅‑linear operators.

Problem 6.3.2. For all nonnegative integers 𝑚 and 𝑛, use the
equation (1+𝑥)𝑚 (1+𝑥)𝑛 = (1+𝑥)𝑚+𝑛 to reprove the Vandermonde
identity [2.1.5] for binomial coefficients.

Solution. The binomial theorem [2.1.6] is equivalent to having[𝑥𝑘]((1 + 𝑥)𝑛) = (𝑛𝑘 ) for all integers 𝑘. Hence, the definition for
multiplication of formal power series gives

∑𝑗∈ℤ (𝑚𝑗 ) ( 𝑛𝑘 − 𝑗) = 𝑘∑𝑗=0 (𝑚𝑗 ) ( 𝑛𝑘 − 𝑗) = [𝑥𝑘]((1 + 𝑥)𝑚(1 + 𝑥)𝑛)
= [𝑥𝑘]((1 + 𝑥)𝑚+𝑛) = (𝑚+ 𝑛𝑘 ) .

Problem 6.3.3. For any formal power series 𝑓 ∶= ∑𝑗∈ℕ 𝑎𝑗 𝑥𝑗 in𝑅[[𝑥]] and any nonnegative integer 𝑚, find [𝑥𝑚]((1 − 𝑥)−1𝑓).
Solution. The geometric series [6.1.5] satisfies (1 − 𝑥)−1 = ∑𝑗∈ℕ 𝑥𝑗.
Hence, the definition for multiplication in 𝑅[[𝑥]] gives

[𝑥𝑚]⎧⎪⎩(∑𝑗∈ℕ𝑥𝑗)𝑓⎫⎪⎭ = [𝑥𝑚]⎧⎪⎩∑𝑗∈ℕ (
𝑗∑𝑘=0 𝑎𝑘)𝑥𝑗⎫⎪⎭ = 𝑚∑𝑘=0𝑎𝑘 .

Remark 6.3.4. When 𝑓 ∶= (1 − 𝑥)−1 = ∑𝑗∈ℕ 𝑥𝑗, the previous
problem shows1(1 − 𝑥)2 = ∑𝑗∈ℕ(𝑗 + 1)𝑥𝑗 and 𝑥(1 − 𝑥)2 = ∑𝑗∈ℕ 𝑗 𝑥𝑗 .
Proposition 6.3.5. For any polynomial 𝑝 in 𝑅[𝑥] and any formal
power series 𝑓∶= ∑𝑗∈ℕ 𝑎𝑗 𝑥𝑗 in 𝑅[[𝑥]], we have

𝑝(𝑥 𝑑𝑑𝑥)𝑓 = ∑𝑗∈ℕ 𝑝(𝑗) 𝑎𝑗 𝑥𝑗
Inductive proof. For all nonnegative integers 𝑚, it suffices to
prove that (𝑥 𝑑𝑑𝑥)𝑚 𝑓 = ∑𝑗∈ℕ 𝑗𝑚 𝑎𝑗 𝑥𝑗. When 𝑚 = 0, we have(𝑥 𝑑𝑑𝑥)0𝑓 = 𝑓 = ∑𝑗∈ℕ 𝑎𝑗 𝑥𝑗 = ∑𝑗∈ℕ 𝑗0 𝑎𝑗 𝑥𝑗, so the base case holds.
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Assume that the claim holds for some nonnegative integer 𝑚. The
induction hypothesis and properties of the derivative [6.2.2] yield

(𝑥 𝑑𝑑𝑥)𝑚+1 𝑓 = (𝑥 𝑑𝑑𝑥)(𝑥 𝑑𝑑𝑥)𝑚 𝑓 = 𝑥 𝑑𝑑𝑥(∑𝑗∈ℕ 𝑗𝑚 𝑎𝑗 𝑥𝑗) = 𝑥(∑𝑗∈ℕ (𝑗 + 1)𝑚 𝑎𝑗+1 𝑥𝑗)
= ∑𝑗∈ℕ (𝑗 + 1)𝑚 𝑎𝑗+1 𝑥𝑗+1 = ∑𝑗∈ℕ 𝑗𝑚 𝑎𝑗 𝑥𝑗 .

Problem 6.3.6. Use the previous proposition to reprove the Ab‑
sorption Identity [2.1.3] for binomial coefficients.

Solution. Applying proposition for the polynomial 𝑥 ∈ ℤ[𝑥] gives

∑𝑘∈ℕ 𝑘 (𝑛 + 1𝑘 )𝑥𝑘 = (𝑥 𝑑𝑑𝑥)((1 + 𝑥)𝑛+1) = (𝑛 + 1)𝑥 (1 + 𝑥)𝑛
= ∑𝑘∈ℕ (𝑛 + 1) (𝑛𝑘)𝑥𝑘+1 = ∑𝑘∈ℕ (𝑛 + 1) ( 𝑛𝑘 − 1)𝑥𝑘 ,

so extracting the coefficient of 𝑥𝑘 completes the proof.

Problem 6.3.7. Prove that log ( 11 − 𝑥) = ∑𝑗∈ℕ 𝑥𝑗+1𝑗 + 1 in ℚ[[𝑥]].
Solution. Suppose that log( 11−𝑥) = ∑𝑗∈ℕ 𝑎𝑗 𝑥𝑗 in ℚ[[𝑥]]. The propo‑
sition and the geometric series [6.1.5] give

∑𝑗∈ℕ 𝑗 𝑎𝑗 𝑥𝑗 = (𝑥 𝑑𝑑𝑥) log ( 11 − 𝑥)
= 𝑥( 1(1 − 𝑥)−1 ) ( −1(1 − 𝑥)2 ) (−1) = 𝑥1 − 𝑥 = ∑𝑗>0𝑥𝑗 .

Comparing coefficients establishes that 𝑗 𝑎𝑗 = 1 for all positive
integers 𝑗.

Problem 6.3.8. Find a closed formula for the formal power series∑𝑗∈ℕ(𝑗2 + 4𝑗 + 5) 𝑥𝑗𝑗! .

Solution. Applying the proposition, we have

∑𝑗∈ℕ(𝑗2 + 4𝑗 + 5) 𝑥𝑗𝑗!= ((𝑥𝜕)2 + 4(𝑥𝜕) + 5) exp(𝑥)= (𝑥𝜕)(𝑥 exp(𝑥)) + 4𝑥 exp(𝑥) + 4 exp(𝑥)= 𝑥(exp(𝑥) + 𝑥 exp(𝑥)) + 4𝑥 exp(𝑥) + 4 exp(𝑥)= (𝑥2 + 5𝑥 + 5) exp(𝑥) .
Exercises

Problem 6.3.9. Find the unique sequence (𝑎0, 𝑎1, 𝑎2, … ) of real
numbers such that, for all nonnegative integers 𝑗, we have

𝑗∑𝑘=0 𝑎𝑘 𝑎𝑗−𝑘 = 1 .


