5.1 Inclusion-Exclusion Principle

One identity with alternating signs is especially famous.

Theorem 5.1.1 (Inclusion-exclusion). For any subsets $A_1, A_2, ..., A_n$ of a fixed superset X, the number of elements in X that are contained in none of A_i is

$$\left| \mathcal{X} \setminus \bigcup_{j=1}^{n} \mathcal{A}_{j} \right| = \sum_{J \subseteq [n]} (-1)^{|J|} \left| \bigcap_{j \in J} \mathcal{A}_{j} \right| = \sum_{J \subseteq [n]} (-1)^{|J|} |\mathcal{A}_{J}|,$$

where $A_J := \bigcap_{i \in I} A_i$ for all subsets $J \subseteq [n]$.

Involutive proof. For any $x \in \mathcal{X}$, set $P_x := \{j \in [n] \mid x \in \mathcal{A}_j\}$. Consider the set of all pairs (x, J) where $x \in \mathcal{X}$ and $J \subseteq P_x$.

Positive block: All pairs (x, J) such that |J| is even. *Negative block:* All pairs (x, J) such that |J| is odd.

Involution: Given a pair (x,J), set $i_x := \max P_x$ and consider the $\max (x,J) \mapsto (x,J \ominus \{i_x\})$. Since $(J \ominus \{i_x\}) \ominus \{i_x\} = J$, this operation defines an involution. As $J \ominus \{i_x\}$ has either one more or one less element than J, this involution is sign-reversing. However, this map is undefined when $P_x = \emptyset$. In this case, the set J must empty, so |J| = 0 is even. We declare that the pairs (x,J) such that $P_x = \emptyset$ are fixed points.

Since the fixed-point set is $\{x \in \mathcal{X} \mid x \notin \bigcup_{j=1}^n \mathcal{A}_j\}$, we see that

$$\begin{split} \sum_{J \subseteq [n]} (-1)^{|J|} \ |\mathcal{A}_J| &= \sum_{|J| \subseteq [n]} \sum_{x \in \mathcal{A}_J} (-1)^{|J|} = \sum_{(x,J) \in \mathcal{X} \times 2^{[n]}} (-1)^{|J|} \\ &= \sum_{(x,\varnothing) \in \mathcal{X} \times 2^{[n]}} (-1)^0 = |\mathcal{X} \setminus (\mathcal{A}_1 \cup \mathcal{A}_2 \cup \dots \cup \mathcal{A}_n)| \ . \ \Box \end{split}$$

When n = 2 or n = 3, the inclusion-exclusion principle gives

$$\begin{aligned} |\mathcal{X} \setminus (\mathcal{A}_1 \cup \mathcal{A}_2)| &= |\mathcal{X}| - |\mathcal{A}_1| - |\mathcal{A}_2| + |\mathcal{A}_1 \cap \mathcal{A}_2| , \\ |\mathcal{X} \setminus (\mathcal{A}_1 \cup \mathcal{A}_2 \cup \mathcal{A}_3)| &= |\mathcal{X}| - |\mathcal{A}_1| - |\mathcal{A}_2| - |\mathcal{A}_3| + |\mathcal{A}_1 \cap \mathcal{A}_2| + |\mathcal{A}_1 \cap \mathcal{A}_3| + |\mathcal{A}_2 \cap \mathcal{A}_2| - |\mathcal{A}_1 \cap \mathcal{A}_2 \cap \mathcal{A}_3| . \end{aligned}$$

Problem 5.1.2. A school has 100 students, 50 students studying French, 40 students studying English, 30 students studying Chinese, 15 students studying any pair of languages, and 5 students studying all three. How many students are not studying any of these languages?

Solution. By the inclusion-exclusion principle, the number of students at the school not studying any of the three languages is 100 - 50 - 40 - 30 + 15 + 15 + 15 - 5 = 20.

Problem 5.1.3. Count the permutations σ of the set [9] such that $\sigma(1) \ge 2$ and $\sigma(9) \le 7$.

Solution. The inclusion-exclusion principle gives

9!
$$-\underbrace{(2)(8!)}_{\sigma(1)\in\{1,2\}} - \underbrace{(8!)(2)}_{\sigma(9)\in\{8,9\}} + \underbrace{(2)(7!)(2)}_{\text{both conditions}} = 221760.$$

The empty intersection is the fixed superset: $A_{\emptyset} = \mathcal{X}$.

Figure 5.1: Venn diagram of language students

Figure 5.2: Venn diagram of permutations

To complement these illustrations of the inclusion-exclusion principle, we describe two of the more celebrated applications.

Problem 5.1.4 (Derangements). How many permutations σ of the set [n] have no fixed points, that is $\sigma(j) \neq j$ for all $j \in [n]$? A permutation in which no element appears in its canonical position is called a *derangement*. Thus, this question is equivalent to counting all derangements.

Proof. For any nonnegative integer n, let D_n be the number of derangements of the set [n]. Consider the subset A_i consist of all permutations of the set [n] with $\sigma(j) = j$. For all subsets $J \subseteq [n]$, it follows that the set A_I consists of permutations that fix the elements in *J*, so we have $|A_J| = (n - |J|)!$. The inclusion-exclusion principle and the definition of the binomial coefficient imply that

$$D_n = \sum_{J \subseteq [n]} (-1)^{|J|} |\mathcal{A}_J| = \sum_{k=0}^n (-1)^k \binom{n}{k} (n-k)! = n! \sum_{k=0}^n \frac{(-1)^k}{k!} . \square$$

Problem 5.1.5 (Surjections). Let *n* and *k* be nonnegative integers. Count the surjections from the set [n] onto the set [k]?

Solution. For all $j \in [k]$, let A_i consist of maps from the set [n] to the set [k] such that j is not in the image. For all subsets $J \subseteq [k]$, it follows that A_I consists of the maps from [n] to [k] that miss the elements in *J*, so we have $|A_J| = (k - |J|)^n$. The inclusion-exclusion principle implies that the number of surjections is

$$\sum_{J \subseteq [k]} (-1)^{|J|} |\mathcal{A}_J| = \sum_{j=0}^k (-1)^j \binom{k}{j} (k-j)^n.$$

Remark 5.1.6. Although there are no surjections when n < k, it is not obvious that the expression $\sum_{j=0}^{k} (-1)^{j} {k \choose j} (k-j)^{n}$ vanishes under this hypothesis.

Corollary 5.1.7. For any nonnegative integers n and k, we have

$$k! \begin{Bmatrix} n \\ k \end{Bmatrix} = \sum_{j \in \mathbb{Z}} (-1)^j \binom{k}{j} (k-j)^n.$$

Double-counting proof. How many surjective maps from the set [n]to the set [k] are there?

Answer 1: A map $f:[n] \rightarrow [k]$ is determine by its k preimages $f^{-1}(i) := \{j \in [n] \mid f(j) = i\} \text{ for all } i \in [k].$ The map f is surjective if all k of the preimages are nonempty. The definition of the Stirling subset numbers implies that there are $\binom{n}{k}$ ways to partition the set [n] into k blocks. There are k! to order these blocks. Thus, the number of surjective maps is $k! \begin{Bmatrix} n \\ k \end{Bmatrix}$.

Answer 2: In the previous problem, we establish that there are $\sum_{i=0}^{k} (-1)^{j} {k \choose i} (k-j)^{n}$ surjective maps.

The first few numbers D_n are 1, 0, 1, 2, 9, 44, 265, 1854, 14833, ...

Since $e^{-1} = \sum_{k \in \mathbb{N}} (-1)^k / k!$, we see that n!/e is a good approximation to D_n . In fact, one can show that D_n is the nearest integer to n!/e.

5.2 **Inverting Infinite Matrices**

A large subfamily of combinatorial identies may be recast in terms of inverting infinite matrices.

Proposition 5.2.1. *For all nonnegative integers m and n, we have*

$$\sum_{k=\mathbb{Z}} (-1)^k \binom{n}{k} \binom{k}{m} = (-1)^n \, \delta_{n,m} \, .$$

Involutive proof. Consider the set of all nested pairs (A, B) such that $\mathcal{B} \subseteq \mathcal{A} \subseteq [n]$ and $|\mathcal{B}| = m$.

Positive block: A nested pair $(\mathcal{A}, \mathcal{B})$ is positive when $|\mathcal{A}|$ is even. The definition of the binomial coefficients implies that there are $\sum_{k\in\mathbb{Z}} \binom{n}{2k} \binom{2k}{m}$ positive pairs.

Negative block: A nested pair (A, B) is negative when |A| is odd. The definition of the binomial coefficients implies that there are $\sum_{k\in\mathbb{Z}} \binom{n}{2k+1} \binom{2k+1}{m}$ negative pairs.

Involution: To define a sign-reversing involution, we deal with three separate cases.

n < m: Under this assumption, the positive and negative blocks are both empty.

n = m: When m is even, the positive block contains one pair ([n], [n]) and the negative block is empty. When m is odd, the positive part is empty and the negative part contains one pair. Either way, the unique sign-reversing involution has a one fixed point whose sign is $(-1)^n$.

n > m: For any nested pair (A, B), let a be the largest element of the set [n] that is not in \mathcal{B} ; such an element must exist because n > m. We map $(\mathcal{A}, \mathcal{B})$ to $(\mathcal{A} \ominus \{a\}, \mathcal{B})$. Since $|\mathcal{A}|$ and $|\mathcal{A} \ominus \{a\}|$ have opposite parity, we have constructed a sign-reversing involution with no fixed points.

Combining the three cases, we see that

$$\sum_{k \in \mathbb{Z}} \binom{n}{2k} \binom{2k}{m} - \sum_{k \in \mathbb{Z}} \binom{n}{2k+1} \binom{2k+1}{m} = \sum_{k \in \mathbb{Z}} (-1)^k \binom{n}{k} \binom{k}{m}$$
$$= (-1)^n \delta_{n,m}. \qquad \Box$$

Up to appropriate signs, the matrix of binomial coefficients is its own inverse;

$$I = \begin{bmatrix} \binom{0}{0} & \binom{0}{1} & \cdots & \binom{0}{n} \\ \binom{1}{0} & \binom{1}{1} & \cdots & \binom{0}{n} \\ \binom{1}{0} & \binom{1}{1} & \cdots & \binom{0}{n} \\ \vdots & \vdots & \ddots & \vdots \\ \binom{n}{0} & \binom{n}{1} & \cdots & \binom{n}{n} \end{bmatrix} \begin{bmatrix} (-1)^{0+0} \binom{0}{0} & (-1)^{0+1} \binom{0}{1} & \cdots & (-1)^{0+n} \binom{0}{n} \\ (-1)^{1+0} \binom{1}{0} & (-1)^{1+1} \binom{1}{1} & \cdots & (-1)^{1+n} \binom{n}{n} \\ \vdots & \vdots & \ddots & \vdots \\ (-1)^{n+0} \binom{n}{0} & (-1)^{n+1} \binom{n}{1} & \cdots & (-1)^{n+n} \binom{n}{n} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & \cdots \\ 1 & 1 & 0 & 0 & 0 & \cdots \\ 1 & 2 & 1 & 0 & 0 & \cdots \\ 1 & 3 & 3 & 1 & 0 & \cdots \\ 1 & 4 & 6 & 4 & 1 & \cdots \\ \vdots & \vdots \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & \cdots \\ -1 & 1 & 0 & 0 & 0 & \cdots \\ 1 & -2 & 1 & 0 & 0 & \cdots \\ -1 & 3 & -3 & 1 & 0 & \cdots \\ 1 & -4 & 6 & -4 & 1 & \cdots \\ \vdots & \vdots \end{bmatrix}.$$

Corollary 5.2.2 (Binomial inversion). *For any two sequences* (u_n) and (v_n) , the following conditions are equivalent.

a. For any nonnegative integer n, we have $u_n = \sum_{k \in \mathbb{Z}} \binom{n}{k} v_k$. b. For any nonnegative integer n, we have $v_n = \sum_{k \in \mathbb{Z}} (-1)^{n-k} \binom{n}{k} u_k$.

The Kronecker delta function is defined to be

$$\delta_{j,k} := \begin{cases} 1 & \text{if } j = k, \\ 0 & \text{if } j \neq k. \end{cases}$$

In other words, it gives the entries of the identity matrix $I = [\delta_{i,k}]$.

Proof. The inverse of the matrix whose (n, k)-entry is $\binom{n}{k}$ is the matrix whose (n, k)-entry is $(-1)^{n-k} \binom{n}{k}$.

This provides an alternative approach to Corollary 5.1.7.

Problem 5.2.3. For all nonnegative integers *m* and *n*, prove that

$$\begin{Bmatrix} n \\ m \end{Bmatrix} = \frac{1}{m!} \sum_{k \in \mathbb{Z}} (-1)^{n-k} \binom{m}{k} k^n.$$

Solution. The power conversion identity [3.0.6] asserts that

$$m^{n} = \sum_{k \in \mathbb{Z}} {n \brace k} m^{\underline{k}} = \sum_{k \in \mathbb{Z}} {n \brace k} k! {m \choose k} = \sum_{k \in \mathbb{Z}} {m \choose k} \left(k! {n \brace k}\right),$$

so binomial inversion gives $m! {n \choose m} = \sum_{k \in \mathbb{Z}} (-1)^{n-k} {m \choose i} k^n$.

As we have come to expect, there is a Stirling analogue of our inverse for the binomial matrix.

Proposition 5.2.4. For all nonnegative integers m and n, we have

$$\sum_{k\in\mathbb{Z}} (-1)^k \begin{bmatrix} n \\ k \end{bmatrix} \begin{Bmatrix} k \\ m \end{Bmatrix} = (-1)^n \, \delta_{m,n} \, .$$

Involutive solution. Consider all groupings in which *n* individuals are seated around k nonempty circular tables that are then placed into *m* indistinguishable nonempty rooms.

Positive block: All acceptable groupings with an even number of tables. The definitions of the Stirling numbers implies that there are $\sum_{k\in\mathbb{Z}} {n \brack 2k} {2k \brack m}$ such groupings.

Negative block: All acceptable groupings with an odd number of tables. The definitions of the Stirling numbers implies that there are $\sum_{k\in\mathbb{Z}} {n\brack 2k+1} {2k+1\brack m}$ such groupings. *Involution:* To define a sign-reversing involution on the set of all

acceptable groupings, we deal with three separate cases.

m > n: When there are more rooms than individual, there are no acceptable groupings.

m = n: There is only one grouping—each room contains one table and each table has one person seated at it. It follows that the unique sign-reversing involution has one fixed point whose sign equals $(-1)^n$.

m < n: Given an grouping, let a be the largest numbered individual who is not in a room by themselves and let b the next largest numbered individual in the same room. As with cycle decompositions, we adopt the convention of tables lists in increasing order by the largest numbered individual seated at a table. If a and b are not at the same table, then we merge these to tables by inserting all the people on the second table (starting with b and proceeding counterclockwise) to the right a on the first table. If a and b are at the same table,

then split the table into two: the people starting with a and working counterclockwise up to, but not including, b are on one table and everyone else is on the other (with relative orders are preserved). By construction, this operation is a sign-reversing involution.

The analysis of our sign-reversing involution yields

$$\begin{split} \sum_{k \in \mathbb{Z}} \begin{bmatrix} n \\ 2k \end{bmatrix} \begin{Bmatrix} 2k \\ m \end{Bmatrix} - \sum_{k \in \mathbb{Z}} \begin{bmatrix} n \\ 2k+1 \end{bmatrix} \begin{Bmatrix} 2k+1 \\ m \end{Bmatrix} &= \sum_{k \in \mathbb{Z}} (-1)^k \begin{bmatrix} n \\ k \end{bmatrix} \begin{Bmatrix} k \\ m \end{Bmatrix} \\ &= (-1)^n \, \delta_{m,n} \, . \end{split}$$

Up to appropriate signs, the matrix of Stirling subset numbers is the inverse of the matrix of Stirling cycle numbers;

Is the inverse of the matrix of Stirling cycle numbers;
$$I = \begin{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} & \cdots & \begin{bmatrix} 0 \\ n \end{bmatrix} \\ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} & \cdots & \begin{bmatrix} 0 \\ n \end{bmatrix} \\ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} & \cdots & \begin{bmatrix} 0 \\ 1 \end{bmatrix} \end{bmatrix} \begin{bmatrix} (-1)^{0+0} {0 \\ 0} \\ (-1)^{1+0} {0 \\ 0} \end{bmatrix} \begin{bmatrix} (-1)^{0+1} {0 \\ 1} \\ (-1)^{1+1} {1 \\ 1} \end{bmatrix} & \cdots & (-1)^{1+n} {1 \\ 1} \\ \vdots & \vdots & \ddots & \vdots \\ (-1)^{n+1} {n \\ 1} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & \cdots \\ 0 & 1 & 0 & 0 & 0 & \cdots \\ 0 & 1 & 0 & 0 & 0 & \cdots \\ 0 & 1 & 1 & 0 & 0 & \cdots \\ 0 & 2 & 3 & 1 & 0 & \cdots \\ 0 & 1 & 0 & 0 & \cdots \\ 0 & 2 & 3 & 1 & 0 & \cdots \\ 0 & 1 & -3 & 1 & 0 & \cdots \\ 0 & 1 & -3 & 1 & 0 & \cdots \\ 0 & -1 & 7 & -6 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix}.$$

Exercises

Problem 5.2.5. For all nonnegative integers *m* and *n*, show that

$$\sum_{k\in\mathbb{Z}} (-1)^k \binom{n}{k} \binom{k}{m} = (-1)^n \binom{n}{m-n}.$$

6

Power Series

Notation 6.0.1. Throughout, the ring R denotes a commutative domain of characteristic zero. In particular, the ring \mathbb{Z} is contained in R and the product of two elements in R equals zero if and only if one of the elements is zero. The ring \mathbb{Z} of integers, the field \mathbb{Q} of rational numbers, the field \mathbb{C} of complex numbers, and the field $\mathbb{C}(y)$ of rational functions over \mathbb{C} are examples of such a ring.

6.0 Algebra of Formal Power Series

Loosely speaking, a formal power series is a polynomial that may have infinitely many terms. The collection of all such objects forms a new ring.

Definition 6.0.2. For any commutative domain R, the *algebra of formal power series* in the variable x over the ring R is denoted by R[[x]]. As a set, R[[x]] consists of all power series $f := \sum_{j \in \mathbb{N}} a_j x^j$ where $a_j \in R$ for all j. Each element $f \in R[[x]]$ is identified with an infinite sequence $(a_0, a_1, a_2, ...)$ of elements in R. For example, we have

$$\sum_{j\in\mathbb{N}} j! \, x^j \in \mathbb{Z}[[x]] \qquad \text{and} \qquad \sum_{j\in\mathbb{N}} 2^{-j} \, x^j \in \mathbb{Q}[[x]] \, .$$

Addition and multiplication of formal power series are defined termwise by

$$\begin{split} \left(\sum_{j\in\mathbb{N}}a_j\,x^j\right) + \left(\sum_{j\in\mathbb{N}}b_j\,x^j\right) &= \sum_{j\in\mathbb{N}}(a_j+b_j)\,x^j\,.\\ \left(\sum_{j\in\mathbb{N}}a_j\,x^j\right) &\left(\sum_{j\in\mathbb{N}}b_j\,x^j\right) &= \sum_{j\in\mathbb{N}}\left(\sum_{k=0}^ja_kb_{j-k}\right)x^j\,. \end{split}$$

With these operations, the additive identity (or zero element) is $0 := \sum_{j \in \mathbb{N}} 0 \, x^j$ and multiplicative identity is $1 := 1 + \sum_{j > 0} 0 \, x^j$. The ring R embeds into R[[x]] by sending $a \in R$ to $a \cdot 1 = a + \sum_{j > 0} 0 \, x^j$.

Theorem 6.0.3. For any commutative domain R, the set R[[x]] of formal power series forms a commutative unital associative R-algebra.

Proof. For addition in R[[x]], commutativity, associativity, the existence of an additive identity, and the existence of an additive inverse are inherited from the corresponding properties in the coefficient ring R. For multiplication in R[[x]], commutativity, associativity, and the existence of a multiplicative inverse depend

on distributivity in R as well as the corresponding property in R. For any $f:=\sum_{j\in\mathbb{N}}a_j\,x^j$, $g:=\sum_{j\in\mathbb{N}}b_j\,x^j$, and $h:=\sum_{j\in\mathbb{N}}c_j\,x^j$, we have

$$\begin{split} fg &= \sum_{j \in \mathbb{N}} \left(\sum_{k=0}^{j} a_k \, b_{k-j} \right) x^j = \sum_{j \in \mathbb{N}} \left(\sum_{k=0}^{j} b_k \, a_{j-k} \right) x^j = gf \\ (fg)h &= \left(\sum_{j \in \mathbb{N}} \left(\sum_{\ell=0}^{j} a_\ell \, b_{j-\ell} \right) x^j \right) \left(\sum_{j \in \mathbb{N}} c_j \, x^j \right) = \sum_{j \in \mathbb{N}} \left(\sum_{k=0}^{j} \left(\sum_{\ell=0}^{k} a_\ell \, b_{k-\ell} \right) c_{j-k} \right) x^j \\ &= \sum_{j \in \mathbb{N}} \left(\sum_{\ell=0}^{j} \left(\sum_{k=\ell}^{j} a_\ell \, b_{k-\ell} c_{j-k} \right) \right) x^j = \sum_{j \in \mathbb{N}} \left(\sum_{\ell=0}^{j} \left(\sum_{\ell=0}^{j-\ell} a_\ell \, b_k c_{j-k-\ell} \right) \right) x^j \\ &= \sum_{j \in \mathbb{N}} \left(\sum_{\ell=0}^{j} a_\ell \left(\sum_{\ell=0}^{j-\ell} b_k c_{j-k-\ell} \right) \right) x^j = \left(\sum_{j \in \mathbb{N}} a_j \, x^j \right) \left(\sum_{j \in \mathbb{N}} \left(\sum_{k=0}^{j} b_k \, c_{j-k} \right) x^j \right) = f(gh) \, . \end{split}$$

Distributivity in R[[x]] just rests on corresponding property in R. Finally, the algebra R[[x]] is a R-module because the canonical embedding $R \hookrightarrow R[[x]]$ is compatible with both addition and multiplication.

A formal power series need not have a largest degree term, but the degree of the smallest nonzero term is a useful invariant.

Definition 6.0.4. The *order* of a nonzero formal power series $f := \sum_{j \in \mathbb{N}} a_j x^j$ is $\operatorname{ord}(f) := \min\{k \in \mathbb{N} \mid a_k \neq 0\}$.

Proposition 6.0.5. Let $f, g \in R[[x]]$ be two nonzero power series. When $f + g \neq 0$, we have $\operatorname{ord}(f + g) \geqslant \min(\operatorname{ord}(f), \operatorname{ord}(g))$. We also have $\operatorname{ord}(fg) = \operatorname{ord}(f) + \operatorname{ord}(g)$, so the algebra R[[x]] is a domain.

Proof. Consider the two formal power series $f:=\sum_{j\in\mathbb{N}}a_j\,x^j$ and $g:=\sum_{j\in\mathbb{N}}b_j\,x^j$ such that $m:=\operatorname{ord}(f)$ and $n:=\operatorname{ord}(g)$. It follows that $a_j=0=b_j$ for all $j<\min(m,n)$. Since $a_j+b_j=0$ for all $j<\min(m,n)$, we see that $\operatorname{ord}(f+g)\geqslant\min(m,n)$. The definition of the product of formal power series implies that the coefficient of x^j in fg equals $\sum_{k=0}^{j}a_k\,b_{j-k}$. It follows that either k< m and $a_k=0$ or j-k< n and $b_{j-k}=0$, so the coefficient of x^j in fg vanishes for all j< m+n. Furthermore, the coefficient of x^{m+n} is $\sum_{k=0}^{m+n}a_k\,b_{m+n-k}=a_m\,b_n$. Since R is a domain, $a_m\neq 0$, and $b_n\neq 0$, we deduce that $a_m\,b_n\neq 0$ and $\operatorname{ord}(fg)=m+n$.

Remark 6.0.6. Unlike with polynomials, a formal power series does not determine a function on the coefficient ring R. Except for evaluation at x = 0, the map which sends the variable x to an element of the coefficient ring R is typically not a well-defined.

Remark 6.0.7. Although not relevant for our combinatorial applications, there are several equivalent ways to view R[[x]] as a topological algebra.

• We may give $R[[x]] \cong R^{\mathbb{N}}$ the product topology where each copy of R is given the discrete topology.

- We may give R[[x]] the $\langle x \rangle$ -adic topology. The ideals $\langle x \rangle^j$, for all $j \in \mathbb{N}$, form the basis of open neighbourhoods of 0.
- We may give R[[x]] the metric topology where the distance between distinct elements $\sum_{j\in\mathbb{N}}a_j\,x^j$ and $\sum_{j\in\mathbb{N}}b_j\,x^j$ is 2^{-k} where $k := \min(k \in \mathbb{N} \mid a_k \neq b_k)$. As a metric space, R[[x]] is complete. With this topological structure, an infinite sum converges if and only if the sequence of its terms converges to 0.

Exercises

Problem 6.0.8. Let *R* be a commutative domain of characteristic zero. Consider two formal power series

$$f(x) := \sum_{j \in \mathbb{N}} a_j x^j \in R[[x]]$$
 and $g(x) := \sum_{j \in \mathbb{N}} b_j x^j \in R[[x]]$.

If $f(x) \in R[x]$ or $b_0 = 0$, then show that the composition

$$f(g(x)) := \sum_{j \in \mathbb{N}} a_j (g(x))^j$$

is a well-defined element of R[[x]].