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5.1 Inclusion-Exclusion Principle

One identity with alternating signs is especially famous.

Theorem 5.1.1 (Inclusion-exclusion). For any subsets A, A,, ..., A,
of a fixed superset X, the number of elements in X that are contained in
none of A; is

n
G- 3 cor|ya]- 3 coman
Jj=1 Jc[n] jel Jc[n]
The empty intersection is the fixed
where Aj = ﬂjeJ Aj for all subsetsJ C [n]. superset: Ay = X.

Involutive proof. Forany x € X,setP, := {j € [n] | x € Aj}.
Consider the set of all pairs (x,J) where x € X and J C P,.
Positive block: All pairs (x, J) such that |J| is even.

Negative block: All pairs (x,J) such that |J| is odd.

Involution: Given a pair (x,J), set i, := max P, and consider the
map (x,J) — (x,J © {i,}). Since (J © {i,}) © {i,} = J, this
operation defines an involution. As J & {i,.} has either one more
or one less element than J, this involution is sign-reversing.
However, this map is undefined when P, = @. In this case, the
set J must empty, so [J| = 0is even. We declare that the pairs
(x,J) such that P, = ¢ are fixed points.

Since the fixed-point set is {x ex | x¢ U?zl /lj}, we see that

2 CoVal= X X (== X (-1
Jcn]
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When n = 2 or n = 3, the inclusion-exclusion principle gives
|20\ (A UAL)| = 1X] = AL = L] + AL N A,
[0\ (A UA, UAR)| = |X] = [AL] = || = 5| + AL 0 A| + [ AL N As| + A, N A = [ AL N A N A

Problem 5.1.2. A school has 100 students, 50 students studying

French, 40 students studying English, 30 students studying Chi- ‘
nese, 15 students studying any pair of languages, and 5 students

studying all three. How many students are not studying any of WAW
these languages?

Solution. By the inclusion-exclusion principle, the number of 20
students at the school not studying any of the three languages is

Figure 5.1: Venn diagram of

100—-50—-40-30+15+15+15—-5 = 20. O language students

Problem 5.1.3. Count the permutations o of the set [9] such that
(1) >2and o(9) < 7.

Solution. The inclusion-exclusion principle gives

9! - (2)(8) — (8D)(2) + (2)(7)(2) =221760. O Figure 5.2: Venn diagram of
permutations

all permutations  g(1)€{1,2}  0(9)€{8,9}  both conditions
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To complement these illustrations of the inclusion-exclusion
principle, we describe two of the more celebrated applications.

Problem 5.1.4 (Derangements). How many permutations o of
the set [n] have no fixed points, thatis o(j) # jforall j € [n]? A
permutation in which no element appears in its canonical posi-
tion is called a derangement. Thus, this question is equivalent to
counting all derangements.

Proof. For any nonnegative integer n, let D, be the number of The first few numbers D,, are
derangements of the set [n]. Consider the subset A; consist of all 1,0,1,2,9,44, 265, 1854, 14833, ..
permutations of the set [n] with o(j) = j. For all subsets J C [n],
it follows that the set .A; consists of permutations that fix the
elements in J, so we have |4;| = (n — |J|)!. The inclusion-exclusion
principle and the definition of the binomial coefficient imply that Since e = 3, (~1)¥ /K, we see
" that n!/e is a good approximation to

no(_1)k .
D, = Z (=¥ A, = Z (—1)k<Z>(n k) =n Z ( kll) 0 D,,. In fact, one can show that Dy, is
k=0 :

the nearest integer to n!/e.
Jc[n] k=0

Problem 5.1.5 (Surjections). Let n and k be nonnegative integers.
Count the surjections from the set [n] onto the set [k]?

Solution. For all j € [k], let A; consist of maps from the set [n] to
the set [k] such that j is not in the image. For all subsets J C [k], it
follows that A; consists of the maps from [n] to [k] that miss the
elements in J, so we have |A;| = (k—|J|)". The inclusion-exclusion
principle implies that the number of surjections is

k
(k .
> Dyl = 3 () e 0
7CTk) j=0 J

Remark 5.1.6. Although there are no surjections when n < k, it is
not obvious that the expression Z’;:o (-1)) (’J‘) (k — j)* vanishes
under this hypothesis.

Corollary 5.1.7. For any nonnegative integers n and k, we have

| n = —1)J k ) _ i\
k) DICH (5) =i

Double-counting proof. How many surjective maps from the set [n]

to the set [k] are there?

Answer I: Amap f : [n] — [k] is determine by its k preimages
f7Y1) :={j € [n]| f(j)=i}foralli € [k]. The map f is
surjective if all k of the preimages are nonempty. The definition
of the Stirling subset numbers implies that there are {ﬁ} ways
to partition the set [n] into k blocks. There are k! to order these
blocks. Thus, the number of surjective maps is k!{}}.

Answer 2: In the previous problem, we establish that there are
Z;‘zo (-1)/ (’J‘) (k — j)" surjective maps. O
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5.2 Inverting Infinite Matrices

A large subfamily of combinatorial identies may be recast in terms
of inverting infinite matrices.

Proposition 5.2.1. For all nonnegative integers m and n, we have
The Kronecker delta function is

Z (-1)k <Z)<::1) = (=1)" 8- defined to be

[ itj=k
kez Ok = {0 it # k.

Involutive proof. Consider the set of all nested pairs (A, B) such In other words, it gives the entries of
that BC A C [n] and |B| = m. the identity matrix I = [5j’k].
Positive block: A nested pair (A, B) is positive when |A| is even. The

definition of the binomial coefficients implies that there are

Sier (2k) () positive pairs.

Negative block: A nested pair (A, B) is negative when |4| is odd. The
definition of the binomial coefficients implies that there are
Sier (aeh1) (P51) negative pairs.

Involution: To define a sign-reversing involution, we deal with three
separate cases.

n < m: Under this assumption, the positive and negative blocks
are both empty.

n = m: When m is even, the positive block contains one pair
([n],[n]) and the negative block is empty. When m is odd, the
positive part is empty and the negative part contains one pair.
Either way, the unique sign-reversing involution has a one
fixed point whose sign is (—1)".

n > m: For any nested pair (A, B), let a be the largest element
of the set [n] that is not in B; such an element must exist
because n > m. We map (A, B) to (A © {a}, B). Since |A4]
and |4 © {a}| have opposite parity, we have constructed a
sign-reversing involution with no fixed points.

Combining the three cases, we see that

% () () = Z G ) o ) = Z o () (o)

kez kez kez
=(-=1)"6um- O

Up to appropriate signs, the matrix of binomial coefficients is
its own inverse;

(8) (3) - (][ 1P (8) (-1 (3) -+ (=1 (2)
12| O =G| o) o) - )|

(3 () ()| [omo (@) (e (3) - (=1ymen ()
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-1 3 —
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Corollary 5.2.2 (Binomial inversion). For any two sequences (u,,)
and (v,,), the following conditions are equivalent.

a. For any nonnegative integer n, we haveu, = 3, _, (}) Uk-

b. For any nonnegative integer n, we have v, = %, _, (=1)" % () u.
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Proof. The inverse of the matrix whose (n, k)-entry is () is the
matrix whose (1, k)-entry is (—=1)"7% (). O

This provides an alternative approach to Corollary 5.1.7.

Problem 5.2.3. For all nonnegative integers m and n, prove that

[mf= 7 Z oo () e

kez

Solution. The power conversion identity [3.0.6] asserts that

=gt S () B (e

kez kez kez
. . . . . ny _ —k(m
so binomial inversion gives m!{, 1 = 3, _, (=1)"7*( f ) k™. O

As we have come to expect, there is a Stirling analogue of our
inverse for the binomial matrix.

Proposition 5.2.4. For all nonnegative integers m and n, we have

GV L T GV

kez

Involutive solution. Consider all groupings in which #» individuals
are seated around k nonempty circular tables that are then placed
into m indistinguishable nonempty rooms.

Positive block: All acceptable groupings with an even number of
tables. The definitions of the Stirling numbers implies that
there are 3, _, [+ ]{2¥} such groupings.

Negative block: All acceptable groupings with an odd number of

tables. The definitions of the Stirling numbers implies that

thereare 3, , |4 | {2411 such groupings.

Involution: To define a sign-reversing involution on the set of all
acceptable groupings, we deal with three separate cases.

m > n: When there are more rooms than individual, there are
no acceptable groupings.

m = n: There is only one grouping—each room contains one
table and each table has one person seated at it. It follows
that the unique sign-reversing involution has one fixed point
whose sign equals (—1)".

m < n: Given an grouping, let a be the largest numbered indi-
vidual who is not in a room by themselves and let b the next
largest numbered individual in the same room. As with cycle
decompositions, we adopt the convention of tables lists in
increasing order by the largest numbered individual seated
at a table. If a and b are not at the same table, then we merge
these to tables by inserting all the people on the second ta-
ble (starting with b and proceeding counterclockwise) to
the right a on the first table. If a and b are at the same table,

67
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then split the table into two: the people starting with a and
working counterclockwise up to, but not including, b are on
one table and everyone else is on the other (with relative
orders are preserved). By construction, this operation is a
sign-reversing involution.

The analysis of our sign-reversing involution yields

B[ C ] P | A S W

kez kez kez
= (=" 5m,n . O

Up to appropriate signs, the matrix of Stirling subset numbers
is the inverse of the matrix of Stirling cycle numbers;

O] 17 [T [ D0 {8} (=0 [} - —noengey] (e 9990 ][L & 9 90
r= |61 ]+ LR | oo fe} (=™ {1} - (=™ {3}[_|01 1 00-]jO~-1 1 00--
: Lot : : : 02310--- 0O 1-3 10---
31 01 Gl ooy comgny - o] |os a6 1 flo-1 7 -6 1

Exercises

Problem 5.2.5. For all nonnegative integers m and n, show that

2 () = ()
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Power Series

Notation 6.0.1. Throughout, the ring R denotes a commutative
domain of characteristic zero. In particular, the ring Z is contained
in R and the product of two elements in R equals zero if and only
if one of the elements is zero. The ring Z of integers, the field Q of
rational numbers, the field C of complex numbers, and the field
C(p) of rational functions over C are examples of such a ring.

6.0 Algebra of Formal Power Series

Loosely speaking, a formal power series is a polynomial that may
have infinitely many terms. The collection of all such objects
forms a new ring.

Definition 6.0.2. For any commutative domain R, the algebra of
Jormal power series in the variable x over the ring R is denoted by
R[[x]]. As a set, R[[x]] consists of all power series f := ZjeN a; xJ
where a; € R for all j. Each element f € R[[x]] is identified with
an infinite sequence (ay, a,,a,, ... ) of elements in R. For example,

we have
> jtxd e Z[[x]] and > 277 x e Q[[x]].
JeN JjeN

Addition and multiplication of formal power series are defined
termwise by

(Z ajxj) + (Z bjxj) = > (a; + b)) x/.

JEN JjeN JEN _
J
(aw)(Z o) =5 (o) v
jeN JjeN JjeN \k=0

With these operations, the additive identity (or zero element) is
0:= ¥ ;e\ 0%/ and multiplicative identity is 1 := 1+ ¥, , 0 x/. The
ring R embeds into R[[x]] by sendinga € Rtoal =a + Zj>0 0x/.
Theorem 6.0.3. For any commutative domain R, the set R[[x]] of
formal power series forms a commutative unital associative R -algebra.

Proof. For addition in R[[x]], commutativity, associativity, the
existence of an additive identity, and the existence of an additive
inverse are inherited from the corresponding properties in the
coefficient ring R. For multiplication in R[[x]], commutativity,
associativity, and the existence of a multiplicative inverse depend
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on distributivity in R as well as the corresponding property in R.
Forany f:= Y a;x/,g:= ), b;x/,and h:= )] c;x/, we have

jeN JjeN jeN
J J
fg= Z (Z akbk—j)xj = Z (Z bkaj—k)xj =gf
JeN \k=0 JjeN \k=0
J J
s algen )2l
jen \e=o jen jen k=0 \¢=0
J J J [i=¢
= [Z Z a, bk_ng_k)] xi=3 [Z (Z a, bkcj_k_e)] xJ
JEN L¢=0 \k=¢ jeN¢=0 \¢=0
J j=¢ J
= [Z a, bkcj_k_g>] x/ = [Z a; xj] [z (Z by cj_k> xj] = f(gh).
jenle=o  \¢=0 jeN jen \k=0

Distributivity in R[[x]] just rests on corresponding property in

R. Finally, the algebra R[[x]] is a R-module because the canoni-
cal embedding R & R[[x]] is compatible with both addition and
multiplication. O

A formal power series need not have a largest degree term, but
the degree of the smallest nonzero term is a useful invariant.

Definition 6.0.4. The order of a nonzero formal power series
fi= ZJeN a; xJ is ord(f) := min{k € N | a; # O}.

Proposition 6.0.5. Let f,g € R[[x]] be two nonzero power series.
When f + g # 0, we have ord(f + g) > min(ord(f), ord(g)). We also
have ord(fg) = ord(f) + ord(g), so the algebra R[[x]] is a domain.

Proof. Consider the two formal power series f := Z xJ and

g = ZleN b; x/ such that m := ord(f) and n := ord(g) It follows
thata; = 0 = b; for all j < min(m, n). Since a; + b; = 0 for all

j < min(m, n), we see that ord(f + g) > min(m, n). The definition
of the product of formal power series implies that the coefficient
of x/ in fg equals Z{(:O ay bj_y. It follows that either k < m and

ag = 0or j—k < nandb;_x = 0, so the coefficient of x/ in fg
vanishes for all j < m + n. Furthermore, the coefficient of x™*" is
Z;":OH ar b, in_r = a, b,. Since R is a domain, a,, # 0, and b,, # 0,
we deduce that a,, b, # 0 and ord(fg) = m + n. O

Remark 6.0.6. Unlike with polynomials, a formal power series
does not determine a function on the coefficient ring R. Except
for evaluation at x = 0, the map which sends the variable x to an
element of the coefficient ring R is typically not a well-defined.

Remark 6.0.7. Although not relevant for our combinatorial ap-

plications, there are several equivalent ways to view R[[x]] as a

topological algebra.

« We may give R[[x]] & R" the product topology where each copy
of R is given the discrete topology.
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« We may give R[[x]] the (x)-adic topology. The ideals (x)/, for all
J €N, form the basis of open neighbourhoods of 0.

+ We may give R[[x]] the metric topology where the distance
between distinct elements ¥, a; x/ and ¥, b; x/ is 27k where
k:= min(k € N | a; # by). As a metric space, R[[x]] is complete.

With this topological structure, an infinite sum converges if and

only if the sequence of its terms converges to 0.

Exercises

Problem 6.0.8. Let R be a commutative domain of characteristic
zero. Consider two formal power series

f(x):= Z a;x) eR[[x]] and g(x):= Z b; x/ € R[[x]].

JeN JeN

If f(x) € R[x] or b, = 0, then show that the composition

F(8(0) =Y a;(gx)

JjeN

is a well-defined element of R[[x]].
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