Copyright © 2021 by Gregory G. Smith

part with its binary expansion. Conversely, a partition of the
integer n into distinct parts maps to a partition with odd parts
by expressing each part as a product of a power of 2 and an odd
positive integer, and then consolidating the odd integers. For
example, we have

(73,52,3) < (14,10, 7, 3) and
(95,5'2,32,13) & (40, 36,20,9,6,2,1)

because

34 =(3)(7) + (2)(5) + (1)(3)

= (2°+2)(7) + (21)(5) + (2°)(3)
=) + 2H(5) + O + (29(3)
=144+10+7+3,

114 = (5)(9) + (12)(5) + (2)(3) + (3)(1)
=(2°422)(9) + (22 +23)(5) + 2H(3) + (2° + 2H(D)
= (2°)(5) + (2)(9) + 2*)(5) + (29)(9) + 2H(3) + 2H(D) + 2")(1)
=40+4+36+204+9+6+2+1.

These maps compose, in either order, to the identity map.
Given the bijections, we see that the number of partitions of the
integer n into distinct parts equals the number of partitions of the
integer n with odd parts. O

Exercises
Problem 4.0.5. For all m, n € N, show that
m
Z pj(n) = pr(n+ m).
j=0

Problem 4.0.6. Let q;(n) denote the number of partitions of the
integer n € Ninto k distinct parts. For all m,n € N, show that

am(n+(3)) = pm(n). o
/
Problem 4.0.7. Let p(n) denote the number of partitions of the in- o
teger n. Express the number of partitions of n with no part equal -
7\,
to 1 as a linear combination of values p(k) for some k € N. ./' ®
4.1 Trees and Catalan Numbers .('\.
[ J
Among the myriad of combinatorial interpretations for Catalan
numbers, Richard Stanley singles out a few. We highlight two '\.
/
these fundamental interpretations related to special graphs. A tree ./’
is a graph in which any two vertices are connected by a unique
|}
path or equivalently a tree is a connected acyclic graph. A rooted e
tree is a tree in which one vertex has been designated as the root. o

A binary tree is rooted tree where every vertex has at most two
children and each child is labelled as left or right. Binary trees
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Figure 4.1: The 14 binary trees
with 4 vertices
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56 Foundations of Enumerative Combinatorics

may be recursively constructed as follows: the empty set @ is a
binary tree; if B, and B, are binary trees, then we obtain the new
binary tree B by making the root of B, the left child of a new root
vertex and making the root of B, the right child of this new root.

A plane tree is a rooted tree in which an ordering is specified
for the children of each vertex—an ordering on the children is
equivalent to an embedding of the tree in the plane. Plane trees
are recursively constructed as follows: a single vertex is a plane
tree; given a sequence (P;, P, ..., P,,) of plane trees, the new plane
tree P is obtained by adding edges incident to the roots in each P;
to a new root vertex.

Theorem 4.1.1. For any nonnegative integer n, the Catalan number C,,
counts each of the following:

(a) triangulations T of a convex polygon with n + 2 vertices,

(b) binary trees B with n vertices, and

(c) plane trees P withn + 1 vertices.

Bijection between (a) and (b).

Set1: Consider all triangulations T of a convex (n + 2)-gon.

Set 2: Consider all binary trees B with n vertices.

Correspondence: Fix a convex (n + 2)-gon and select a distinguished
edge e of this polygon. Given a triangulation T of our convex
(n + 2)-gon, put a vertex in the interior of each triangle. Since T
consists of n triangles, there are n vertices. The root is the ver-
tex in the unique triangle containing the edge e. Draw an edge
between any two vertices that are separated by a diagonal in T.
If we arrive from the root to a vertex v by crossing a diagonal
f of T, then we transverse the edges of the triangle contain-
ing v in a counterclockwise order beginning with the edge f.
The first edge after f defines the left child of v and the second
edge defines the right child of v; see Figure 4.3 for an example.
Hence, we have constructed a binary tree B with n vertices.

/.—“ ]
"N SN N
o. > [ ] [ ]
VT / AN
%>1
Conversely, given a binary tree B having n vertices, we build
a triangulation our convex (n+2)-gon. As we traverse the binary
tree B starting from the root, we insert a diagonal for each child
of a vertex v. If the last edge on the path from the root to the
vertex v corresponds to a diagonal f (or the distinguished edge

e if v is the root), then we join the ends of the f to the vertex of
the (n + 2)-gon that is |B,| + 1 counterclockwise sides away from
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Figure 4.2: The 14 plane trees with
5 vertices

Figure 4.3: Bijection between a
triangulation of a 12-gon and a
binary tree
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one end and |B,| + 1 clockwise sides away from the other. Since
B has n — 1 edges, we insert a total of n — 1 diagonals into the
(n + 2)-gon and, therefore, obtain a triangulation T.

By construction, these maps compose, in either order, to the
identity map. O

Bijection between (b) and (c).

Set 1: Consider all binary trees B with n vertices.

Set 2: Consider all planar trees P with n + 1 vertices.

Correspondence: Given a plane tree with n + 1 vertices, remove the
root vertex and all incident edges. Next, remove every edge that
is not the leftmost edge from a vertex. The remaining edges be-
come the left edges in a binary tree B whose root is the leftmost
child of the root in P. Draw edges from each child of a vertex in
the plane tree to the next child. These horizontal edges are the
right edges of the binary tree B. Hence, we have constructed a
binary tree B with n vertices.

a
ao/b \ B T S b .. ° do/ \o\{
| N ¢ | ﬁ y h eo/
d/O\ efT ® dp & T ----- 2 \ \.
AN e s AW
This procedure is reversible, so we have a bijection. O
Exercises

Problem 4.1.2. A complete binary tree is a binary tree in which
every vertex has either zero or two children. For any nonnegative
integer n, show that the Catalan number C, equals the number of
complete binary trees with 2n + 1 vertices.
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Figure 4.4: Bijection between a
binary tree and a planar tree
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Figure 4.5: The 14 complete binary

trees with 9 vertices
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4.2 Lattice Paths

Because of their ubiquity in physical and probabilistic models,
we introduce a new class of combinatorial objects. A lattice path
in Z4 of length ¢ € N with steps belonging to a set X of integral
vectors is a sequence Vg, Uy, ..., U, € Z% of lattice points such that,
forall1 < j < ¢, the vector S lies in the set XX.

We start with arguably the simplest enumeration problem for
lattice paths. A north-east lattice path is a lattice path in Z? with
steps in the set {(0, 1), (1,0)}.

Lemma 4.2.1. For all nonnegative integers m and n, the number of
north-east lattice paths from (0, 0) to (m, n) is (" %").

Bijective proof. Since the possible steps form a basis for 72, a t.2:3) 1.2, 4}

north-east lattice path from (0, 0) to (m, n) haslength m + n

and exactly m (1, 0)-steps.

Set 1: Consider all subsets A of the set [m + n] having cardinality
m. The definition of the binomial coefficient implies that there
are ("}") subsets having this form.

Set 2: Consider all north-east paths from (0, 0) to (m, n).

Correspondence: An subset A of [m + n] having cardinality m maps
to the lattice path vy, Uy, ..., Uy, Where vy = (0,0) and

{1,2,5} {1,3,4}

{1,3,5} {1,4,5}

i 0,1) ifj ¢ A.

’ vj_lz{u,o) ifjeA,

(2,3,4} {2,3,5)
Since |A| = m, this path has m (1, 0)-steps and n (0, 1)-steps, so
we deduce that v,,,,, = (m, n). Conversely, a north-east lattice
path vg, Uy, ..., Uppyp from (0, 0) to (m, n) maps to the subset

. {2,4,5} {2,3,4}
{jelm+n]|v;-v;_, =(1,0)}.

Figure 4.6: The 10 north-east
By construction, these maps compose, in either order, to the lattice paths from (0, 0) to (3, 2).

identity map.
Given these bijections, the number of north-east lattice paths
from (0, 0) to (m, n) is (";"). O

n

To incorporate a linear boundary condition, we deploy the
powerful reflection principle.

Theorem 4.2.2. For any nonnegative integer n, the number of north-
east lattice paths from (0, 0) to (n, n) that never go above the main

diagonal is the Catalan number C,, = —=(").

Indirect bijective proof. To begin, we prove that there are (,.",)

north-east lattice paths from (0, 0) to (n, n) that do go above the

main diagonal (also known as is the line y = x).

Set1: Consider all north-east paths from (0,0) to (n — 1,n + 1).
Lemma 4.2.1 proves that this set has cardinality (,2*,).
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Set 2: Consider all north-east lattice paths from (0, 0) to (n, n) that
go above the main diagonal.

Correspondence: Since the points (0,0) and (n — 1,n + 1) lie on
opposite sides of the superdiagonal (also known as the line
y = x + 1), any piecewise linear curve joining these points must
intersect the superdiagonal. Given a north-east lattice path
Vg, U1, 5 Uy from (0, 0) to (n — 1,n + 1), let v,;_; be first point
on the superdiagonal. Since v,;_; = (j — 1, j) forsome 1 < j < n,
the portion of this path coming after v,;_, consists of n — j
(1,0)-steps and n— j+1 (0, 1)-steps. We map this lattice path to
a new lattice path obtained by reflecting, in the superdiagonal,
the portion of the original path coming after v,;_;. In other
words, we interchange the last 2n — 2j + 1 steps producing a

lattice path from (j—1,j)to (j—1+n—j+1,j+n—j) = (n,n).

On the other hand, given a north-east lattice path wgy, wy, ..., Wy,
from (0, 0) to (n, n) that goes above the main diagonal, let w,,_;
be the first point on the super diagonal. Since w,,_; = (k—1,k),
for some 1 < k < n, the portion of this path coming after w,;_,
consists of n — k + 1 (1, 0)-steps and n — k (0, 1)-steps. We map
this lattice path to a new lattice path obtained by reflecting, in
the superdiagonal, the portion of the original path coming after
w,;j_1; we interchange the last 2n — 2k + 1 steps giving a path
from(k—-1,k)to(k—1+n—-k,k+n—-k+1)=(m-1,n+1).
Reflecting in the superdiagonal is an involution, so these maps
are mutual inverses.

Given these bijections, the number of north-east lattice paths

from (0, 0) to (n, n) that go above the main diagonal is (,2)).

To finish the proof, we calculate that the number of north-east
lattice paths from (0, 0) to (n, n) that never go above the main
diagonal by subtract the number that do from the total number of
lattice paths:

(2)-(a20)= () - w5
:(2121)_(”’11)(”2!’2!!
(- (3) =) o

Remark 4.2.3. Rotating by —7r/4 and reflecting in the horizontal
axis, we obtain another collection of lattice paths is commonly
associated with the Catalan numbers. A Dyck path is a lattice path
on 72 from (0, 0) to (2n, 0) with steps in the set {(1, 1), (1, —1)} that
never passes below the horizontal axis.
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Figure 4.7: Bijection between the
lattice paths from (0, 0) to (2, 4)
and the lattice paths from (0, 0)
to (3, 3) going above the diagonal.

Figure 4.8: The 14 Dyck paths of
length 8
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Exercises

Problem 4.2.4. For any nonnegative integer n, prove that the ((COM ((0[0)

Catalan number C,, counts the expressions containing »n pairs of Egggg; EE%?S

parentheses that are correctly matched. (010)[6) (OO
(MO0 01((0);

Problem 4.2.5. A peak in a north-east lattice path is a point 000) 00

000) 0000
Figure 4.9: The 14 expressions
containing 4 pairs of matched
parentheses

(j, k) € 7% on the path such that the points (j,k — 1) and (j + 1, k)
are also on the path. Similarly, a valley is a point (j, k) € Z? on the
path such that the points (j — 1, k) and (j, k + 1) are also on the
path. For all nonnegative integers n and k, the Narayana number
N(n, k) counts the north-east lattice paths from (0, 0) to (n, n)
that never go above the main diagonal and have k peaks. Using a
double-counting argument, show that (k + 1) N(n,k) = (})("").

Figure 4.10: A special collection of
18 north-east lattice paths from
(—-1,0) to (4,4).
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Involutions

Many valuable combinatorial formulas have both positive and
negative signs. At first glance, it might seem that bijective proofs
are not well-suited to deal with these formulas. We refine and
extend our bijective techniques to address this apparent shortfall.

5.0 Signed Sets

To prove identities involving positive and negative signs, we focus
on a special kind of bijection.

Definition 5.0.0. A signed set is a set X equipped with a function
sgn : X —{*1}. This data is equivalent to partitioning the set X into
its positive block X* := {x € X | sgn(x) = +1} and its negative
block X~ := {x € X | sgn(x) = —1}. A sign-reversing involution is
a function ¢ : X — X such that ¢?> = ¢ o ¢ = idy and, for all x € X,
either g(x) = x or sgn(p(x)) = — sgn(x). The fixed-point subset of
the function p is X? := {x € X | ¢(x) = x}.

This nomenclature leads to the next influential observation.
The formula in the second part becomes very useful when the
right sum has far fewer terms than the left one.

Proposition 5.0.1. Let X be a finite signed set.
i. Afunctiongp: X — X is an involution if and only if the set X is
disjoint union of the fixed points and the 2-cycles of ¢.
ii. For any sign-reversing involution ¢ : X' - X, we have

Z 1— E 1= Z sgn(x) = E sgn(x).
xex+ xex— xeXx xex?®
Proof.

i. Since ¢ : X — X is a bijection, this function is a permutation
of finite set XX, so ¢ can be decomposed into cycles [3.1.2]. By
definition, the length of the cycle containing x € X is the
small positive integer m such that ¢™(x) = x. Thus, @ is an
involution if and only if its cycle decomposition contains only
1-cycles (also known as fixed points) and 2-cycles.

ii. When the element x € X belongs to a 2-cycle of ¢, we have
sgn(x) + sgn(g(x)) = 0. It follows that all elements in 2-cycle
cancel in the sum which leaves only the fixed points. O

As initial applications, we use sign-reversing involutions to
establish some binomial identities.
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Problem 5.0.2. For any nonnegative integer n, we have

> (—1)’6(”;1> = 0.

kez

Involutive solution. Consider all subsets of the set [n + 1].

Positive block: All subsets of [n + 1] having even cardinality. The
definition of the binomial coefficients implies that there are
Y ey ("5%') subsets having even cardinality.

Negative block: All subsets of [n + 1] having odd cardinality. The
definition of the binomial coefficients implies that there are
Y ker (21 ) subsets having odd cardinality.

Involution: For any subset A = {a,,a,, ..., a;} of the set [n + 1], the
symmetric difference of A and the singleton {n + 1} is defined by

{a;,a5,...,a,n+1} ifn+1¢M4;

A +1}:=
e{n } %{alaab---aak_l} ifn+1eA.

Since (A © {n + 1}) © {n + 1} = A, this operation is involutive.
Moreover, the set A © {n + 1} has either one more or one fewer
element than A, so this involution is also sign-reversing.
The sign-reversing involution has no fixed points, so we obtain
n+1> Z(n+1> Z( k<n+1>
Z - = -1) =0. O
keZ< 2k kez 2k +1 kez k

By tweaking our approach to the previous identity, we obtain a
charming enhancement.

Problem 5.0.3. For all nonnegative integers m and n, we have

> oE(" ) = om ()

ksm

Involutive solution. Consider all subsets of the set [n + 1] having

cardinality at most m.

Positive block: All subsets having even cardinality. The definition
of the binomial coefficients implies that there are 3, ., (")
such subsets.

Negative block: All subsets having odd cardinality. The definition of
the binomial coefficients implies that there are 3, ., 1), ()
such subsets.

Involution: We have already have the sign-reversing involution
A — A6 {n + 1} on all subset of [n + 1]. However, it does not
immediately restrict to subsets of cardinality at most m. To
rectify this issue, we consider two cases.

« When m is even and the subset A has even cardinality, the
image A © {n + 1} may have cardinality more m. This occurs
in (,,) instances where |[4| = mandn + 1 ¢ A. Thus, we
redefine the involution making these (,, ) unmatched positive
elements into fixed points.

Copyright © 2021 by Gregory G. Smith

More generally, the symmetric
difference of two sets is the set of
elements which are in either of the
sets and not in their intersection. In
other words, given two sets X and Y,
the symmetric difference is
xXey:=(@\PHuE\X).
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+« When m is odd and the subset A has even cardinality less
than m, then image A © {n + 1} also has cardinality at most
m. However, we miss some the subsets of odd cardinality
at most m. This occurs in () instances where the subset
contains m elements from [n]. Once again, we redefine the
involution making these () unmatched negative elements
into fixed points.

Combining the two cases, we obtain

kgﬂ;ﬂ(”;j) ;S(mz—l)u(z’,;c_:_ll) - k;n(_l)k(n ’-: 1) - (_1)m<:rll)'D

Exercises

Problem 5.0.4. For any nonnegative n, use a sign-reversing invo-
lution to prove that

ser[r]=o

Problem 5.0.5. For all nonnegative integers m and n, use a sign-
reversing involution to prove that

Lo (i) ()=

kez
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