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2.3 Multichoose Identities

Inspired by our binomial identities, we pursue analogues for the
multichoose coefficients. Curiously, this also leads to new results
about binomial coefficients themselves.

Proposition 2.3.1 (Absorption). For any integer k, we have

() =<2

Double-counting proof. Since both sides vanish when k < 0, we may
assume that k is a positive integer. Once again, it suffices to verify
the identity when x = n is sufficiently large integer. How many
k-tuples (A1, 4,,..,4;) € Nk satisfyingn >4, > 4, > - > A4, > 1
and having one entry underlined are there?

Answer I: Definition 2.2.1 implies that there are ((} ) ways to create
the non-increasing sequence. Since there are k ways to under-
line an entry, the total number k-tuples having the desired form
is k(7).

Answer 2: First determine the integer to be underlined. There are n
such choices. Suppose the underlined number is r. Next, create
a positive (k — 1)-tuple with entries between 1 and n + 1. There
are (}*]) such sequences. Any r’s among the chosen entries go
to the left of the underlined r. Any n + 1’s among the chosen
entries are converted to r’s and repositioned to the right of the
underlined r. Thus, there are n (( Zﬂ)) sequences having the
required form. O

Remark 2.3.2. The absorption identities for multichoose and
binomial coefficients are different:

k<n+k—1)_n(n+k—1> ver k(n)_n(n—1>
k = k-1 ersus Kl ) =™ k-1)

While not a perfect match for the upper sum identity [2.0.8], we
do have a lower sum identity for multichoose coefficients.

Proposition 2.3.3 (Parallel Sum). For any integer k, we have

x+1 5 x
(&)=-20)

Double-counting proof. Since both sides vanish when k < 0, we may
assume that k is a nonnegative integer. It is enough to prove this
identity when x = n is a sufficiently large integer. How many ways
can we allocate k votes to n + 1 candidates?
Answer 1: Definition 2.2.1 implies that there are ("})) allocations.
Answer 2: Focus on the number of votes allocated to everyone

other than candidate n + 1. The first n candidates receive a total

of j votes for some 0 < j < k, so there are ((} )) ways to allocate

these votes. The last candidate receives all of the remaining

k — j votes. Thus, there are Z?:o ((7)) allocations. O

Subsets & Multisets

The sum of the first k entries in the
n-th row of Table 2.9 equals the
(n + 1, k)-entry.
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36 Foundations of Enumerative Combinatorics

Remark 2.3.4. Proposition 2.2.2, together with this parallel sum
identity for multichoose coefficients, give a parallel sum identity
for binomial coefficients: for any integer k, we have

<x+k)_ Zk:<x+j—1>
k = J

The multichoose analogue for the binomial theorem [2.1.6]
requires formal power series, which will discuss more carefully
later in the text.

Theorem 2.3.5. For any nonnegative integer n, we have

[Z7] =2 ()

JjeN

Proof. Expanding the product gives

n
[z -2 0
i=1 jeN M x;eS

where the righthand summands are indexed by the multisets
M over [n] or equivalently the functions v: [n] — N satisfying

Z;.lzl 1(j) < 0. Setting x; := x for all 1 £ j < n, we obtain

[Z xj]n _ %:xv(l)w(mn.w(n) _ %‘lel =y ((Z)) Y0

JjeN keN

There is a legitimate multichoose counterpart to the upper sum
identity [2.0.8].

Proposition 2.3.6 (Upper sum). For all nonnegative integers n and k
excluding the degenerate case (n, k) = (0, 0), we have

n

(&) =2(c20)

j=1

Double-counting proof. How many k-tuples (4;, A,,..., 1) € N¥

satisfyingn > 4; 2 4, > --- > A, > 1 are there?

Answer I: Definition 2.2.1 implies that there are ((} ) k-tuples having
the desired form.

Answer 2: Focus on the largest entry 4,. Foralll < j < n, the
number of non-increasing integer vectors in Nk with 4, = j
equals the number of (k — 1)-tuples (1,, 43, ...,4,) € Nk-1
satisfying j > 4, > 13 > --- > A; 2 1. Since Definition 2.2.1
implies that there are ( ki 1) such vectors, there is a total of
Z;.;l (') non-increasing positive integer k-tuples. O

Algebraic proof. Combining Proposition 2.2.2, the symmetry iden-
tity for binomial coefficients [2.0.5], and the parallel sum identity
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for binomial coefficients [2.3.4] gives

n n n—-1

2l ) =2 %) =505

j=1 j=1 j=0

_<k+n—1)_<n+k—1>_«n» -
"\ n-1 ) k “\kJ)

We end this subsection with an identity intertwining binomial
and multichoose coefficients.

Problem 2.3.7. For any nonnegative integer n and any integer k,

(-2

j=0

Double-counting solution. How many ways can we allocate k votes

to n candidates?

Answer I: Definition 2.2.1 implies that there are ((} )) allocations.

Answer 2: Focus on the candidates that receive at least one vote.
When j candidates, for some 0 < j < n, receive at least one vote,
there are (7) ways to select them. Since each of these candidate
receives a vote, there are (( ./ i ) ways to allocate the remaining
k — j votes. In total, there are Z?:o (';) (2 i ) allocations. O

Algebraic proof. Combining Proposition 2.2.2 and the Vander-
monde identity for binomial coefficients [2.1.5] give

n n

2()(2)= 2G5 =("e )= () o

j=0 j=0
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3
Stirling Objects

We study a few more famous sequences. These numbers resemble
binomial coefficients in several ways: they depend on a pair of

integers (one being nonnegative), satisfy similar addition formulas,
and manifest as the coefficients in natural families of polynomials.

As introduced by Jovan Karamata and promoted by Donald Knuth,
our notation underscores these analogies. Our approach also
stresses double-counting.

3.0 Set Partitions

We start be some vocabulary to describe the subdivisions of a set.

Definition 3.0.1. A partition of a finite set A is a collection
{B,, B,, ..., B,} of subsets of A such that

. Bj;éeforallléjée,

« BinBy = @ for all j # k, and

e« BiUB,U---UB, = A.

The subset 3B, is a block of the partition.

In other words, a partition of A is a collection of nonempty
disjoint subsets of A such that every element in A is in exactly one
of the subsets.

Definition 3.0.2. For all nonnegative integers n and all integers
k, the Stirling subset number {}} is the number of partitions of
the set [n] into k blocks. We read {}} as “n subset k” and the curly
braces remind us of the ‘subsets’.

Some special values are easy to determine.

« Foralln < kand all k < 0, we have {}} = 0 because there are no
partitions of [n] with k blocks.

« For all nonnegative integers n, we have {;} = 1 because there
is a unique partiton {1} U {2} U {3} U --- U {n} of [n] with n blocks.
When n = 0, there is a unique way to partition the empty set
into zero nonempty blocks.

« For all positive integers n, we have {’11} = 1because{l,2,..,n}is
the unique partition of [n] with 1 block.

« For all positive integer k, we have {{} = 0 because a block is
nonempty.

« For all positive integers n, we have {§} = 0 because a nonempty
set needs at least one block.
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Figure 3.1: The 15 partitions of the
set [4]

Historically, these are known as the
Stirling number of the second kind.
Using Figure 3.1, we see that {i} =1,
{3}=6,{3}=7{1}=1and{g} = 0.
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« For all positive integers n, we have {5} = 2"~! — 1 because the
block not containing »n is a nonempty subset of {1, 2,...,n — 1}.

« For all positive integers n, we have {,,",} = (%) because a par-
tition of the set [n] into n — 1 blocks must consistof n — 2
singletons and one doubleton.

Just like binomial coefficients, the Stirling subset numbers
satisfy a concise two-term recurrence.

n|{o} {1} {2} {5} {4} {5} {6}
Proposition 3.0.3 (Addition). For all nonnegative integers n and all ol1 0 o o o0 o o
integer k, we have 110 1. 0 0 0 0 O

200 1.1 0 0 0 O

n+ 1} {n} { n } 30 1. 3 1. 0 0 O
= +((k+1) . 40 1 7 6 1 0 0
{k +1 k k+1 500 1 15 25 10 1 0
6/ 0 1 31 90 65 15 1

Double-Counting Proof. How many partitions of [n + 1] have k + 1
blocks? Figure 3.2: Matrix of Stirling

Answer 1: The definition of the Stirling subset numbers implies subset numbers

that there are { 1]} partitions of the set [n + 1] into k + 1 blocks.
Answer 2: Focus on whether the singleton {n + 1} is a block in the
partition. When it is, the remaining elements lie in the set [n]
and can be partitioned into k blocks in {} } ways. When it is
not, we partition the set [n] into k + 1 blocks and then insert
the element n + 1 into one of the blocks, which can be done in
(k + 1){,%,} ways. Thus, we have a total of {{} + (k + 1){,},}
partitions of [n + 1] into k + 1 blocks. O

Echoing our development of the multichoose coefficients, the
version of the binomial theorem [2.1.6] for Stirling subset numbers
uses formal power series.

Theorem 3.0.4. For all nonnegative integers m, we have

x™ X nl_,
(1= x)(1=2%)1=3%)- (1 — mx) =J1:[11—jx = Z{m}x :

neN

Inductive proof. Whenm = 0,wehavel =}, _ {6} x", so the base
case holds. For all positive integers m, assume that

m-—1
n X
%{m—l}xn:gl—mx'

The addition formula and the induction hypothesis give

R ol R |

neN neN

n n
mx[ E { }x ] + x[
which implies that

a- mx)[Z{;}x:] = x[”iﬁ] ,

neN j=

X n
so we conclude that H = Z { }x”. O
Jo1 1—-—mx =im
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To recognize the Stirling subset numbers as entries in a change
of basis matrix, we first introduce two bases for the rational vector
space of univariate polynomials.

Notation 3.0.5. For all nonnegative integers k, the falling factorial
power and rising factorial powers are

k

nki=n(n-1)-(n-k+1)=J[(n-j+1)
j=1

_ k

F=nn+1)-(n+k-D=]](n+j-1.
Jj=1

S
Il

When read aloud, the quantity xX is “n to the k falling” and the
quantity x¥ is “n to the k rising”. Observe that n2 = n° = 1 and
n! =nt=17"

The Stirling subset numbers are the coefficients for falling
factorial powers that yield ordinary powers.

Proposition 3.0.6 (Power conversion). For any nonnegative integers
n, we have
n — n k
x" = Iéz{ " } xk.
Double-counting proof. Since a nonzero polynomial in Q[x] has at
most finitely many zeros, it suffices to prove this identity when
X = mis a nonnegative integer. How many ways can n students
be assigned to m different classrooms where some classrooms are
allowed to be empty?
Answer 1: Each student is assigned to one of m classrooms, so
there are m" assignments.
Answer 2: Focus on the number k of nonempty classrooms. The
definition of the Stirling subset numbers implies that there are
{ %} ways to partition the students into k blocks. The k blocks of
students can be assigned to classrooms in

mk=m)(m-1)---(m-k+1)

ways, because no two blocks can be assigned to the same class-

room. Therefore, there are ), _, {}}x% assignments. O

Inductive proof. Whenn = 0, we have x* = 1 = {g}xg, so the base
case holds. For all positive integers n, assume that

x"‘lzz:{n;l}xk.

Since xk*L = xk (x — k), we see that (x)(xk) = xk*L + k xk for all
nonnegative integers k. The induction hypothesis and addition

Stirling Objects

Both binomial and multichoose
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coefficients can be neatly expressed
via falling and rising factorial powers;

xk
K

xk
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formula give

x" = (x)(x" 1) = x[z {n ; 1};&]

kez

L
:;;Z{Z }x-+l§Zk{ kl}xk
o] (T | EE 4 R

Exercises

Problem 3.0.7. For all n € N, the Bell number w,, counts all the
partitions of the set [n]. Prove each of the following identities via
a double-counting argument.

(i) Foralln € N, show thatw, =}, 7 {}}.

(ii) Foralln €N, show thatw,,; = 3, 7 (7).

Problem 3.0.8. For all n € N, prove the following variants of the
Binomial Theorem. 3
M) (x+ )" =Yz (k)x“y
(i) (x+ )t =Tz (0)X*

Problem 3.0.9. Foralln € Nandall k € Z, the Lah number
| | is the number of partitions of the set [1] into k nonempty
lists (the elements in each block are ordered, but the blocks are
unordered). Prove each of the following identities via a double-
counting argument.

(i) For all positive n, k € N, verify that | ¢ | k! = n! (’i:ll

(ii) Foralln,k € N, verify that |} | = [§] + (n + k+ 1) | 4 |-
(iii) For all 0 < n, k < 5, compute the matrix whose (n, k)-entry is

k]

—k
b
_k

3.1 Cycles in Permutations

For our next variant on the binomial coefficients, we scrutinize
subdivisions of permutations. To explicate the appropriate notion
of a subdivision, we start with technical observation.

Lemma 3.1.1. For some nonnegative integer n, let o be a permutation
of the set [n]. For any i € [n|, there exists m € [n] such that o™ (i) = i.

Proof. Fixi € [n] and consider o(i), 0(i), ..., 0"*(i). If none of these
images were equal to i, then the pigeonhole principle [0.0.2] would
imply that two of these images are equal: ¢/(i) = o*(i) where

1 £ j < k < n. Applying the inverse function o~! to both sides

of this equation j-times, we would obtain i = o*~/(i) which is a
contradiction. Thus, there exists m € [n] such that o™ (i) = i. O
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The set [4] can be partitioned into 3
nonempty lists in 12 = | § | ways.
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\

Figure 3.3: Direct graph of a cycle
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Given a permutation o of the set [n] and an element i € [n],
M@G)@ (2 DB)4)

let m; be the smallest positive integer such that o™i(i) = i. The DG D@ @E)E 1)
sequence (i o(i) o*(i) o3(i) --- o™i~!(i))is a cycle of length MG 2)@) (DG4 2)
m;. Using the directed graph interpretation for a permutation, a ((13)(12))((: ;’)) g gg: 3
cycle is just a strongly connected component (meaning there is a (D@4 23) (1)E32)
directed path between any two vertices). 2413 @431

312y )42
B12)4 (21

Theorem 3.1.2. For any nonnegative integer n, every permutation of @123 (4132

the finite set [n] may be expressed as a disjoint union of cycles. (4213 (4231
4312 (4321

Proof. Lemma 3.1.1 shows that every element in the set [n] belongs Figure 3.4: Cycle decompositions

to some cycle. By design, distinct cycles are disjoint. O for the 24 permutations of [4]

To eliminate the ambiguity in a cycle decomposition, we almost
always begin a cycle with its largest element and list the cycles in
increasing order of their first element.

Definition 3.1.3. For any nonnegative integer n and any integer k, Historically, these are known as the
. 7. ni- . Stirling number of the first kind. From
the Stirling cycle number [k] is the number of permutations of the Table 3.4, we see that [4] = 1, [4] = 6,

set [n] with exactly k cycles. We read [ ] as “n cycle k”. [4]=11[%]=6,and[§] = 0.

Alternatively, the number |} | counts the ways for n people to sit
around k identical circular tables where there are no empty tables.
Some special values are easy to determine.

« Forallk < Oandalln < k, wehave [;] = 0because num-
ber of cycles is nonnegative but cannot exceed the number of
elements.

« For all nonnegative integers n, we have [ ;] = 1 because the
unique decomposition with n cycles is (1)(2)(3) --- (n). When
n = 0, the unique permutation of the empty set has no cycles.

« For all positive integers n, we have [ || = (n — 1)! because
any permutation of the set [n] with one cycle has the form
(n a4 a, -+ a,_,)wherea, a, - a,_;istheone-line
notation for a permutation of the set [n — 1].

« For all positive integers k, we have [2] = 0 because the unique
permutation of the empty set @ has no cycles.

« For all positive integers n, we have [g] = 0 because any permu-
tation of a nonempty set must have a cycle.

« For all positive integers n, we have [ ,” ;| = (%) because any
permutation of the set [n] with n — 1 cycles must consists of

n — 1 cycles of length 1 and one cycle of length 2. (2] 121 121 121 171 121 [2]
The Stirling cycle numbers satisfy a two-term recurrence, (1) (1) (1) g 8 8 g g
which we view as a perturbation of the addition formula [2.0.6] 200 1.1 0 0 0 0
for binomial coefficients. 30 2 3 1.0 0 O
40 6 11 6 1 0 0

.. - . 50 24 50 35 10 1 0
Proposition 3.1.4 (Addition). For all nonnegative integers n and all 6| 0 120 274 225 85 15 1

integers k, we have
Figure 3.5: Matrix of Stirling cycle

n+l1l] _[n n numbers
[k+1]_[k]+n[k+1]'
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Double-counting proof. How many of the permutation of the set

[n + 1] have k + 1 cycles?

Answer 1: The definition of the Stirling cycle numbers implies that
there are [ 1] ] permutations of [n + 1] with k + 1 cycles.

Answer 2: Focus on the element n + 1. When (n + 1) appears in the
cycle decomposition, the remaining n elements may be placed
into k cycles in [ | ways. When n+1 belongs to a cycle of length
greater than 1, we first place the elements in the set [n] into
k + 1 cycles and then insert the element 7 + 1 to the immediate
right of some element. This two-step process can be done in
n| 4] ways. Therefore, the total number of permutations with
k cyclesis ]|+ n|[ ] O

For a fixed numerator, summing of all possible denominators
in the Stirling cycle numbers has a clear meaning; compare with
Problem 2.0.7.

Problem 3.1.5. For all nonnegative integers n, we have

n The sum of the entries in the n-th row
ni=>y il

of Table 3.5 is n!.
kez

Double-counting solution. How many ways can n people be seated

around n indistinguishable circular tables?

Answer 1: The first person sits down at a table. As the tables are
indistinguishable, this can be done in 1 way. The second person
has 2 choices: either sit to the right of the first person (which is
equivalent to sitting to the left) or start a new table. Regardless
of 2’s decision, the third person has three choices: either sit on
the immediate the right of the first person, sit on the immedi-
ate right of the second person, or start a new table. In general,
the k-th person will have k choices: sit to the immediate right
of the j-th person forall1 < j < k — 1, or start a new table. We
conclude that there are n! possible arrangements.

Answer 2: Focus on the number of nonempty tables. When there
are k nonempty tables, the definition of Stirling cycle numbers
implies that there are [ﬁ] seatings, so the total number of seat-

ingsis },_, [%]- O

Unlike Stirling subset numbers, the version of the binomial
theorem [2.1.6] for Stirling cycle numbers uses only polynomials.

Theorem 3.1.6 (Power conversion). For all nonnegative integers n,
we have

Counting proof. Consider expanding the product

X"=x(x+1D(x+2)(x+(n-1)).

n factors
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Every monomial in the expansion is the product of n factors
where each factor is either x or an element of {0, 1,...,n — 1}. How
many different ways can one create the monomial x¥? Each such
monomial arises from choosing x from k factors and distinct ele-
ments from the set {0, 1,...,n — 1} from the complementary n — k
factors. Hence, it suffices to prove that

HEND R T
0<i<ip<-+<ip_p<n—1

using a double-counting argument. How permutations of the set

[n] have k cycles?

Answer 1: The definition of the Stirling cycle numbers implies that
there are [ ] permutations of the set [n] with k cycles.

Answer 2: Focus on the smallest element in each cycle. Let A be the
set of smallest elements and consider the complementary set
{i, +1,i, + 1, ..., i,,_y + 1} := [n] \ A where

0L <h<-<ip_p<n-—-1.

Forall1 < j < n — k, the nonnegative integer i; equals the sum
of j—1 and the number of elements in A than are less that i; + 1.
The following algorithm constructs all of the permutations
having A as its set of smallest elements:
place each element of A in its own cycle of length 1;
for jfromlton —k
insert i; + 1 to the right of any element
in a cycle starting with number less than i; + 1.
At the j-th step of this loop, there are i; places to insert i; + 1,
so the number of permutations having A as its set of smallest
elements equals the product i, i, --- i,,_;. Therefore, the total
number of permutations of the set [n] having k cycles is

iiy o iy k. O
0<i) <ip<--<ip_g<n—1

Inductive proof. When n = 0, we have x0=1= [g] x°, so the base
case holds. For all positive integers n, assume that

keZ

This induction hypothesis and the additive identity 3.1.4 give

xﬁ:(x+n—1)(xﬁ):(x+(n—1))[z[”;l]xk]

kez

=3[k si]r SR 2

kez

] KO

kez
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