2
Subsets and Multisets

Counting subsets, both with and without repetitions, spawn some
of the most pervasive combinatorial models. Relying largely on
the double-counting arguments, we develop the theory of bino-
mial coefficients. Among the vast number of identities, we empha-
size those that appear most frequently in applications.

Notation 2.0.1. The set of integersisZ:={...,-2,-1,0,1,2,...}.

2.0 Subsets Of A Fixed Cardinality

Enumerating all the subsets of a finite set is straightforward.

Proposition 2.0.2. For any nonnegative integer n, there are 2" distinct
subsets contained in the set [n] := {1, 2, ..., n}.

Inductive proof. Whenn = 0, we have [0] = @. Since @ is the

unique subset of [0], the base case holds. Assume that [n] has 2"

subsets. To count the subsets of [n + 1], we subdivide them into

two classes.

« The subsets containing zn + 1 are a union of singleton {n + 1} and
a subset of the set [n]. By the induction hypothesis, there are 2"
subsets of the set [n], so the number of subsets containing the
element n + 1is 2".

« The subsets that do not contain n + 1 may be identified with
the subsets of [n]. Again, the induction hypothesis implies that
there are 2" subsets of this form.

Therefore, the set [n + 1] has 2" + 2" = 2"*! subsets. O

The sequence 1, 2, 4, 8,16, 32, 64,128, ..., listing the powers of 2,
has another common combinatorial interpretation.

Bijective proof of Proposition 2.0.2.

Set 1: Consider the set of all subsets of [n].

Set 2: Consider the set of all binary n-tuples. Since each entry is
either O or 1, there are 2" such vectors.

Correspondence: Send the subset A C [n] to its indicator vector
whose i-th coordinate is 1ifi € A and is 0 otherwise. Con-
versely, the binary n-tuple vis mappedto{i | v; = 1} C [n].
These operations are mutual inverses.

Since there is a bijection between the given sets, we conclude that

there are 2" subsets of the set [n]. O
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Figure 2.1: The 16 subsets of [4]

(0,0,0) « [TT1 (1,1,1) « DI
(1,0,0) « T (0,1,1) « [N
(0,1,0) « ] (1,0,1) ~ H W
(0,0,1) « [T (1,1,0) « EE]

Figure 2.2: Binary 3-tuples and
subsets of [3] correspondence
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Counting subsets of a finite set having a fixed cardinality turns
out to be much more interesting.

Definition 2.0.3. For all nonnegative integers n and all integers
k, the binomial coefficient () counts the subsets of the finite set
[n]:={1,2,..,n} having cardinality k.

Some special values are easy to determine.

« Forall k < 0and all k > n, we have (} ) = 0 because there are no
subsets of [n] having cardinality k.

« For any nonnegative integer n, we have (;) = 1because the
empty set is the unique set with no elements.

« For any nonnegative integer n, we have () = 1because the
unique subset of [n] having cardinality n is the set [n] itself.

« For any nonnegative integer n, we have (3) = n(n —1)/2 be-
cause there are n ways to choose the first element, n — 1 ways to
choose a different element for the second, and 2 ways to order
them.

Although poorly suited for numerical computations, binomial

coefficients have a compact expression involving factorials.

Proposition 2.0.4 (Factorial Formula). For all nonnegative integers n
and all integers k such that 0 < k < n, the binomial coefficients satisfy

n!:(Z)k!(n—k)! s (Z)zﬁ'—k)l

Double-counting proof. How many permutations of the set [n] are

there?

Answer 1: Proposition 1.1.3 shows that the number of permutations
of the set [n] is n!.

Answer 2: Focus on the first k numbers in the one-line notation for
a permutation of the set [n]. The definition of binomial coeffi-
cients implies that there are () ) ways to choose the numbers
that turn up in the initial k entries. Once these k numbers are
chosen, there are k! ways to arrange them. Similarly, there are
(n — k)! ways to arrange the complementary n — k elements.
Hence, the number of permutations of [n] is () k! (n — k). O

Proposition 2.0.5 (Symmetry). For all nonnegative integers n and all

= .

Double-counting proof. How many committees from a slate of n

candidates can be formed with k members?

Answer 1: The definition of binomial coefficients implies that there
are () committees.

Answer 2: We may choose n — k candidates to exclude from the
committee, which can be done in (", ) ways. O

Copyright © 2021 by Gregory G. Smith

Our notation for binomial coefficients
was first used in 1826 by Andreas von
Ettingshausen.

Figure 2.3: The 10 subsets of [5]
having cardinality 3

it
il

Figure 2.4: Symmetry in the 6
subsets of [4] having cardinality 2
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Proposition 2.0.6 (Addition). For all nonnegative integers n and all MGG IR IGIGIH)
integers k, we have ol1 o o o 0o o o
n+1l\_(n +( " 111 1 0 o0 0 0 O
k+1)  \k k+1/)° 2/t 2 1.0 0 0 O
. . 31 3 3 1.0 0 O
Double-counting proof. How many committees from a slate of n + 1 41 4 6 4 1 0 0
candidates can be formed with k + 1 members? g } 2 1(5) ;8 155 é (1’
Answer 1: From tlhe definition of binomial coefficients, we see that Figure 2.5: Matrix of binomial
there are (1) such committees. coefficents

Answer 2: Focus on membership of candidate n + 1. Since there are
(k+1) committees that exclude n + 1 and () committees that
include n + 1, the total number is (.}, ) + (%) O

Problem 2.0.7. For any nonnegative integer n, prove that
The sum of the entires in the n-th row

n of Table 2.5 is 2".
> ( k) = 2",
kez

Double-counting solution. How many subsets of [n] are there?

Answer 1: The definition for binomial coefficients implies that, for
each integer k, the number of subsets of cardinality k is (), so
there are in total )}, _, () committees.

Answer 2: Proposition 2.0.2 proves there are 2" subsets. O

Proposition 2.0.8 (Upper sum). For any nonnegative integers m and

Sum of the first n entries in the m-th
n, we have

n ( j ) ( n+1 ) column of Table 2.5 equals the

(n+1,m + 1)-entry.
m m+1

Jj=0
Double-counting proof. How many subsets of the set [n + 1] having
cardinality m + 1 are there?

Answer I: The definition of binomial coefficients implies that the

n+1
m+1)/°

Answer 2: Focus on the largest number in a given subset. For all
0 < j < n, any subset having cardinality m + 1 and maximum
element j + 1 can created by adjoining the element j + 1 to an
subset of the set [ j] having cardinality m, which can be done in

(,},) ways. Hence, the total number of subsets having cardinality
. n ,]
m+1lis 3, (in)- O

number of subsets of [n + 1] having cardinality m + 1 is (

Problem 2.0.9. For any nonnegative integer n, demonstrate that

n+1

Zk( ! ):(n+1)2”.

kez

Double-counting solution. From a slate of n + 1 candidates, how

many committees having one of member designated as the chair

are there?

Answer I: Focus on a committee with kK members. From the defi-
nition of binomial coefficients, there are ("}') ways to choose
the committee members and there are k ways to choose the

. . TEE IR . n+1
chair. Adding up all the possibilities gives a total of 3, _, k("}")

chaired committees.
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Answer 2: First select the chair from the slate of n + 1 candidates.
From the other n candidates, there are 2" ways to choose a
subset to complete the committee. O

Problem 2.0.10. For any nonnegative integer n, show that

) (n;l-c 1) =2

kez

Double-counting solution. From a slate of n + 1 candidates, how

many committees having an even number of members are there?

Answer 1: Focus on committees with 2k members. The definition
of binomial coefficients implies that there are (";}') committees
with 2k members, so there are 3, _, ("% ) committees with an
even number of members.

Answer 2: The first n candidates can be freely chosen to be on or
off of the committee. Once these choices are made, the fate of
the candidate n + 1 is completely determined so that the final
committee has even number of members. Consequently, there
are 2" such committees. O

Exercises

Problem 2.0.11. Let F,, denote the n-th Fibonacci number. Prove
each of the following identities via a double-counting argument.
(i) Foralln €N, verify that F,,y; = 3, , (";k).

(ii) For all n € N, verify that F,, = Y, _, () F«.

Problem 2.0.12. Prove each of the following identities via a
double-counting argument.
(i) Foralln € N, demonstrate that )}, _ k (ﬁ)2 =n (2,?__11 ).

(ii) Foralln € N, show that )}, _, (2?{)(215)2”‘2" = (2,?)

2.1 Binomial Coefficients

Binomial coefficients have applications beyond their conventional
combinatorial interpretation. One generalization views a binomial
coefficient as a polynomial in its numerator, thereby allowing one

to evaluate binomial coefficients at any real or complex number.

Definition 2.1.1. For any integer k, the binomial coefficient is ) )
As polynomials, the first few

binomials coefficients are

x(x—-1D)(x-2)---(x—k+1)

ifk > 0, Xy
(;i);: Rk—Dk—2)—@) 1 (o) =
0 if k < 0. (1) =x,
: . : : (3) = 3% = 3%,
When x is a nonnegative integer and k is at most x, the factorial (S =lv_leily
formula [2.0.4] establishes that this new definition agrees with S 4. .
(31)= §x4 Zx3 + axz - 3%

Definition 2.0.3.
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Notwithstanding the larger context, our combinatorial methods
continue to be very useful. Any nonzero polynomial in Q[x] has
at most finitely many zeros, so it suffices to prove that polynomial
identities hold for all sufficiently large integers x. For example,
the addition formula [2.0.6] demonstrates that (¥) = (*') + (i)
holds, for all integers k, where “x” can be an indeterminate, a real
number, or a complex number.

To probe this perspective, we show that a negative numerator in
a binomial coefficient is related to positive ones by a sign.

Proposition 2.1.2 (Negation). For any integer k, we have

(k)= (777

Algebraic proof. Since both sides vanish when k is negative, we
may assume that k is a nonnegative integer. The polynomial defi-
nition gives

<x> o x(x-1)(x—-2)--(x—k+1)

k k!
(=x)1 -x)2=x)---(k—x—1)
= (=1)k X X kic X
:(_l)k(k—x—1)(k—x—2)(k—x_3)...(_x)
k!
k—-x-1
:( k ) 0

Our next identity allows one to move things in and out of a
binomial coefficient.

Proposition 2.1.3 (Absorption). For any integer k, we have
X x—1
(i) =*(c 1)

Double-counting proof. Since both sides vanish when k < 0, we

may assume that k is a positive integer. A nonzero polynomial in

Q[x] has at most finitely many zeros, so it is enough to prove this

identity when x = n is a sufficiently large integer. Assume that

n > k. From a slate of n candidates, how many committees with k

members and having one member designated chair are there?

Answer I: Definition 2.0.3 implies that there are () ways to choose
the committee. There are k ways to select the chair, which gives
a total of k () chaired committees.

Answer 2: First select the chair from the slate of n candidates. From
the other n — 1 candidates, pick the remaining k — 1 committee
members. This can be done n (ﬁj) ways. O

When dealing with products of binomial coefficients, the next
identity often helps.

Subsets & Multisets 29

n|() (1) (3) (3) (3) (5) (6)
4/ 1 -4 10 —20 35 —56 84
-3]1 -3 6 —10 15 —21 28

1

1

1

-2 -2 3 -4 5 -6 -7

-1 -11 -1 1 -1 1

0 o 0 0O O o0 o
Figure 2.6: Matrix of binomial
coefficients with negative
numerators

When x € N and k > x, both sides of
the absorption identity are zero by
Definition 2.0.3.



30 Foundations of Enumerative Combinatorics

Proposition 2.1.4 (Trinomial revision). For all integers m and k, we
" () (%) = (E) G 25)
m/\k/) \k)\m-k)’

Double-counting proof. Since both sides vanish when m < k or

k < 0, we may assume that m > k and k is a nonnegative integer. It

is enough to prove this identity when x = n is a sufficiently larger

integer. Assume that n > m. From a slate of n candidates, how
many committees with m members contain a subcommittee with

k members?

Answer I: By Definition 2.0.3, the committee can be formed in ()
ways and the subcommittee can be formed in () ways, so there
are () (%) committees with the desired structure.

Answer 2: First choose the k members who will serve on both the
committee and the subcommittee. Definition 2.0.3 implies that
this can be done in () ways. From among the complementary
n — k candidates, choose the m — k members who will serve on
just the committee. Since there are (2% ) possibilities for this
second choice, there is a total of (}) (2% ) committees with the
desired structure. O

The next identity in this subsection is commonly named after
Alexandre Vandermonde even though it was known to Zhu Shijie
as early as 1303.

Proposition 2.1.5 (Vandermonde). For all integers k, we have

()= Z0)2,)

jez

Double-counting proof. Since both sides vanish when k < 0, we
may assume that k is a nonnegative integers. A nonzero univariate
polynomial has at most finitely many zeros, so it is enough to
prove this polynomial identity when x = m and y = n are both
sufficiently large integers. From a crowd of m + n hockey fans,
consisting of m Leaf fans and n Habs fans, how many ways can
one fill an arena with k fans?
Answer 1: Definition 2.0.3 implies that there are is (") ways.
Answer 2: Focus on the Leaf fans in the arena. First choose j Leaf
fans and then k — j Habs fans. Since there are ('J") ways to select
the Leaf fans and (" ;) ways to select the Habs fans, there are

Zj o ('J")( o j) ways to fill the arena. O

Our final identity for binomial coefficients is arguably the most
important and is the source of the adjective “binomial”.

Theorem 2.1.6 (Binomial). For any nonnegative integer n, we have

Gty =3 ().

kez
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When x € Nand x < m or m < k, both
sides of the trinomial revision identity
are zero by Definition 2.0.3.

When (x,y) e N2 and x + y < k,
Definition 2.0.3 implies that both
sides of the Vandermonde identity are
Zero.

As the oldest rivalry in the National
Hockey League, we may safely assume
that no individual is a fan of both the
Toronto Maple Leafs and the Montreal
Canadiens (“the Habs”).
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Counting proof. Consider expanding the product

x+y)"=x+x+E+y)--(x+Yy).

n factors

Every monomial in the expansion is the product of n factor, each
of which is either x or y. How many different ways can one create
the monomial x¥y"~*? Each such monomial arises by choosing

x from k of the factors whereas y must be chosen from the com-
plementary n — k factors. Definition 2.0.3 implies that this can be
done in (}) ways. Hence, we obtain ), _, (i) x*y"~*. O

The Binomial Theorem has some noteworthy specializations:
+ Settingx =y =1gives ), _ (})=2".
+ Setting x = —land y = 1yields ), _(—-1)*(}) = 0.

Exercises

Problem 2.1.7. Give two proofs for each of the following identities:

one using a double-counting argument and the other by relying on
the key binomial identities.
(i) Forall n > 2 and all k € Z, show that

k(k—l)(Z) :n(n—l)(Z:j).
(ii) Forall m,n € N, showthat}, _, (Z)(,’fl) =(p)2"m

Problem 2.1.8. For all m,n € N, the super Catalan number is

defined to be
(2m)! (2n)!

S(m,n):= m!n!(m+ n)!’

(i) Show that S(0,n) = (%) and = S(1, n) is the n-th Catalan
number.

(ii) Verify that S(m,n) = (—1)"4m+*" (m - 1/2>'

m+n

2.2 Multisets

In a set, all elements are distinct. We drop this restriction in a
multiset. For example, M := {1, 1,1, 2, 4,4} is a multiset of size 6
over the set [4], where 1, 2, 3, and 4 appear with multiplicity 3, 1, 0,
and 2 respectively. More formally, a multiset M over the set [n] is a
function v : [n] = N such that Z?:I V(j) < c0. One regards v(j) as
the number of repetitions of the number j. The integer Z?zl v(j)
is the size of the multiset M. When a; := v(}j) for all nonnegative
integers j, one sometimes writes M = {1%,2%, ..., n%n}.

Definition 2.2.1. For any nonnegative integer n and any integer k,
the multichoose coefficient ((}; )) is the number of multisets over [n]
of size k.

Subsets &

Multisets

31

Nicolaas Govert de Bruijn coined the

word ‘multiset’ in the
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Some special values are easy to determine.

- For any nonnegative integer k, we have ((; ) = 1 because {1¥} is
the unique multiset over [1] having size k.

« For any nonnegative integer n, we have (( )) = 1 because there is
a unique multiset over [n] having size 0.

« Forall k < 0, we have ((})) = 0 because there are no multisets
having negative size.

These numbers have a few other convenient interpretations.

+ (%)) counts the ways that the k votes can be allociated to n

candidates.

+ (%) counts the solutions (a;, a,, .., a,) € N" to the equation 13 o
a, + a, +as + --- + a, = k. The corresponding multiset over [n] 22 o
of size k is {1%1,2%, ..., n%}.

+ ((¥) counts the positive integer k-tuples (1;, 4, ..., 4;) € N¥ %3 ©
satisfyingn > 4, 2 4, > --- > A, > 1. The corresponding multiset 12,4} &
over [n] of size kis {Ay, Ak_1, ..., A1} 1,22} &
We first show that multichoose coefficients are closely related 1,2,3) <

to binomial coefficients. 37 o

Theorem 2.2.2 (Multichoose coefficients as binomial coefficients). {1,3,4) <

For any nonnegative integer n and any integer k, we have (12,4}

n n+k-1 @ -
G)=(""7") @
. . . . 22,4} &

Double-counting proof. Since both sides vanish when k < 0, we

may assume that k is a nonnegative integer. How ways are there 23 <

to allocate k votes to n candidates? {2,3,4} <

Answer I: By definition, the number of allocations is ((; ). 2.4 o

Answer 2: We represent each allocation with ‘stars and bars’. 3 o
Specifically, each allocation is represented as an arrangement
of k stars (the votes) and n — 1 bars (the dividers between the B354} <
candidates). In Figure 2.8, grey squares are the ‘stars’ and white 3.4
squares are the ‘bars’. For all 1 < i < n, the number of stars be- 43 o

tween the (i — 1)-st and the i-th dividers is the number of votes
allocated to candidate i. Each arrangement involves choosing

k stars from among n + k — 1 symbols, so the total number of
allocations is ("*{71). O

Figure 2.8: The 20 multisets over
the set [4] of size 3

This link with binomial coefficients also provides a polynomial
interpretation for multichoose coefficients. We declare that

((;;)) = (x + Ilz - 1) _ x(x I—:(i)(_xl-;(i)_.. 2()x+(i{)_ 1) < alxl.

This definition has another pleasant form.

Corollary 2.2.3. For any integer k, we have ((;i)) = (=1)k ( —kx).
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Algebraic proof. The negation identity [2.1.2] gives

()=
:(_1)'«("‘(“]’{“1)‘1)=(-1)k(‘kx>. 0

Like binomial coefficients, multichoose coefficients have a
natural symmetry and satisfy a linear recurrence.

Proposition 2.2.4 (Symmetry). For all nonnegative integer n and k
excluding the degenerate case (n,k) = (0, 0), we have (1)) = (*1)).

n-1

Algebraic proof. Proposition 2.2.2 and the symmetry of binomial
coefficients [2.0.5] give

(1) S R G B (A R

Proposition 2.2.5 (Addition). For any integer k, we have

(D= Gz + 7))

Double-counting proof. Since both sides vanish when k < 0, we may

assume that k is a nonnegative integer. When k = 0, the special

values of the multichoose coefficient show that both sides equal

1, so we may further assume that k is a positive integer. A nonzero

polynomial in Q[x] has at most finitely many zeros, so it suffices

to establish this identity when x = n is sufficiently large integer.

How many ways can we allocate k votes to n candidates?

Answer I: From the definition for the multichoose coefficient, we
see that there are ((}; ) allocations.

Answer 2: Focus on whether the candidate n gets a vote. If they do,
then there are (( ", )) ways to allocate the other votes, because
the candidate n receives the last vote. If they don’t, then there
are ("¢')) ways to allocate the votes, because the candidate n
receives no votes. Thus, there is a total of (")) + ("¢") ways
to allocate the votes. O

Algebraic proof. Proposition 2.2.2 and the addition formula for
binomial coefficients [2.0.6] give

(G
(T CRET) = () () o

Exercises

Problem 2.2.6. For all positive integers n, k € Z, a composition of
ninto k parts is a k-tuple (a;, a,, ..., a;) of positive integers such
thata; + a, + --- + a, = n.
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n|(8) (1) (3) (3) (3) (5)

1 0 0 0 0
1 1 1 1
3 4 5 6
6 10 15 21
10 20 35 56
15 35 70 126

Uk WN=O
e
wmhwn=O

Figure 2.9: Matrix of multichoose
coefficients
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(i) Provide a bijective proof that the number of compositions of
ninto k parts is (;_;).
(ii) Show that the total number of compositions of n is 2”71
(i) Show that ((,,%;)) = (}Z}) via a double-counting argument.

Problem 2.2.7. Using a double-counting argument, prove the
following identities.

(i) Forallm,n € N, show that ((,,/41)) =X, ((,’fl)) ( "_,’fl“)).
(i) For all m,n, k €N, show that (") = e, (1) (i)
Problem 2.2.8. For all m,n € N, prove
§<n+k)_(m+n+1>
= k m

via a double-counting argument and rewrite this identity in terms
of multichoose coefficients.
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