1
Counting Techniques

We introduce the two types of combinatorial proofs. The first,
called double counting, shows that two expressions are equal by
demonstrating that they are just different ways of counting the
elements in a single set. The second technique, called a bijective
proof, proves that two sets have the same cardinality by exhibit-
ing a one-to-one correspondence between them. Even with their
apparent simplicity, these methods often lead to more elegant
arguments and greater insight. To showcase the benefits, we as-
semble examples involving domino tilings, permutations, and
triangulations.

1.0 Domino Tilings

We present a class of combinatorial models that arises frequently
in statistical mechanics. A domino is a polygon made from two
unit squares joined edge-to-edge. When rotations are considered
distinct, there are two fixed dominoes: the (1 x 2)-rectangle is the
horizontal domino and the (2 x 1)-rectangle is the vertical domino.

Definition 1.0.1. A domino tiling of a planar region is a covering
(with no overlaps or gaps) by dominos.

Theorem 1.0.2 (Fibonacci tiling model). For any nonnegative integer
n, the Fibonacci number F,,; is the number of the domino tilings of a
(2 x n)-rectangle.

Inductive proof. Since no dominos provide the unique covering a

(2 x 0)-rectangle and a vertical domino gives the unique covering

a (2 x 1)-rectangle, the base cases hold because F; = 1and F, = 1.

Assume that, for all nonnegative integers k such thatk < n + 1,

the number of domino tilings of a (2 x k)-rectangle is Fy_ ;. For

the induction step, focus on the right edge of the (2 x n)-rectangle.

There are two possible configurations.

+ When a vertical domino covers the right edge, the induction
hypothesis shows that the complementary (2x(n —1))-rectangle
can be tiled in F,, ways.

« When two horizontal tiles cover the right edge, the induction
hypothesis shows that the complementary (2x (n — 2))-rectangle
can be tiled in F,,_; ways.

Using the Fibonacci recurrence, we see that the total number of

domino tilings of a (2 x n)-rectangleis F,, + F,,_; = F,, ;. O
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Figure 1.1: Domino tiling of an
Aztec diamond

Figure 1.2: The 8 domino tilings of
a (2 x 5)-rectangle
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Using this combinatorial model, we give a more attractive proof
for an earlier identity; see Problem 0.3.2.

Problem 1.0.3. For any nonnegative integer n, demonstrate that
F0+F1++Fn =Fl’l+2_1'

Double-Counting solution. On a (2 x (n + 1))-rectangle, how many

domino tilings use at least one horizontal domino?

Answer 1: Applying the Fibonacci tiling model, there are F,, .,
domino tilings of the (2 X (n + 1))-rectangle. Excluding the
tiling having all vertical dominos leaves F,,,, — 1 tilings with at
least one horizontal domino.

Answer 2: Focus on the pair of horizontal dominos closest to the
right edge. For some 1 < k < n, this pair is k — 1 units from the
left edge of the rectangle and n — k units from the right. The

Fibonacci tiling model establishes that there are Fj tilings of -k '_"1 — 2 — n—k |
the left (2 x (k — 1))-rectangle; the right (2 x (n — k))-rectangle
must be tiled by vertical dominos. Since we have F, = 0, the Figure 1.3: Rightmost pair of

total number of tilings with at least one horizontal domino is horizontal dominos

n n
FO+ZFk:ZFk:FO+F1+“'+Fn' O
k=1 k=0

Each feature of a domino tiling leads to a combinatorial iden-
tity. For instance, a domino tiling of a (2 x n)-rectangle is called
m-decomposable, for some 0 < m < n, if it is the union of two
tilings: one covering the left (2 x m)-subrectangle and the other
covering the right (2 x (n — m))-subrectangle. Hence, a domino
tiling is not m-decomposable precisely when there is a horizontal
domino that is m — 1 units from the left edge of the rectangle.

Problem 1.0.4. For all nonnegative integers m and n, prove that
Fiini1 = Fmy1 Fop1 + Fp Fy

Double-Counting Solution. On a (2 x (m + n))-rectangle, how many
domino tilings are there?
Answer 1: The Fibonacci tiling model implies that there are F,,,, ;11
such domino tilings.
Answer 2: Focusing on m-decomposability gives 2 possibilities.
« If the tiling is m-decomposable, then it is the union of a tiling
a (2 x m)-rectangle and a tiling of a (2 x n)-rectangle. The
Fibonacci tiling model shows that the first rectangle has  m oy |
F,, ,, tilings and the second has F,,,;, so there are F,,,; F;,;;
decomposable tilings.
« If the tiling is not m-decomposable, then it has a pair of hor-
izontal dominos that are m — 1 units from the left edge and

Figure 1.4: m-decomposable

n — 1 units from the right. In this case, the Fibonacci tiling
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model shows that there are F,, tilings of the (2 X (m — 1))-
rectangle and F,, tilings of the (2 x (n — 1))-rectangle, which
means that there are F,,, F,, indecomposable tilings.
Therefore, we have a total of F,,,; F,,,; + F,, F,, tilings of an
(1 x (m + n))-rectangle. O

Sometimes it is more convenient to interpret the sides of an
identity as the cardinality of different sets.

Problem 1.0.5. For any nonnegative integer n, established that
Fonyz = Fr21+2 - F7.

Bijective Solution.

Set1: Consider the set of all domino tilings of a (2 x (2n + 1))-
rectangle. The Fibonacci tiling model shows that there are
F,,4, such domino tilings.

Set 2: Consider pairs of tilings of a (2 x (n + 1))-rectangle where at
least one has a vertical domino adjacent to its right edge. Since
there are F?,, pairs (with no condition) and F2 pairs having a
horizontal domino covering the right edge in both, there are
FZ,, — F? pairs having the desired form.

Correspondence: The map sending a single tiling S to the pair
(T, T,) is a piecewise function. If S is n-decomposable, then
the first tiling T is the left (2 x n)-rectangle in S with a verti-
cal domino adjoined on the right and the second tiling T, is
the complementary right (2 x (n + 1))-rectangle in S. If S is
not n-decomposable, then T; is the left (2 X (n + 1))-rectangle
in S and T, is the complementary right (2 x n)-rectangle in S
with a vertical domino adjoined on the right. Conversely, if T,
has a vertical domino covering its right edge, then we join the
left (2 x n)-rectangle in T, with T,. If T; does not have a verti-
cal domino covering its right edge, then T, does and we join
T, with the left (2 x n)-rectangle in T,. By construction, these
operations are mutual inverses.

Since there is a bijection between the given sets, we conclude that

F2n+2=F,21+2—F3,. O

Exercises

Problem 1.0.6. For all n € N, demonstrate that the Fibonacci
number F, ,, is equal to each the following:
(i) the number of binary n-tuples having no consecutive 0’s;
(ii) the number of subsets of the set [n] := {1, 2, ..., n} that contain
no consecutive integers.

Problem 1.0.7. For alln € N, demonstrate that the Fibonacci
number F, ,, is equal to each the following:

(i) the number of matchings in the path graph P,;

(ii) the number of perfect matchings in the graph P, x P,,.
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Problem 1.0.8. For all m,n € N, exhibit a bijection between the
domino tilings of the (m x n)-rectangle and the perfect matchings
in the grid graph P,, X P,,.

Problem 1.0.9. For all n € N, use double-counting arguments to
verify the following identities among Fibonacci numbers:
() Fi+Fs+Fs+ -+ Fopq1 = Fongo,
(i) F+F4+Fg+ -+ Fyy=Fyz—1,
(iii) F} + F} +F2+ -+ F2,, =F,,, Fn,s,
(iv) Fi+Fpyy = Fapy,
(v) 2(F§ + F3 + -+ FR) + Fppy = Fopp.

Problem 1.0.10. For all n € N, use a bijective argument to verify
that Fyy i3 = Fyyp Fpis — Fp Fppa.

Problem 1.0.11. By definition, the Jacobsthal numbers satisfy
Jo:=0,J;:=1andJ, := J,_; + 2J,_, for all n > 2. Hence, this
sequence begins with 0,1, 1, 3, 5, 11, 21, 43, 85,171, 341, 683, .... For
alln € N, demonstrate that J,,; is the number of tilings of an

(3 x n)-rectangle with (1 x 1)- and (2 X 2)-square tiles.

1.1 Permutations

Permutations arise in almost every branch of mathematics and in
many other fields of science. There are at least three distinct ways
of thinking about the permutations of the set [n] := {1, 2, ..., n}.

Definition 1.1.1. A permutation of the set [n] is a bijective map

from [n] to itself. Each permutation of [n] is also identified with

- an arrangment of the n distinct elements in the set [n], and

+ adirected graph with n labelled vertices such that every vertex
is the head of one arrow and the tail of one arrow.

The two-line notation for a permutation is a (2 x n)-table thats lists

the elements of the set [n] in the first row and the corresponding

image in the second:

(1 2 3 . n
o= (o(l) o2) o(3) - a(n))'

The one-line notation for permutation just records the second row:

o =0(1) o) o(B) --- oc(n). The direct graph has an arrow
from the vertex i to vertex o(i) for all 1 < i € n. Since the function
o: [n] - [n]is surjective, every vertex is the head of one arrow.

Notation 1.1.2. For any nonnegative integer n, the factorial of n is
n
ni:=nn-1)m-2)-)(1)=]]k.
j=1

This sequence begins 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, ....
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The permutations of [n] are functions
that can be composed with each other,
forming the symmetric group &,,.
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Figure 1.7: The 6 permutations of
the set [3]
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Proposition 1.1.3. For any nonnegative integer n, the number of per-
mutations of the set[n] is n!.

Inductive proof. Since there is a unique map from the empty set

to any other set, there is a unique permutation of [0] = @, so the
base case holds. For all k < n, assume that number of permuta-
tions of [k] is k!. When constructing a permutation of [n], there
are n choice for the first element in the order. By the induction
hypothesis, there are (n — 1)! ways to order the complementary set
of n — 1 elements. Therefore, the total number of permutations is
n((n-1)") = n. O

Problem 1.1.4. For any nonnegative integer n, demonstrate that

S (k) = (n + 1)1 —1.
k=0

Double-Counting Solution. How many permutations of the finite

set [n + 1] are there when we exclude the identity1 2 3 --- n+ 1?

Answer I: Since there are (n + 1)! permutations of the set [n + 1],
excluding one gives (n + 1)! — 1 having the desired form.

Answer 2: Focus on the first number not in its natural position. For
some 1 € k < n, how many permutations have n — k + 1 as
the first number to differ from its canonical position? Such a
permutation begins 1 2 3 --- n — k and is followed by selecting
one of the k numbers from theset{n —k+2,n—k+3,..,n+ 1}
The remaining k number, now including the number n — k + 1,
can be arranged in k! ways. Thus, there are (k)(k!) ways for
n — k + 1 to be the first misplaced number. Summing over all
feasible values of k yields

> (kD) = 3 (R)(KY). =
k=1 k=0

Exercises

Problem 1.1.5. For all n € N, the double factorial is

[n/2]-1
nll = (n—2k).
k=0

This sequence begins with 1, 1, 2, 3, 8, 15, 48,105, 384, 945, ....
(i) For all m € N, show that (2n)!! is the number of ways to seat n

couples in a row such that everyone is next to their partner.
(ii) For all n € N, use a double-counting argument to prove

i(Zi +DHN = @n+2) —1.
Jj=0
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Figure 1.8: The permutations of
the set [3 + 1] excluding1 2 3 4
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Problem 1.1.6. The permanent of a square matrix is defined by
the same expansion as the determinant except that each term
of the permanent is given the plus sign (unlike the determinant
alternates signs). Specifically, if A = [a; ] is an (n x n)-matrix,
then we have

n
det(a):= 3 [sgn(@) [T ajon| »
oEG, Jj=1
n
per(A):= > [[aj00-

oeG, j=1

For any positive integer n, compute the determinant and perma-
nent of the matrix

O@® M@ @MEG) - @)
@1 @@ @6 - @0
B:=[3)1®) )2 )3 - 3)n)

WD) M@ WE) -~

1.2 Catalan Numbers

A polygon is a plane figure described by a finite number of line
segments (whose interiors do not intersect) that are connected to
form a simple closed curve. The line segments in this piecewise-
linear curve are the edges of the polygon and the points where
two edges meet are its vertices. A polygon with n vertices is called
an n-gon. A polygon is convex if the line segment joining any two
points on the curve lies in the interior of the simple closed curve.
A diagonal is a line segment joining two vertices that are not on
the same edge.

Problem 1.2.1. For any nonnegative integer n, prove that a convex

(n + 3)-gon has (n + 3)n/2 distinct diagonals.

Solution. Each diagonal has two distinct vertices. There are n + 3
choices for a first vertex. By avoiding the original choice and its

neighbours, there (n+3)—3 choices for the second. Since there are
2 ways to order the vertices, we conclude that there are (n + 3)n / 2
distinct diagonals. O

A triangulation of a convex n-gon is a set of n — 3 diagonal with

disjoint interiors. These diagonals subdivide the interior of the
polygon into n — 2 triangles.

Definition 1.2.2. For all n € N, the Catalan number C,, counts the
triangulations of a convex (n + 2)-gon. When n = 0, we declare

that the line segment has one triangulation. This sequence begins

1,1,2,5,14,42,132, 429, 1430, 4862, 16796, 58786, 208012, ....
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of a convex 5-gon
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Proposition 1.2.3 (Catalan Ratio). For any nonnegative integer n, the
Catalan numbers satisfy 2(2n + 1)C,, = (n + 2)C,,,, or equivalently

Cppr _ 220 +1)

C, n+2

Bijective Proof.

Set1: Given a triangulation of the (n + 2)-gon, choose and orient
one of its (n + 2) + (n — 1) = 2n + 1 line segments (edges
and diagonals). The definition of the Catalan numbers shows
that there are 2(2n + 1)C,, triangulations with an oriented line
segment.

Set 2: Consider an (n + 3)-gon to be resting on one of its edges
called the ‘base’. Given a triangulation of the (n + 3)-gon, we
mark one of the edges other than the base. From the definition
of the Catalan numbers, we see that there are (n + 2)C,; such
marked triangulations.

Correspondence: Collapsing the marked side in a triangulated
(n + 3)-gon and orienting the remaining edge with an arrow
pointing towards the vertices that were identified produces
a triangulation of an (n + 2)-gon with an oriented line seg-
ment. For the opposite direction, expanding the oriented edge
in (n + 2)-gon into a triangle (by doubling the vertices at the
head) and marking its new edge (joining the duplicated vertices)
gives a marked triangulation of an (n + 3)-gon; the new edge is
transverse to the base. By construction, these maps compose,
in either order, to the identity.

Since there is a bijection between the given sets, we conclude that

22n +1)C,, = (n + 2)Cpy ;1. O

This immediately gives a closed formula for these numbers.

Corollary 1.2.4. For any nonnegative integer n, the n-th Catalan
number is

z (2n)!

_ n+k
C”_Ig k ~ n(n+1)’

Proof. The Catalan ratio gives

C (& C
&= (g5)@2)-(g)e
" Cn—l Cn—2 CO 0

_ (2(2n - 1))(2(271 - 3))___(2(21))(1)

n+1 n
_ (2n(2n — 1)) (2(n -1)(2n - 3)) <2(1)(1)>
nn+1) (n—1n (1))
_ @enm2n-1)---(1) __ (@n)
T (mmn-1D---Dn+1DMRN)---1)  nl(n+1)

_(2n)(2n—1)---(n+2)_ﬁn+k
- (n(n-1)---(2) _k=2 k -~
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Proposition 1.2.5 (Catalan Recurrence). For any nonnegative integer
n, we have

n
Cus1= D, CkCrk-
k=0

Bijective Proof. To orient the edges in a polygon, assume that we

traverse the boundary counterclockwise.

Set 1: The definition of the Catalan numbers implies that there are
C,.,1 triangulations of a convex (n + 3)-gon.

Set2: Forall0 < k < n, consider a pair of triangulated convex
polygons where the first has (k + 2) vertices and the second has
(n — k + 2)-vertices. It follows that the total number of such
pairs is the sum Z'klzo Ci Chr-

Correspondence: Removing an edge e from a triangulated convex
(n + 3)-gon produces two smaller triangulated polygons that
share a common vertex. To order the doubleton, assume that
the second polygon contains the edge of the (n + 3)-gon pre-
ceding e in the counterclockwise order. For some 0 < k < n,
the first smaller polytope has k + 2 vertices, so its partner has
n — k + 2 vertices. It is possible that either smaller polytope is
just a 2-gon; this happens when the triangle containing the re-
moved edge contains an additional edge. Conversely, consider
a pair of triangulated polygons having k + 2 and n — k + 2 ver-
tices respectively. Choosing a vertex in each of the polytopes to
identify and joining the succeeding vertex in the first polytope
with the preceding vertex in the second polytope with a new
edge, we obtain a triangulated (n + 3)-gon. By construction,
these operations are mutual inverses.

Since there is a bijection between the given sets, we conclude that

Catalan recurrence holds. O

Exercises

Problem 1.2.6. The central polygonal numbers are defined by
a, := 0anda, := a,_; + nforalln > 1. This sequences starts
1,2,4,7,11, 16, 22,29, 37, 46, 56, 67, 79,92,106,121, 137, 154, ...
Demonstrate that a, equals the maximal number of regions de-
fined by n lines in the plane.

Problem 1.2.7. For any nonnegative integer n, let a,, denote the
number of diagonals in a convex (n + 3)-gon. This sequence
begins 0,2, 5,9, 14, 20, 27, 35, 44, 54, 65, 77,90, 104, 119,135,152, ....
(i) Show that this sequence satisfies a, = a,_; + n + 1 forall
n>l.
(ii) Prove that a, is the maximal number of pieces that can be
obtained by cutting an annulus with n straight lines.
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Figure 1.13: Catalan recurrence
correspondence for n = 4
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Problem 1.2.8. For all n € N, the superfactorial

sf(n) := ﬁ k!
k=1

is the product of the first n factorials. Prove that the fraction
sf(2n)
(n +1)(sf(n))"
is an integer.

Problem 1.2.9. For all n € N, consider the integral

4
Cn:ZLf xn 4_xdx.
27T o V x

22(n+ 1)

(i) Forall m € N, show that C,, :=

1

f Y1 —y2dy.
0

(ii) Compute C,.

(iii) Demonstrate that 2(2n + 1)C,, = (n + 2)Cp4;-

Problem 1.2.10. For all n,k € N, the Fuss-Catalan number C,  is
the number of subdivisions (using diagonals that don’t intersect
in their interiors) of a convex (kn + 2)-gon into regions that are
(k + 2)-gons.

(i) Prove Fuss-Catalan ratio

Jj=1

Jj=1

k k
[H(kn +j+ 1)] Cpyrx = (k+1) [H(kn +n+ j)] Chk-

(ii) Establish that

_ 1 (k+1n
C”’k_kn+1< n )
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