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Two Basic Principles

We start by examining the pigeonhole principle and the principle
of mathematical induction. Both of these tools are powerful, but
deceptively elementary. One may need real inspiration to apply
them. We illustrate the first principle with some “perfect proofs”
cherished by Erdds and we explain the second with the famous
Fibonacci numbers.

Notation 0.0.1. Throughout, N := {0, 1, 2, 3,...} denotes the set of
nonnegative integers. To ensure that the cardinality of every finite
set appears in this set, it must include zero.

0.0 The Pigeonhole Principle

Our first principle builds on the simple observation that there are
no injective mappings from a finite set into a small set. Despite
being seemingly obvious, this statment does nevertheless produce
unexpected results.

Theorem 0.0.2 (Pigeonhole Principle). Letn and r be nonnegative
integers. If n objects are placed in r boxes wherer < n, then at least one
of the boxes contains more than one object.

Proof by contradiction. Assume that no box has more than one
object. If there is no box with at least two objects, then each of the
r boxes has either zero or one object in it. Let m be the number of
boxes with zero objects in them, so m > 0. It follows that there are
r — m boxes with one object. However, this means that the total
number of objects placed in the r boxes is r — m < r < n which is a
contradiction. Therefore, our assumption is false and there exists

at least one box with more than one object. O
Problem 0.0.3. When you pick 5 cards from a standard 52-card French, German, Italian, and Swiss

. decks of playing cards all have the
deck of French playing cards (the most common deck used today), same number of suits. The four suits
demonstrate that at least 2 will have the same suit. in a French deck are clubs (&), dia-

monds (¢), hearts (¥), and spades (s).
Solution. Since there are 5 cards (the objects) and 4 suits (the
boxes), the Pigeonhole Principle 0.0.2 establishes that at least 2
cards have the same suit. O

Problem 0.0.4. Given 10 points in the unit square, show that
there exists 2 points that are at most \/5 / 3 units apart.
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Solution. Subdivide the unit square into 9 smaller squares all
having the same area. Since there are 10 points and 9 smaller
squares, the Pigeonhole Principle 0.0.2 implies that 2 points lie
in the same smaller square. In a square, the points on the oppo-
site corners have greatest distance between them. In our small
squares, the Pythagorean theorem implies that the distance is at

most /(1/3) + (1/3)2 = V/2/3. O

Problem 0.0.5. Let n be a positive integer. Given n integers
a,,a,, ..., a,, prove that there is a subset of consecutive numbers
Aji15Ajyz, -, With j < ksuch thatsuma;j,; + aj, + - + aisa
multiple of n.

Solution. Fix two sets: NV := {0,ay,a; + ay,...,a; + a, + --- + a,}
and R := {0, 1,...,n — 1}. Consider the map f : N —» R where f(m)
is the remainder of m upon divison by n. Since the cardinalities

of our two sets satisfy the inequality |[N| = n+ 1 > n = |R|,

the Pigeonhole Principle 0.0.2 implies that there are two sums

a; +a,+--+a;and a; +a, + -+ +qy, for some 0 < j < k < n, with
same remainder. It follows that

aj+1 +aj+2 + -+ ak = (a1 + a2 + -+ a]) - (al + a2 + -+ ak)
is a multiple of n. O

Dirichlet first formulated the Pigeonhole Principle to establish
good rational approximations for irrational numbers.

Theorem 0.0.6 (Dirichlet 1879). For any real number x and any
positive integer n, there exists a rational number p/q such thatp,q € Z,
1<q<n,and

X—=l<—< .
ql nq q

‘ p‘ 1 1
Proof. Let frac(x) := x — | x| denote the fractional part of the real
number X, so 0 £ frac(x) < 1. Consider the n + 1 real numbers
frac(jx), where j is a positive integer such that1 £ j < n + 1, and
the n half-open intervals [0, 1/n),[1/n, 2/n),...,[(n — 1)/n, n/n) that
subdivide the unit interval [0, 1). The Pigeonhole Principle 0.0.2
implies that there exists a interval containing more than one of
the numbers. If the numbers frac(jx) and frac(kx), where j < k,
belong to the same interval, then their difference is less than 1/n.
Setting q := k — j and p := |kx] — | jx|, we have

% > | frac(kx) — frac(jx)| = |kx — [kx] — jx + Ljx]|
= |(k — j)x — (kx| = [jx])| = lgx — pl

which yields |x — p/q| < 1/nq. O
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Figure 0.1: Subdivided unit square

Lejeune Dirichlet (1805-1859) made
deep contributions to number theory,
Fourier series, and other topics in

analysis.

The Roth Theorem shows that this

is essentially the tightest possible.
The bound on rational approximation
of algebraic numbers cannot be
improved by increasing the exponent

beyond 2.
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Exercises

Problem 0.0.7. Show that at least 2 Queen’s students have the
same number of eyelashes.

Problem 0.0.8. Hartsfield-Jackson Atlanta International Airport
(ATL) is world’s busiest airport as measured by annual aircraft
movements. One movement is a landing or takeoff of an aircraft.
In 2015, ATL had 882 497 movements. Show that two movements
occurred within a minute of each other.

Problem 0.0.9. Prove that every odd integer has a multiple that is
one less than a power of two.

Problem 0.0.10. Given 5 points in a unit equilateral triangle, show
that there exists two points that are at most 1 / \/§ units apart.

Problem 0.0.11. Let m denote the arithmetic mean of a finite set
of real numbers. Use the Pigeonhole Principle 0.0.2 to show that
there exists at least one number in the collection that is less than
or equal to m.

Problem 0.0.12. The degree of a vertex in a graph is the number of
edges adjacent to it. Given a graph G with n vertices such that ev-
ery vertex has degree at least (n — 1)/2, show that G is connected.

0.1 Erdos’ Favourites

Paul Erdés spoke of ‘The Book’ in which God records the most

beautiful proofs and even asserted “You don’t have to believe in
God, but you should believe in The Book”. We examine several
arguments that Erdés personally designated as from The Book.

Notation 0.1.1. For all nonnegative integers n, set
[n] :: {1’ 2’ 3, A n} b
so [0] = @, [1] = {1}, [2] = {1, 2}, and [3] = {1,2,3}.

Proposition 0.1.2. Letn be a positive integer. Any subset of the set
[2n] having cardinality n + 1 contains two relatively prime integers.

Proof. Partition the set [2n] into the n disjoint subsets:
{1’ 2}: {3, 4}’ {55 6}, sy {Zn - 15 2;’1} .

View the given subset of [2n] as placing n + 1 objects into these
boxes. The Pigeonhole Principle 0.0.2 implies that there exists

box with at least two objects. Hence, the given subset contains
two consecutive integers. Since 2 positive integers that differ by

1 are relatively prime, any subset of [2n] having cardinality n + 1
contains a pair of relatively prime integers. O

Two Basic Principles

Paul Erdés (1913-1996) was one of
the most prolific mathematicians.
He is known for his social practice
of mathematics (he had more than
500 collaborators) and his eccentric
lifestyle.
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Proposition 0.1.3. Let n be a positive integer. Any subset of the set
[2n] having cardinality n + 1 contains a pair of integers such that one
divides the other.

Proof. Write every number in the given subset in the form 2¥m
where m is an odd number between 1 and 2n — 1. Since there are
n + 1 numbers in the subset, but only n different odd parts, the
Pigeonhole Principle 0.0.2 implies that there are two numbers
with the same odd part. Thus, one is a multiple of the other. O

Theorem 0.1.4 (Generalized Pigeonhole Principle). Letn andr be
positive integers such thatn > r. When n objects are placed in r boxes,
there exists a box containing at least [n/r] objects.

Proof. In terms of a function, this principle asserts that, for any
two finite sets V and R satisfying |[N| = n > r = |R|and

any function f : V' — R, there exists an element m € R such
that the preimage has cardinality at least n/r: [f~'(m)| > [n/r].
Otherwise, we would have |f~1(m)| < n/r,forallm € R, and
n=y, . lf'(m)| <r(n/r) = nwhich is absurd. O

Problem 0.1.5. Show that there are at least 5 people currently
living in the Greater Toronto Area who were born in the same
hour of the same day of the same year.

Solution. Since the verified oldest person lived less that 123 years,
we may assume that all the residents of the Greater Toronto Area
are at most 125 years old. Each year has at most 366 days and each
day has 24 hours, so we have a total of (125)(366)(24) = 1098 000
boxes. There are at least 6 417 516 Torontonians (as counted by

the 2016 Canadian Census). Thus, the Generalized Pigeonhole
Principle 0.1.4 implies that at least 6417516/1098000 ~ 584 >5
people were born within 60 minutes of each other. O

Jeanne Calment (1875-1997) lived 122
years and 164 days.

The next application is more sophisticated.

Theorem 0.1.6 (Erd6s—Szekeres 1939). Let m and n be nonnegative
integers. Given a finite sequence a,, Q,, ..., Q41 Of mn + 1 distinct real
numbers, there exists an increasing subsequence of lengthm + 1 or a
deceasing subsequence of lengthn + 1.

Proof. We demonstrate that there exists indices i; < iy < - < I41
suchthata; <a;, < - <@, orj; <j, <-- < juq suchthat
aj, > aj, > --- > a; . Associate to each term g; the length ¢; of a
longest increasing subsequence starting with a;. If ¢; > m + 1 for
some i, then there would be an increasing subsequence of length
m + 1. Otherwise, we would have ¢; < mforalll < i < mn + 1.
For the function a; — ¢; mapping the set {a;, a,, ..., @41} into the
set [m] = {1, 2,..., m}, the Generalized Pigeonhole Principle 0.1.4
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implies that there is an element r € [m] such that the preimage
has cardinality at least

mn + 1 1

———|=|(n+=|=n+1.

m m

Leta; ,qj,, ..,q;,,, where j; < j, < -+ < ju41, be the terms in
preimage of such an element r. Look at two consecutive terms
aj,» Ajy.,, forsomel < k< n.If aj, < Q.o then we would have
an increasing subsequence of length r starting at a;, ., and, con-
sequently, an increasing subsequence of length r + 1 starting at
aj, which is impossible as €jk = r. Thus, we obtain a decreasing
subsequence q;, > aj, > -+ > a;,  oflengthn + 1. O

Exercises

Problem 0.1.7. Fix an integer n that is greater than 1 and select n
different integers from the set [2n] := {1, 2, 3, ..., 2n}. Is it true that,
among the selected integers, there will be two that are relatively
prime? Is it true that, among the selected integers, there will be
two such that one divides the other?

Problem 0.1.8. Fix an integer n that is greater than 1 and select

n + 1 different integers from the set [2n] := {1, 2, 3, ..., 2n}. Is it true
that, among the selected integers, there will be two such that one
is equal to twice the other?

Problem 0.1.9. Given 5 integers between 1 and 8, show that 2 of
them must add up to 9.

Problem 0.1.10. Given 6 people, show that there are either 3
mutual acquaintances or 3 mutual strangers.

Problem 0.1.11. Suppose that each point in real plane with integer
coordinates between 0 and 99 are coloured red, yellow, or blue.
Prove that there exists a rectangle whose vertices all have the
same colour.

Problem 0.1.12. Suppose a standard 8 x 8 chessboard has two
diagonally opposite corners removed, leaving 62 squares. Is it
possible to place 31 dominoes (which cover squares that share a
common edge) so as to cover all of these squares?

Problem 0.1.13. Demonstrate that lossless data compression
algorithms cannot guarantee compression for all input.

0.2 Mathematical Induction

Our second principle is part of the foundations of arithmetic and
is usually stated as an axiom of the set of nonnegative integers. To
be more precise, a property of the set N is defined to be a function
P: N — {true,false}. The idea is that P(n) holds if and only if
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P(n) = true; otherwise we have P(n) = false. The most common
form of induction is prescribed as follows.

Axiom 0.2.1 (Induction). To verify that a property P(n) holds for

all n € N, it is enough to prove

Base case: P(0) holds, and

Induction step: for all n € N, the assumption that P(n) holds implies
that the property P(n + 1) holds.

The next two problems typify the basic use of induction.

Problem 0.2.2. For all positive integers n, verify that

n—1
D @j+1)=n2.
j=0

Inductive solution. When n = 1, we have 2(0) +1 = (1)?, so the base
case holds. Assuming that Z;.:g(ZJ + 1) = (n — 1)? holds, we show
that the equation Z;:;(Z j + 1) = n? also holds. The induction

step is

i(2j+1)= [2(2j+1)] + [2(n—1)+1)]
j=0 j=0
=(n-12+2-D+1=((n-1D+1) " =n. O

Remark 0.2.3. Despite establishing the correctness of the formula,
the induction solution to Problem 0.2.2 is unsatisfying. It feels
overly formal and does not seem to explain the true origins of this
equation. Figure 0.3 suggests a better way to understand this sum.

Problem 0.2.4. For all integers n greater than or equal to 4, prove
that 2" > n?.

Inductive solution. For all n > 2, we first prove, by induction, that
n? > 2. When n = 2, we have 22 = 4 > 2, so the base case holds.
Assuming that the inequality n? — 2 > 0 holds, we show that

(n 4+ 1)? — 2 > 0 also holds. The induction step is

n+12-2=Mm>+2n+1)—-222+2n—-1=2n+1325.

For all n > 4, we now prove, via induction on n, that 2" > n2.
Whenn = 4, we have 42 = 16 = 24, so the base case holds.
Assuming that the inequality 2" — n? > 0 holds, we show that
2"+l — (n 4+ 1) > 0 also holds. For the induction step, we have

2" —(n+1)2=22")-n*-2n-1
22(n?)—-n*-2n-1=(m-1)>*-2.

Since the first paragraph establishes that (n — 1)> — 2 > 0, we
deduce that 2"*! — (n + 1)? > 0 as required. O

Copyright © 2021, Gregory G. Smith

Figure 0.2: Induction is like
toppling dominoes

Figure 0.3: Sum of odd integers
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Among the reformulations of induction, we single out two.

Theorem 0.2.5 (Well-ordering of N). Every nonempty subset of the
set N of nonnegative integers has a least element.

Proof by contradiction. Let A C N be any nonempty subset. Sup-
pose that A does not have a least element. For all n € N, let P(n)
be the property that no element of N strictly smaller than n lies

in A. We verify, by induction on n, that P(n) holds. However, the

fact that the property P(n) holds for all n € N implies that A = @

which is a contradiction.

The base case P(0) holds vacuously. Assuming that P(n) holds,
we show that the property P(n + 1) also holds. Forany m < n + 1,
we have either m < n or m = n. We treat these cases separately.

m < n: The induction hypothesis asserts that P(n) holds. It fol-
lows that m & A.

m = n: If n were to belong to the set A, then the induction hypoth-
esis would imply that no k < n would belong to A, so n would
be the least element of A. Since this contracts the supposition
that the set A contains no least element, we deduce that n & A.

Therefore, we conclude that m < n + 1 implies that m ¢ A which

means that P(n + 1) holds. O

The next variant is especially useful when multiple instances of
the inductive hypothesis are required for each inductive step.

Theorem 0.2.6 (Complete induction). To verify that a property P(n)

holds for all nonnegative integers n, it is enough to prove that

Base case: P(0) holds, and

Induction step: foralln € N, the assumption that the property P(k)
holds for all k < n implies that the property P(n + 1) holds.

Proof by contradiction. Let P be a property satisfying both the

base case and induction step. Suppose that P(n) fails for some
nonnegative integer n, so the set ¥ := {n € N | P(n) = false}

is nonempty. Theorem 0.2.5 implies that the set & has a least
element m, which means that P(m) = false. Since the base case
asserts that P(0) holds, it follows that m # 0. As m is the least
element for which P(m) = false, we must also have P(k) = true
for all k < m. However, the induction step would then imply that
P(m) = true which is a contradiction. Therefore, the set F is
empty and the property P(n) must hold for all n € N. O

Exercises

Problem 0.2.7. For all nonnegative integers n, show that

1 n+1

go(k+1)(k+2)_ n+2°

11
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n n 2
Problem 0.2.8. For all 1 € N, verify that 3 j° = [z j] .
j=0 j=0
Problem 0.2.9. For any subset A C N such that
(a) 0 €A, and
(b) the condition that n € A implies thatn + 1 € A,

demonstrate that A = N.

Problem 0.2.10. The square triangular numbers are defined by
Ny:=0,N;:=1,and N} := 34 Ny;_; — N;_, + 2forall k > 2. The
first few terms are 0, 1, 36, 1225, 41616, 1413721, 48024900, ....

(i) Prove that Nj_; Ny;; = (N — 1)?forall k > 1.

(ii) Verify that

N = ((3 +2V2)F - (3 - 2\/5)")2
k 4\/5 .

0.3 Fibonacci Numbers

Appearing as early as 200BC in work by Pingala on patterns in
poetry, the 1202 book by Fibonacci introduces this sequence to
solve a puzzle about the growth of an idealized rabbit population.

Definition 0.3.1. The Fibonacci numbers are the integers defined
by Fy =0,F; =1,and F, := F,,_; + F,,_, for all n > 2. The first few
numbers in the sequence are 0,1, 1, 2,3, 5,8,13,21, 34, ....
This sequence has many curious properties.
Problem 0.3.2. Foralln € N, prove Fy + F, + ---+ F,, = F, ., — L.
Inductive solution. Whenn = 0,wehave Fy, =0=1-1=F, —1,
so the base case holds. Assuming that the equation
F0+F1 + .- +Fn :Fn+2—1
holds, we must show that Fy + F; + --- + F,,,; = F, .5 — 1 holds.
The induction hypothesis and the defining recurrence give
FO +F1 +F2+ +Fn+1 = (FO +F1 +F2 + - +Fn)+Fn+1

:(Fn+2_l)+Fn

= (Fpyz + Fry1) — 1

= Fn+3 —-1. D
Problem 0.3.3. Prove that the Fibonacci number F,, is even if and

only the index n is divisible by 3.

Inductive solution. Since first three terms are F, = 0, F; = 1, and
F, =1, the base cases hold. Assume that F;jiseven, F3j,, is odd,
and Fsj,, is odd. The next 3 Fibonacci numbers are
F3j41) = F3j42 + F3j1 = odd + odd = even
F3(j+1)+1 = F3(]+1) + F3j+2 = even + Odd = Odd
F3(j+1)+2 = F3(j+1)+1 + F3(j+1) = odd + even = odd ,

Copyright © 2021, Gregory G. Smith
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which completes the induction. O

The Fibonacci numbers have a closed-form expression that
unexpectedly involves the irrational number /5.

Theorem 0.3.4 (Binet Formula). The Fibonacci numbers satisfy
e |
n \/g 2 \/g 2

Inductive proof. When n = 0 and n = 1, we have

R B CVED LS U6 CAVER S SN S
07 5\ 2 s\ 2 ) T s 5
Fo=L 5\ 1 (15 1 (1451445 1
N A s\ 2 s 2 -
so the base cases hold. The induction step is simply
Fn—l + Fn—z
1 <1+\/§)"—1 1 (1—\/§>”—1 1 (1+\/§ n-2 <1—\/§)”—2
= (2= — =2 + = — (==
5\ 2 Vs \ 2 5\ 2 5\ 2
- L(Hﬁ)”‘z(Hﬁ + 1) _ L (1B (1 1)
5\ 2 2 s\ 2 2
_ 1 (15Y 2 (345 1 (15172 (345
T Vs 2 2 5\ 2 2
_ 1 {15\ T2 (6425 1 (1-v5Y'72 (6-245
T Vs 2 4 5\ 2 4

1 (14572 (1452 1 (1-/5Y 72 (1452
S S
Although our inductive proof certifies the correctness of the
Binet Formula 0.3.4, it fails to provide any insight into its source.
By mimicking a method for solving linear differential equations
with constant coefficients, we begin to address this deficiency.
We explore these ideas more fully after developing the theory of
generating functions.

Alternative Proof of the Binet Formula 0.3.4. Suppose that the recur-
rence F,, — F,,_; — F,,_, = 0 has a solution of the form F,, = x" for
some real number x. It would follow that

0=x"-— xn—l _ xn—z — xn—Z(xZ —x = 1)

so the number x is either (1 — \/E)/z, 0,or (1+ \/E)/z Since the
recurrence is linear, the general solution has the form

(58] ool

2 2

for some constants ¢; and c¢,. The initial conditions yield the equa-
tions 0 = ¢; +¢, and 1 = ¢;((1 +\/§)/2)+cz((1 —\/E)/z), soc; = —C,

and
= (159 (5) e (50) <

2

Two Basic Principles 13

Although known to de Moivre in 1718,
this formula is named for Jacques
Binet (1786-1856).
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Therefore, the solution to the initial value problem is

F,l:%(lz\/g)"_%(l—z\/g)n_ O

Exercises

Problem 0.3.5. Foralln € N, let F,, denote the n-th Fibonacci
number. "
(i) For all m > 1, show that Fner o I 11! .
F, F,.,| |1 0
(ii) Use matrix multiplication to prove that, for all m,n € N, we
have F, ,, =F,.F,+F, F,_;.
Problem 0.3.6. Show that lim 221 = 15,

n-oo Fp 2

Problem 0.3.7. The Fibonacci polynomials are the univariate
polynomials defined by Fy(x) := 0, F;(x) := 1, and

F,(x)=xF,_1(x)+ F,_,(x) foralln 3> 2.

If ar(x) := (x + VX2 + 4) /2 and B(x) := (x — Vx2 + 4) /2, then prove

that, for all n € N, we have

()" + (B(x)"
T a0 -

Problem 0.3.8. The Pell numbers are the integers defined by
Py:=0,P,:=1,and P, := 2P,_, + P,_, foralln > 2. The first
numbers are 0, 1, 2, 5,12, 29, 70, 169, 408, 985, 2378, SZ41, .

(i) For all m > 1, show that [P"“ Pn ] = [2 1

P, P, 1 0

(ii) Foralln > 1, prove that P2 — P,.,; P,,_; = (=1)"*1,

(iii) By diagonalizing the matrix from part (i), derive a Binet-type
formula for the Pell numbers.

Fo(x)

Problem 0.3.9. For two fixed integers p and g, the Lucas sequence
of the first kind is defined by L, := 0,L; := 1,and L, := pL,,_; +
qL,_,foralln > 2. Forall n,k € Nsatisfying 0 < k < n, the
Lusasnomial coefficients are defined as

k
(n) o LnLnoiLna Lnogar _ Nl Loy
i

k LiLg_y Ly Ly o L

. . . n n
(i) Prove the symmetry identity <k)L = (n _ k)L'

(ii) Prove the additive identity
n n-—1 n-—1
<k>L_Lk+1< k )L+an—k—l<k_1)L'

(iii) Compute the (5 x 5)-matrix whose (n, k)-entry is <Z)L
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The Golden ratio is the irrational
number (1 +1/5)/2 ~ 1.6180339....



