Problem Set \#11

Due: Thursday, 22 November 2012
Students registered in MATH 401 should submit solutions to three of the following problems. Students in MATH 801 should submit solutions to all five.

1. (a) Calculate the chromatic polynomial of $K_{1,3}$ by using the deletion-contraction recursion $P(G, k)=P(G \backslash e, k)-P(G / e, k)$ to express it as an integer linear combinations of chromatic polynomials of empty graphs.
(b) Calculate the chromatic polynomial of C_{4} by using the deletion-contraction recursion $P(G \backslash e, k)=P(G, k)+P(G / e, k)$ to express it as an integer linear combinations of chromatic polynomials of complete graphs.
2. Let G be a connected graph with n vertices. Assume that G is not a tree. Prove that the number of k-colourings of G is less than $k(k-1)^{n-1}$ when $k \geq 3$. What happens when $k=2$?
3. Show that every graph can be embedded in \mathbb{R}^{3} in such a way that:

- each vertex lies on the curve $\left\{\left(t, t^{2}, t^{3}\right): t \in \mathbb{R}\right\}$, and
- each edge is a straight line segment.

Hint. Use the Vandermonde determinant identity.
4. Find a planar embedding of the graph below in which each edge is a straight line segment.

5. A plane graph is self-dual if it is isomorphic to its dual. Show that each of the following graphs is self-dual.

