Problem Set \#10

Due: Thursday, 15 November 2012
Students registered in MATH 401 should submit solutions to three of the following problems. Students in MATH 801 should submit solutions to all five.

1. For positive integers m and n, the Kneser graph $K G_{n, m}$ has one vertex for each m subset of $[n]:=\{1, \ldots, n\}$ and two vertices are adjacent if the corresponding subsets are disjoint. Show that $\chi\left(K G_{2 n+k, n}\right) \leq k+2$.
2. The complement of a graph G is the graph \bar{G} on the same vertices such that two vertices of \bar{G} are adjacent if and only if they are not adjacent in G. Prove the following:
(a) $\chi(G) \cdot \chi(\bar{G}) \geq v(G)$;
(b) $\chi(G)+\chi(\bar{G}) \geq 2(v(G))^{1 / 2}$;
(c) $\chi(\boldsymbol{G})+\chi(\bar{G}) \leq v(G)+1$.
3. Let \boldsymbol{G} be a bipartite graph. Prove that $\chi(\overline{\boldsymbol{G}})=\omega(\overline{\boldsymbol{G}})$.
4. Let G be a 4-critical graph having a vertex cut S of cardinality 4. Prove that the induced subgraph $G[S]$ has at most four edges.
5. Find a smallest imperfect graph G such that $\chi(G)=\omega(G)$.
