Problem Set #10

Due: Thursday, 15 November 2012

Students registered in MATH 401 should submit solutions to three of the following problems. Students in MATH 801 should submit solutions to all five.

- 1. For positive integers *m* and *n*, the *Kneser graph* $KG_{n,m}$ has one vertex for each *m*-subset of $[n] := \{1, ..., n\}$ and two vertices are adjacent if the corresponding subsets are disjoint. Show that $\chi(KG_{2n+k,n}) \le k+2$.
- 2. The *complement* of a graph G is the graph \overline{G} on the same vertices such that two vertices of \overline{G} are adjacent if and only if they are not adjacent in G. Prove the following:
 - (a) $\chi(G) \cdot \chi(\overline{G}) \ge v(G);$
 - (b) $\chi(G) + \chi(\overline{G}) \ge 2(v(G))^{1/2};$
 - (c) $\chi(G) + \chi(\overline{G}) \le v(G) + 1$.
- **3.** Let *G* be a bipartite graph. Prove that $\chi(\overline{G}) = \omega(\overline{G})$.
- **4.** Let G be a 4-critical graph having a vertex cut S of cardinality 4. Prove that the induced subgraph G[S] has at most four edges.
- **5.** Find a smallest imperfect graph *G* such that $\chi(G) = \omega(G)$.