Problem Set \#9

Due: Thursday, 8 November 2012
Students registered in MATH 401 should submit solutions to three of the following problems. Students in MATH 801 should submit solutions to all five.

1. Prove that a tree T has a perfect matching if and only if $o(T-v)=1$ for every $v \in V(T)$.
2. If G is a d-regular graph of even order that remains connected when any $d-2$ edges are deleted, then prove that G has perfect matching.
3. Let G be a k-connected graph of even order having no $K_{1, k+1}$ as an induced subgraph. Prove that G has a perfect matching.
4. Let G be a graph whose odd cycles are pairwise intersecting, meaning that every two odd cycles in G have a common vertex. Prove that $\chi(G) \leq 5$.
5. Prove that every graph G has a vertex ordering relative to which the greedy algorithm uses $\chi(G)$ colours.
