Problem Set \#8

Due: Thursday, 1 November 2012
Students registered in MATH 401 should submit solutions to three of the following problems. Students in MATH 801 should submit solutions to all five.

1. Exhibit a perfect matching in the graph below or give a short proof that it has none.

2. For every graph G, prove that $\beta(G) \leq 2 \alpha^{\prime}(G)$. For each $k \in \mathbb{N}$, construct a graph G with $\alpha^{\prime}(G)=k$ and $\beta(G)=2 k$.
3. A permutation matrix P is a matrix with entries 0 or 1 having exactly one 1 in each row and column. Prove that a square matrix of nonnegative integers can be expressed as the sum of k permutations matrices if and only if all row sums and columns sums equal k.

Hint. Every nonempty regular bipartite multigraph has a perfect matching.
4. Let M be a nonnegative real $(n \times n)$-matrix with row and column and sums all equal to m. Show that M can be written as a nonnegative linear combination of permutation matrices; in other words, $M=c_{0} P_{0}+\cdots+c_{k} P_{k}$ where c_{0}, \ldots, c_{k} are nonnegative real numbers and P_{0}, \ldots, P_{k} are permutation matrices.

Hint. Use induction on the number of nonzero entries and Hall's theorem.
5. The Turán graph $T_{n, k}$ is the complete k-partite graph with n vertices, b parts of size $a+1$, and $k-b$ parts of size a where $a=\left\lfloor\frac{n}{k}\right\rfloor$ and $b=n-k a$. Prove that

$$
e\left(T_{n, k}\right)=\left(1-\frac{1}{k}\right) \frac{n^{2}}{2}-\frac{b(k-b)}{2 k} .
$$

