Problem Set \#6
Due: Thursday, 18 October 2012

Students registered in MATH 401 should submit solutions to three of the following problems. Students in MATH 801 should submit solutions to all five.

1. Prove that a graph G is 2-connected if and only if G can be obtained from C_{3} by a sequence of edge additions and edge subdivisions.
2. Find (with proof) a 3-regular graph with a minimal number of vertices having connectivity 1 .
3. Consider the vertices $x=(0,0, \ldots, 0)$ and $y=(1,1, \ldots, 1)$ in the n-cube Q_{n}. Describe a maximum collection of internally disjoint $x y$-paths in Q_{n} and a minimal vertex-cut of Q_{n} separating x and y.
4. Let G be a graph such that $v(G) \geq k+1$ and $\delta(G) \geq \frac{1}{2}(v(G)+k-2)$. Prove that G is k-connected.
5. Let G be a graph of order n with degree sequence $d_{1} \leq d_{2} \leq \cdots \leq d_{n}$. Suppose that there exists a nonnegative integer k such that $j \leq n-1-d_{n-k}$ implies that $d_{j} \geq j+k$. Prove that G is $(k+1)$-connected.
