Problem Set \#11
 Due: Friday, March 30, 2007

1. Suppose that $T \in \operatorname{End}(V)$ has a singular-value decomposition given by

$$
T v=s_{1}\left\langle v, u_{1}\right\rangle e_{1}+\cdots+s_{n}\left\langle v, u_{n}\right\rangle e_{n}
$$

for all $v \in V$, where s_{1}, \ldots, s_{n} are the singular values of T and $\left(u_{1}, \ldots, u_{n}\right)$, $\left(e_{1}, \ldots, e_{n}\right)$ are orthonormal bases of V.
(a) Prove that $T^{*} v=s_{1}\left\langle v, e_{1}\right\rangle u_{1}+\cdots+s_{n}\left\langle v, e_{n}\right\rangle u_{n}$ for all $v \in V$.
(b) If T is invertible, then prove $T^{-1} v=\frac{1}{s_{1}}\left\langle v, e_{1}\right\rangle u_{1}+\cdots+\frac{1}{s_{n}}\left\langle v, e_{n}\right\rangle u_{n}$ for all $v \in V$.
2. (a) Let V be an inner-product space. Suppose that $S \in \operatorname{End}(V)$ is self-adjoint and nilpotent. Prove that $S=0$.
(b) Define $N \in \operatorname{End}\left(\mathbb{K}^{5}\right)$ by $N\left(z_{1}, z_{2}, z_{3}, z_{4}, z_{5}\right)=\left(2 z_{2}, 4 z_{3},-6 z_{4}, 8 z_{5}, 0\right)$. Find a square root of $I+N$.
3. Consider $T \in \operatorname{End}(V)$.
(a) Suppose T is invertible. Prove that there exists a polynomial $f \in \mathbb{K}[t]$ such that $T^{-1}=f(T)$.
(b) Suppose that $0 \neq v \in V$ and g is the monic polynomial of smallest degree such that $g(T) v=0$. Prove that g divides the minimal polynomial of T.

