Problem 5 [5 points]:

5. The Chebyshev polynomials $T_j(x) = \cos(j \arccos x)$, $j = 0, 1, \ldots$, are orthogonal with respect to the weight function $(1 - x^2)^{-1/2}$ on $[-1, 1]$; that is, $\int_{-1}^{1} T_j(x) T_k(x) (1 - x^2)^{-1/2} \, dx = 0$, if $j \neq k$. Use the Gram-Schmidt process applied to the linearly independent set $\{1, x, x^2\}$ to construct the first three orthonormal polynomials for this weight function and show that they are indeed scalar multiples of T_0, T_1, and T_2.

\[
q_0(x) = \frac{1}{\int_{-1}^{1} (1 - x^2)^{-1/2} \, dx} = \frac{1}{\int_{-1}^{1} \arcsin x |_{-1}^{1}/2} \cdot \frac{1}{\sqrt{\pi}} = \frac{1}{\sqrt{\pi}}.
\]

\[
\hat{q}_1(x) = x - \left(\int_{-1}^{1} (1 - x^2)^{-1/2} x \cdot \frac{1}{\sqrt{\pi}} \, dx \right) \cdot \frac{1}{\sqrt{\pi}} = x - \frac{1}{\pi} \int_{-1}^{1} (1 - x^2)^{1/2} \, dx = x.
\]

\[
q_1(x) = \frac{x}{\int_{-1}^{1} (1 - x^2)^{-1/2} x^2 \, dx} = \frac{x}{\int_{-1}^{1} \left(- \frac{x}{\pi} \sqrt{1 - x^2} + \frac{1}{2} \arcsin x \right) \, dx} \cdot \frac{1}{\sqrt{\pi}}.
\]

\[
= \sqrt{\frac{2}{\pi}} x.
\]

\[
\hat{q}_2(x) = x^2 - \left(\int_{-1}^{1} (1 - x^2)^{-1/2} x^2 \cdot \frac{1}{\sqrt{\pi}} \, dx \right) \cdot \frac{1}{\sqrt{\pi}} - \left(\int_{-1}^{1} (1 - x^2)^{-1/2} x^2 \cdot \sqrt{\frac{2}{\pi}} x \, dx \right) \cdot \sqrt{\frac{2}{\pi}}
\]

\[
= x^2 - \frac{1}{2} \text{ (since the coefficient of } x \text{ is the integral of an odd function, hence 0)}
\]

\[
q_2(x) = \frac{x^2 - \frac{1}{2}}{\int_{-1}^{1} (1 - x^2)^{-1/2} \left(x^2 - \frac{1}{2}\right) \, dx} = \frac{x^2 - \frac{1}{2}}{\int_{-1}^{1} (1 - x^2)^{-1/2} \left(x^4 - x^2 + \frac{1}{4}\right) \, dx} \cdot \frac{1}{\sqrt{\pi}}
\]

\[
= \sqrt{\frac{2}{\pi}} (x^2 - 1)
\]

Thus $q_0(x) = \frac{1}{\sqrt{\pi}} T_0(x)$ and $q_j(x) = \sqrt{\frac{2}{\pi}} T_j(x)$ for $j = 1, 2$ (and also for all other values of j).
Problem 7 [5 points]:

7. Write a MATLAB code to approximate

\[\int_0^1 \cos(x^2) \, dx \]

using the composite trapezoidal rule and one to approximate the integral using the composite Simpson’s rule, with equally spaced nodes. The number of intervals \(n = 1/h \) should be an input to each code. Turn in listings of your codes.

Do a convergence study to verify the second order accuracy of the composite trapezoidal rule and the fourth order accuracy of the composite Simpson’s rule; that is, run your code with several different \(h \) values and make a table showing the error \(E_h \) with each value of \(h \) and the ratios \(E_h/h^2 \) for the composite trapezoidal rule and \(E_h/h^4 \) for the composite Simpson’s rule. These ratios should be nearly constant for small values of \(h \). You can determine the error in your computed integral by comparing your results with those of MATLAB routine \texttt{quad}. To learn about routine \texttt{quad}, type \texttt{help quad} in MATLAB. When you run \texttt{quad}, ask for a high level of accuracy, say,

\[q = \texttt{quad}('\cos(x.^2)',0,1,[1.e-12 1.e-12]), \]

where the last argument \([1.e-12 1.e-12]\) indicates that you want an answer that is accurate to \(10^{-12}\) in both a relative and an absolute sense. (Note that when you use routine \texttt{quad} you must define a function, either inline or in a separate file, that evaluates the integrand \(\cos(x^2) \) at a \textit{vector} of values of \(x \); hence you need to write \(\cos(x.^2) \), instead of \(\cos(x^2) \).)

to \(10^{-12}\) in both a relative and an absolute sense. (Note that when you use routine \texttt{quad} you must define a function, either inline or in a separate file, that evaluates the integrand \(\cos(x^2) \) at a \textit{vector} of values of \(x \); hence you need to write \(\cos(x.^2) \), instead of \(\cos(x^2) \).)

Running the code below with 4, 8, 16, 32, and 64 subintervals, gave the following values for the error in the composite trapezoid rule and composite Simpson’s rule:

<table>
<thead>
<tr>
<th>n</th>
<th>err trap</th>
<th>err simp</th>
<th>err trap/h^2</th>
<th>err simp/h^4</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>8.77e-03</td>
<td>7.87e-08</td>
<td>1.4e-01</td>
<td>2.0e-05</td>
</tr>
<tr>
<td>8</td>
<td>2.19e-03</td>
<td>-1.47e-08</td>
<td>1.4e-01</td>
<td>6.0e-05</td>
</tr>
<tr>
<td>16</td>
<td>5.48e-04</td>
<td>-1.22e-09</td>
<td>1.4e-01</td>
<td>8.0e-05</td>
</tr>
<tr>
<td>32</td>
<td>1.37e-04</td>
<td>-8.06e-11</td>
<td>1.4e-01</td>
<td>8.5e-05</td>
</tr>
<tr>
<td>64</td>
<td>3.42e-05</td>
<td>-5.11e-12</td>
<td>1.4e-01</td>
<td>8.6e-05</td>
</tr>
</tbody>
</table>

It is easy to see the \(O(h^2) \) error in the composite trapezoid rule. It is less easy to see the \(O(h^4) \) error in composite Simpson’s rule: \(E_h/h^4 \) appears to be approaching a constant as \(h \) goes to 0, but with 64 subintervals Simpson’s rule gives almost as much accuracy as we are requiring of the \texttt{quad} routine to which it is being compared, so we would need a more accurate value to compare it to if we went to 128 subintervals, and we would soon hit the machine precision.

Following is the MATLAB code that produced these results:
% Compute an approximation to the integral from 0 to 1
% of cos(x^2) dx using the composite trapezoid rule and
% composite Simpson's rule.

n = input('Enter number of subintervals: ');
dx = 1/n;

trap = 0;
simp = 0;
for i=0:n, % Loop over nodes
 x = i*dx;
 cosxsq = cos(x^2); % Evaluate integrand at x

 % Composite trapezoid rule
 if i==0 | i==n,
 trap = trap + .5*cosxsq; % Add .5*value at endpoints
 else
 trap = trap + cosxsq; % Add 1*value at interior points
 end;

 % Composite Simpson's rule
 if i==0 | i==n,
 simp = simp + cosxsq/6; % Add (1/6)*value at endpoints
 else
 simp = simp + cosxsq/3; % Add (1/3)*value at interior points
 end;
 if i < n,
 xmid = x + .5*dx;
 cosxmdsq = cos(xmid^2);
 simp = simp + (2/3)*cosxmdsq; % Add (2/3)*value at midpoints
 end;
end;
trap = trap*dx; % Multiply results by dx
simp = simp*dx;

% Compare with "exact" solution returned by quad.
q = quad('cos(x.^2)',0,1,[1.e-12 1.e-12]);

fprintf('%8.12e %8.12e %8.12e %8.2e %8.2e \\
',q,trap,simp)
fprintf('
%8.12e %8.12e %8.2e %8.2e %7.1e \\
',err_trap,err_simp, err_trap/h^2, err_simp/h^4)
err_trap = q-trap; err_simp = q-simp;
fprintf('
%8.2e %8.2e %7.1e %7.1e
',err_trap,err_simp,...
 abs(err_trap)/dx^2, abs(err_simp)/dx^4)