Problem 1: (10 Points)

Use the definition of derivative to prove that \(\frac{d}{dx} \left(3x^2 + 1 \right) = 6x \).

Answer:

Let \(f(x) = 3x^2 + 1 \). To show that

\[
\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = 6x
\]

\[
= \lim_{h \to 0} \frac{3(x+h)^2 + 1 - 3x^2 - 1}{h} = \lim_{h \to 0} \frac{3(x^2 + 2xh + h^2) + 1 - 3x^2 - 1}{h} = \lim_{h \to 0} \frac{6xh + 3h^2}{h} = \lim_{h \to 0} 6x + 3h = 6x.
\]

Problem 2: (10 Points)

Find the equation of the tangent line to the parabola \(y = 3x^2 + 1 \) at the point \(P(1,4) \).

Answer:

From problem 1, we have that \(f'(x) = 6x \). Hence, the slope of the tangent line to the parabola at the point \(P(1,4) \) is \(f'(1) = 6 \). Hence the equation of the tangent line is given by \(y-4 = 6(x-1) \), or \(y = 6x - 2 \).

Problem 3: (10 Points)

Let

\[
f(x) = \begin{cases}
3x^2 + 1 & \text{if } x \leq 1 \\
mx + b & \text{if } x > 1
\end{cases}
\]

Find the values of \(m \) and \(b \) that make \(f \) differentiable everywhere.

Answer:

From Problem 2, it is immediate that we must have \(m = 6 \), and \(b = -2 \).
Problem 4: (20 Points)
Compute the derivatives of the following functions:

1. \(f(x) = \sin^2 x \)
2. \(f(x) = \cos(x^2) \)
3. \(f(x) = \sqrt{x^2 + 1} \)
4. \(f(x) = x^x \) (Hint: Use logarithmic differentiation)

Answer:
1. Let \(g(x) = u = \sin(x) \), and let \(h(u) = u^2 \). It is easy to check that \(f(x) = h(g(x)) \). Hence by the chain rule, we have
 \[
 f'(x) = h'(u) \cdot g'(x) = 2u \cdot \cos(x) = 2\sin(x) \cdot \cos(x)
 \]
2. Let \(g(x) = u = x^2 \), and let \(h(u) = \cos(u) \). It is easy to check that \(f(x) = h(g(x)) \). Hence by the chain rule, we have
 \[
 f'(x) = h'(u) \cdot g'(x) = -\sin(u) \cdot (2x) = -2x \cdot \sin(x^2)
 \]
3. Let \(g(x) = u = x^2+1 \), and let \(h(u) = \sqrt{u} \). It is easy to check that \(f(x) = h(g(x)) \). Hence by the chain rule, we have
 \[
 f'(x) = h'(u) \cdot g'(x) = \frac{1}{2\sqrt{u}} \cdot (2x) = \frac{x}{\sqrt{x^2 + 1}}
 \]
4. Let \(y = x^u \). Then \(\ln(y) = \ln(x^u) = x \ln(x) \). By differentiating both sides, one obtains:
 \[
 \frac{1}{y} \frac{dy}{dx} = \frac{d}{dx} \ln(y) = \frac{d}{dx} (x \cdot \ln(x)) = 1 \cdot \ln(x) + x \cdot \frac{1}{x} = \ln(x) + 1.
 \]
 Hence: \(f'(x) = \frac{dy}{dx} = y \cdot (\ln(x) + 1) = x^u \cdot (\ln(x) + 1) \)

Problem 5: (10 Points)
Find a 2nd degree polynomial \(P \) such that \(P(2)=5 \), \(P'(2)=3 \), and \(P''(2)=2 \).

Answer:
Let \(P(x) = ax^2 + bx + c \). Then \(P'(x) = 2ax + b \), and \(P''(x) = 2a \).
The condition \(P''(2) = 2a = 2 \) implies that \(a = 1 \).
The condition \(P'(2) = 4a + b = 3 \) implies that \(b = 3 - 4a = 3 - 4(1) = -1 \)
The condition \(P(2) = 4a + 2b + c = 5 \) implies that \(c = 5 - 4a - 2b = 5 - 4(1) - 2(-1) = 3 \).
Hence \(P(x) = x^2 - x + 3 \).

Problem 6: (10 Points)
Use implicit differentiation to find \(\frac{dy}{dx} \) when \(x \) and \(y \) are related by the equation \(x^2 y = 1 \). Find the equation of the tangent line to the graph of \(x^2 y = 1 \) at the point \((1,1)\).
Answer:

By differentiating both sides of the equation \(x^2 y = 1 \), and by applying the product rule, one has:

\[
\frac{d}{dx} (x^2 y) = 2xy + x^2 \frac{dy}{dx} = \frac{d}{dx} (1) = 0,
\]

which implies \(\frac{dy}{dx} = -\frac{2y}{x} \). Hence the slope of tangent line to the graph of \(x^2 y = 1 \) at the point (1,1) equals -2. Therefore the equation of the tangent line is \(y - 1 = -2 (x - 1) \) or, equivalently, \(y = -2x + 3 \).

Problem 7: (10 Points)

Two cars start moving from the same point. One travels south at 60 mi/h and the other travels west at 25 mi/h. At what rate is the distance between the cars increasing two hours later?

Answer:

Let \(x \) denote the distance of the first car (traveling west) from the start point, let \(y \) denote the distance of the other car from the start point, and let \(z \) denote the distance between the two cars. We want to find \(\frac{dz}{dt} \). We know that \(\frac{dx}{dt} = 25 \text{ mi/h} \), \(\frac{dx}{dt} = 60 \text{ mi/h} \), and that the equation \(x^2 + y^2 = z^2 \) holds true. By differentiating both sides of the latter equation, one has:

\[
\frac{dx^2}{dt} + \frac{dy^2}{dt} = \frac{dz^2}{dt}
\]

or equivalently:

\[
2x \frac{dx}{dt} + 2y \frac{dy}{dt} = 2z \frac{dz}{dt}
\]

After two hours, we have that \(x = 50 \) miles, \(y = 120 \) miles, and \(z = 130 \) miles. By plugging these values in the latter equation, one finds that \(\frac{dz}{dt} = 65 \text{ mi/h} \).

Problem 8: (10 Points)

Find the linearization of the function \(f(x) = x^3 \) near \(a=1 \).

Answer:

The linearization \(L(x) \) of the function \(f \) near \(a \) is given by the equation \(L(x) = f(a) + f'(a) (x-a) \). In this case, \(f(x) = x^3 \) and \(a=1 \). Hence, \(f(1) = 1 \), \(f'(x) = 3x^2 \), and \(f'(1) = 3 \). Therefore:

\[
L(x) = f(1) + f'(1) (x-1) = 1 + 3 (x-1) = 3x - 2.
\]

I.e., \(f(x) \cong 3x – 2 \) for \(x \) near 1.

Problem 9: (10 Points)

Consider the function \(f(x) = x^4 - x^2 - 3 \) having domain \([-3, 3]\). Find any absolute maximum or absolute minimum values of \(f(x) \), and find the \(x \)-values at which they occur.

Answer:

\(f \) is a continuous function on the closed interval \([-3,3]\); hence we know that the function \(f \) must attain absolute max and min values on the closed interval \([-3,3]\).

Since \(f'(x) = 4x^3 - 2x = 2x (2x^2 -1) \), the critical numbers of the function \(f \) are \(x = 0 \), \(x = \pm 1/\sqrt{2} \).

Furthermore \(f(0) = -3 \), and \(f(1/\sqrt{2}) = f(-1/\sqrt{2}) = -13/4 \).

Finally the value of the function \(f \) at the endpoint is \(f(-3) = f(3) = 69 \).

Hence, the absolute max value is 69 (at \(x = \pm 3 \)), and the absolute min value is \(-13/4\) (at \(x = \pm 1/\sqrt{2} \)).