Rolle's Theorem

Let \(f \) be a function s.t.

1. \(f \) is cont. on the closed interval \([a, b]\)
2. \(f \) is diff. on the open interval \((a, b)\)
3. \(f(a) = f(b) \)

Then there is a number \(c \) in \((a, b)\) s.t. \(f'(c) = 0 \)

Case 1: \(f(x) : k \Rightarrow f'(a) = 0 \)

Case 2: \(f(x) > f(a) \) for some \(x \in (a, b) \)

By extreme value thm, \(f \) has a max value in \([a, b]\)

\(f(a) \) or \(f(b) \) or max in \((a, b)\)

\(\Rightarrow \) by format thm, \(f'(c) = 0 \)

\(\Rightarrow \) \(f \) exists on \((a, b)\)

Case 3: \(f(x) < f(a) \)

Ex.

Show that the equation \(x^5 - 6x + 1 = 0 \) has at most one root in the interval \([-1, 1]\).

(Pf) Suppose \(x, y \in [-1, 1] \) : \(f(x) = f(y) \) \(\Rightarrow \) by Rolle's thm (check hypotheses)

\[f'(c) = 0 \]

but \(f'(x) = 5x^4 - 6 = (5x^2 - 6)(x^2 + 6) = 0 \)

\[x = \pm \sqrt{5/6} \approx 1.0456 \]

So we have a contradiction!
Remarks:

Ex:

\[f \text{ cts. on } [a, b] \]
\[f \text{ diff. on } (a, b) \]
\[f(a) = f(b) \]
\[\Rightarrow \exists c \in (a, b) : f'(c) = 0. \]

Where is \(c \)?

Ex:

\[f(x) = |x|, \quad -1 \leq x \leq 1 \]

Ex:
Prove that the equation \(x^2 - x - 1 = 0 \) has exactly one real root.

First we use IVT to show that a root exists.

Let \(f(x) = x^3 + x - 1 \Rightarrow f(-1) < 0, f(1) > 0 \).

Since \(f \) is polynomial, it is cont. So by IVT there is \(c \in (0, 1) \) such that \(f(c) = 0 \).

Next we have to show this is the only one. Suppose \(c_1, c_2 \) such that \(f(c_1) = f(c_2) = 0 \).

By Rolle's thm \(\exists z \in (c_1, c_2) : f'(z) = 0 \).

But \(f'(x) = 3x^2 + 1 > 0 \forall x \in \mathbb{R} \), contradiction.

So there is only one solution of the equation.

Mean Value Theorem (MVT) Let \(f \) be a cont'n s.th.

1. \(f \) is cont on closed interval \([a, b]\).
2. \(f \) is diff. on open interval \((a, b)\).

Then there is \(c \in (a, b) \) : \(f'(c) = \frac{f(b) - f(a)}{b - a} \)

or equiv.: \(f(b) - f(a) = f'(c)(b - a) \).
Apply Rolle's Thm to \(h(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a) \)

Example: \(f(x) = x^3 - x \quad [0, 2] \)

\(f'(x) = 3x^2 - 1 \)

\(f(2) = 6 \)

\(f(0) = 0 \)

\(6 = f(2) - f(0) = f'(c)(2 - 0) = (3c^2 - 1)(2) = 6c^2 - 2 \)

\[6c^2 = 8 \quad c^2 = \frac{4}{3} \quad c = \pm \frac{2}{\sqrt{3}} \]

but \(c \in (0, 2) \) \(\quad c = \frac{2}{\sqrt{3}} \)
Example:

$f(c_1) = 10 \quad f'(x) \geq 2 \quad \text{for} \quad 1 \leq x \leq 4$

How small can $f(4)$ possibly be?

$f(4) - f(1) = f'(c) (4 - 1) \quad \text{for some } c \in (1, 4)$

$f(4) = f(1) + f'(c) (3) \quad = 10 + 3 f'(c) \quad \geq 10 + 3 (2) = 16$

$f(4) \geq 16$

So the smallest value for $f(4)$ is 16.

Theorem: If $f'(x) = 0$ for all $x \in (a, b)$ then f is constant on (a, b).

Corollary: If $f'(x) = g'(x)$ for all $x \in (a, b)$, then $f - g$ is constant on (a, b); i.e., $f(x) = g(x) + c$ where c is a constant.
A function is increasing on an interval if \(f(x_1) < f(x_2) \) whenever \(x_1 < x_2 \) in the interval. It is called decreasing if \(f(x_1) > f(x_2) \) for all \(x_1, x_2 \) in the interval.

Test for monotonicity of functions:

Suppose \(f \) is continuous on \([a, b]\) and differentiable on \((a, b)\).

1. If \(f'(x) > 0 \) for all \(x \) in \((a, b)\), then \(f \) is increasing on \([a, b]\).
2. If \(f'(x) < 0 \) for all \(x \) in \((a, b)\), then \(f \) is decreasing on \([a, b]\).
3. If \(f \) is differentiable on \([a, b]\) and \(f'(x_1) f'(x_2) < 0 \) for some \(x_1, x_2 \) in \((a, b)\), then \(f \) has a local maximum or minimum at \(c \) in \((a, b)\).

Example 1: Find the interval on which \(f(x) = e^{x^2} - x^4 \) is increasing or decreasing.

\[
f'(x) = 4x - 4x^3 = 4x(1-x^2) > 0
\]

\(x > 0 \)

\(-1 < x < 1\)

\(x < 0 \)

If \(f \) has a local max or min, then \(c \) is a critical number. We also saw that the curve is not nice - so we need a test that will tell us whether or not \(f \) has local extremum at a critical number.

The 1st derivative test: Suppose \(c \) is a critical number of a continuous function \(f \).

a) If \(f' \) changes from + to - at \(c \), then \(f \) has local maximum at \(c \).

b) If \(f' \) changes from - to + at \(c \), then \(f \) has local minimum at \(c \).

c) If \(f' \) does not change sign, then \(f \) has no local extremum at \(c \).
Example: (cont'd)

(b) Find the local max and min values of \(f \):

\[
f(-1) = 2(-1)^2 - (-1)^4 = 1 \quad \text{local max}
\]
\[
f(0) = 0 \quad \text{local min}
\]
\[
f(1) = 1 \quad \text{local max}
\]

(c) Sketch graph of \(f \):

\[
f(x) = 2x^2 - x^4 = x^2(2-x^2) = 0 \quad x=0
\]
\[
x^2-2 = 0 \quad x = \pm \sqrt{2}
\]

Example:
Find the local and absolute extreme values of the function \(f(x) = x + \frac{1}{x} \) on \(\frac{1}{2} \leq x \leq 3 \) and sketch the graph.
Critical numbers: \(x = +1, x = -1, x = 0 \)

\[
f(x) = \frac{x + \frac{1}{x}}{x^2} = \frac{x^2 - 1}{x^2}
\]

\[
f'(x) = 1 - \frac{1}{x^2} = \frac{x^2 - 1}{x^2}
\]

\[
f\left(\frac{1}{2}\right) = \frac{1}{2} + 2 = \frac{5}{2}
\]

\[
f(-1) = -1 + \frac{1}{-1} = -2
\]

\[
f(3) = 3 + \frac{1}{3} = \frac{10}{3}
\]

\[
f(1) = 1 + 1 = 2 \quad \text{absolute min}
\]

\[
\lim_{x \to 0^+} \frac{x^2 + 1}{x} = \frac{1}{0^+} = \infty
\]

\[
f'(x) = \frac{x^2 + 1}{x^2} = 0 \quad \text{never}
\]

\[
\text{as } x \to 2^+ \quad f'(x) = -\infty
\]

\[
\text{as } x \to 2^- \quad f'(x) = +\infty
\]

\[
f(x) = \text{odd} \quad f(-x) = -f(x)
\]

\[
f(x) \quad \text{loc max}
\]

\[
f(x) \quad \text{loc min}
\]
Show that \(\frac{a + \frac{1}{a}}{b + \frac{1}{b}} \) whenever \(1 \leq a \leq b \).

Let \(f(x) = x + \frac{1}{x} \). We just saw that \(f \) is increasing on \((1, \infty)\). Then if \(1 \leq c < b \), then

\[
f(c) = c + \frac{1}{c} < f(b) = b + \frac{1}{b}.
\]

What does \(f'' \) say about \(f \)?

Concavity and Points of Inflection.

Def. If the graph of \(f \) lies above all of its tangents on an interval \(I \), then \(f \) is concave upward on \(I \).

If the graph of \(f \) lies below all of its tangents on \(I \), then it is called concave downward on \(I \).

Slopes increasing

Slopes decreasing

Test for Concavity. Suppose \(f \) is diff. twice on \(I \).

1. If \(f''(x) > 0 \) for all \(x \in I \), then \(f \) is concave upward on \(I \).

2. If \(f''(x) < 0 \) for all \(x \in I \), then \(f \) is concave downward on \(I \).
Proof: In concave, \(f''(x) > 0 \Rightarrow f' \) is increasing.

Definition: A point \(P \) on a curve is called a point of inflection if the curve changes from concave upward to concave downward or vice versa.

Example: Let \(f(x) = x^3 - x \)

(c) Find intervals of concavity

(d) \(x \) - coordinates of points of inflection

\[
\begin{align*}
 f'(x) &= 3x^2 - 1 \\
 f''(x) &= 6x \\
 f''(x) &> 0 & x > 0
\end{align*}
\]

concave downward \(\searrow \) concave upward

\(0 \) \(\bigcirc \) pt. of inflection
Another application of 2nd derivative is in finding max and min.

2nd derivative Test:

Suppose \(f'' \) is continuous on an open interval containing \(c \).

1. If \(f'(c) = 0 \) and \(f''(c) > 0 \) \(\Rightarrow \) \(c \) local minimum
2. If \(f'(c) = 0 \) and \(f''(c) < 0 \) \(\Rightarrow \) \(c \) local maximum

Example: Discuss the curve \(y = x^4 - 4x^3 \) with respect to concavity, pts of inflection and local extremes. Use this info to sketch the curve.

\[f(x) = x^4 - 4x^3 \]
\[f'(x) = 4x^3 - 12x^2 = 4x^2(x - 3) \]
\[f''(x) = 12x^2 - 24x = 12x(x - 2) \]

Critical #5:

\[f''(x) = 0 \Rightarrow x = 0, x = 3 \]
\[f''(0) = 0 \quad ? \]
\[f''(3) = 36 > 0 \Rightarrow 3 \text{ is local minimum} \]

Use different criterion:

\[f(3) = 3^4 - 4
\[= 81 - 48 \]
\[= 33 \]
\[f''(x) = 12x(x-2) = 0 \]

<table>
<thead>
<tr>
<th>C.U.</th>
<th>C.D.</th>
<th>C.U.</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

\[0 \quad \text{pts. of inflection} \quad 2 \]

Graph:

\[f(0) = 0 \quad f(2) = 2^4 - 4 \cdot 2^3 = 2^4 \cdot (1 - 2) = -16 \]

\[f \text{ has absolute min at } x = 2 \]
Example:

\[f(0) > 0 \]

\[f'(x) = 0 \quad f'(2) = -1 \] for all \(x \) in the interval (0, 2)

\[f''(x) < 0 \quad x < 2 \]

\[f''(x) > 0 \quad x > 2 \]

\[f''(x) < 0 \quad 0 < x < 1 \] or \(x > 4 \)

\[f''(x) > 0 \quad 1 < x < 4 \]

\[\lim_{{x \to \infty}} f(x) = 1 \]

\[f(-x) = f(x) \quad \forall x \]

It's enough to draw the graph.

![Graph of f(x) with critical points and asymptote.](image)

\[f(2) = -1 \] local min.

CD | CU | CA
-|+|+

Reflection points:

\(y = 1 \) Horizontal Asymptote