So far we used $\frac{dy}{dx}$ to denote the derivative of y wrt x. We have regarded this as a single entity and not a ratio. Here we are going to give dy and dx separate meanings in such a way that their ratio is equal to the derivative.

Def. Let $y = f(x)$, where f is diff. ft. Then the differential dx is an indep. variable, that is dx can be given the value of any real number.

The differential dy is then given by

$$dy = f'(x) \, dx$$

Ex.

(a) Find dy if $y = \cos x$

(b) Find value of dy when $x = \frac{\pi}{6}$, $dx = 0.05$

(a) $dy = -\sin x \, dx$

(b) $x = \frac{\pi}{6}$, $\sin x = \sin \frac{\pi}{6} = \frac{1}{2}$

$dx = 0.05$

$$dy = (-\sin \, \frac{\pi}{6})(0.05) = \left(-\frac{1}{2}\right)(0.05) = -0.025$$
The geometric meaning:

\[\Delta y = f(x + \Delta x) - f(x) \]

\[\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} \]

\[\frac{\Delta y}{\Delta x} \approx \frac{dy}{dx} \text{ for } \Delta x \text{ small.} \]

If we choose \(\Delta x = \Delta x \), then \(\Delta y \approx dy \).

This is used to find approximate values of functions.

Suppose \(f(e) \) is known, and we want to calculate value of \(f(e + \Delta x) \) where \(\Delta x \) is small. Since

\[f(e + \Delta x) = f(e) + dy \]

we have

\[f(e + \Delta x) \approx f(e) + dy \]
Example: The demand function for a product is given by

\[p = f(q) = 20 - \sqrt{q} \]

where \(p \) is the price per unit in dollars for \(q \) units. By using the slope tool, approximate the price when 99 units are demanded.

We want to approximate \(f(99) \). We know:

\[f(q + \Delta q) \approx f(q) + dp \]

where

\[dp = f'(q) \Delta q = -\frac{\Delta q}{2\sqrt{q}} \]

\(q_0 = 100 - 1 \) \(\implies \) Take \(\Delta q = 9 = 10 \)

\(\implies f(99) \approx f(100) - \frac{\Delta q}{2\sqrt{100}} = f(100) + \frac{1}{2 \cdot 10} \)

\[= \sqrt{10} + \frac{1}{20} = 10 + 0.05 = 10.05 \]

Example: P. 169 #25:

The edge of a cube was found to be 30 cm with a possible error in measurement of 0.1 cm. Use differentials to estimate the maximum possible error in computing the volume of the cube.

\[V = x^3 \]

\[dV = 3x^2 \, dx \]

\[x = 30 \]

\[dx = 0.1 \]

\[- 3 \times (30)^2 (0.1) = 270 \, \text{cm}^3 \]
This seems a huge error. However a better factor is given by the relative error

\[\frac{dV}{V} = \frac{270}{(30)^3} = \frac{270}{27,000} = \frac{1}{100} = 0.01 \]

Relative error = \(\frac{1}{100} \) – \(\frac{1}{100} \) \(\text{percentage error} \)

Linear Approximation:

We have

\[f(x+\Delta x) \approx f(x) + df \]

\[= f(x) + f'(x) \Delta x \]

\[x = a + \Delta x \]

\[f(x) \approx f(a) + f'(a)(x-a) \] ← equation of tangent at point \((a, f(a)))\)

This means that we are approximating the curve \(y = f(x) \) with the tangent line.

\[L(x) = f(a) + f'(a)(x-a) \]

is the linearization of \(f \) at \(a \).
Example

Find the linearization of \(f(x) = x^3 \) at \(a = 1 \):

\[
L(x) = f(a) + f'(a)(x-a)
\]

\[
= (1)^3 + (3x^2)\bigg|_{x=1}
\]

\[
= 1 + 3(x-1)
\]

\[
= 3x - 2
\]

So \(x^3 \approx 3x - 2 \)

The linearization is the best first degree (linear) approximation to \(f(x) \) near \(a \).

For a better approximation, we consider 2nd degree (quadratic) approximation \(P(x) \).

To make sure the approximation is good, we want:

1. \(P(a) = f(a) \)
2. \(P'(a) = f'(a) \)
3. \(P''(a) = f''(a) \)
Example: Find a polynomial approximation of the function $f(x) = \cos x$ near 0.

Let $P(x) = a + bx + cx^2$

$P'(x) = b + 2cx$

$P''(x) = 2c$

Then

$\begin{align*}
P(0) &= f(0) = 1 \\
P'(0) &= f'(0) = -\sin 0 = 0 \\
P''(0) &= f''(0) = -\cos 0 = -1
\end{align*}$

Solving the system of equations:

$\begin{align*}
a &= 1 \\
b &= 0 \\
c &= -\frac{1}{2}
\end{align*}$

Hence $P(x) = 1 - \frac{1}{2}x^2$.

In general, if we consider

$P(x) = A + B(x-a) + C(x-a)^2$

$P(a) = f(a)$

$P'(a) = f'(a)$

$P''(a) = f''(a)$

Solving for A, B, and C,

$A = f(a)$

$B = f'(a)$

$2C = f''(a)$

Hence

$P(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2$

is the polynomial approximation of $f(x)$ close to a.

7. \(f(x) = \sqrt[3]{1-x} = (1-x)^{1/3} \Rightarrow f'(x) = -\frac{1}{3}(1-x)^{-2/3} \), so \(f(0) = 1 \) and \(f'(0) = -\frac{1}{3} \). Thus, \(f(x) \approx f(0) + f'(0)(x-0) = 1 - \frac{1}{3}x \). We need \(\sqrt[3]{1-x} - 0.1 < 1 - \frac{1}{3}x < \sqrt[3]{1-x} + 0.1 \), which is true when \(-1.204 < x < 0.706\).

8. \(f(x) = \tan x \Rightarrow f'(x) = \sec^2 x \), so \(f(0) = 0 \) and \(f'(0) = 1 \).

Thus, \(f(x) \approx f(0) + f'(0)(x-0) = 0 + 1(x-0) = x \).

We need \(\tan x - 0.1 < x < \tan x + 0.1 \), which is true when \(-0.63 < x < 0.63\).

9. \(f(x) = \frac{1}{(1+2x)^4} = (1+2x)^{-4} \Rightarrow f'(x) = -4(1+2x)^{-5}(2) = \frac{-8}{(1+2x)^5} \), so \(f(0) = 1 \) and \(f'(0) = -8 \).

Thus, \(f(x) \approx f(0) + f'(0)(x-0) = 1 + (-8)(x-0) = 1 - 8x \).

We need \(\frac{1}{(1+2x)^4} - 0.1 < 1 - 8x < \frac{1}{(1+2x)^4} + 0.1 \), which is true when \(-0.045 < x < 0.055\).

10. \(f(x) = e^x \Rightarrow f'(x) = e^x \), so \(f(0) = 1 \) and \(f'(0) = 1 \).

Thus, \(f(x) \approx f(0) + f'(0)(x-0) = 1 + 1(x-0) = 1 + x \).

We need \(e^x - 0.1 < 1 + x < e^x + 0.1 \), which is true when \(-0.483 < x < 0.416\).