Definition 0.1. Let R be a ring. An ideal I is called **finitely generated** if there are elements $a_1, \ldots, a_n \in R$ such that
\[I = (a_1, \ldots, a_n) = Ra_1 + \cdots + Ra_n. \]

We say R is **Noetherian** if every ideal is finitely generated.

Example 0.2. A field K is Noetherian. The only ideals are $\{0\}$ and $K = (1)$.

Proposition 0.3. The ring \mathbb{Z} is Noetherian.

Proof. Let I be a nonzero ideal in \mathbb{Z}. Let a be a nonzero element in I of smallest norm $|a|$. We claim that $I = (a)$. Indeed, let b be another nonzero element of I. By the division algorithm, there are integers q, r satisfying $b = aq + r$ where $|r| < |a|$ or $r = 0$. Since I is an ideal, we find that $r = b - aq \in I$. If r is nonzero, then r has smaller norm than a, which is a contradiction. So we must have $r = 0$ and thus $b = aq \in (a)$. \hfill \qed

Proposition 0.4. For a field K, the ring $K[x]$ is Noetherian.

Sketch of Proof. Use the norm given by the degree and use the division algorithm as above.

Remark 0.5. The above proofs actually show that the rings \mathbb{Z} and $K[x]$ are principal ideal domains, that is, integral domains in which every ideal is principal. It is clear that a principal ideal domain is Noetherian.

Definition 0.6. Let R be a ring. We say R satisfies the **ascending chain condition** if for each chain of ideals
\[I_0 \subset I_1 \subset \cdots \]
in R, there is an $N \geq 0$ such that for each $n \geq N$, we have $I_n = I_N$ (that is, the chain terminates after a finite number of terms).

Lemma 0.7. A ring R is Noetherian if and only if it satisfies the ascending chain condition.

Proof. Suppose R is Noetherian, and let $I_0 \subset I_1 \subset \cdots$ be an ascending chain of ideals. It follows that the union $I = \cup_{m=0}^\infty I_m$ is an ideal. (Why?) Since R is Noetherian, there are a_1, \ldots, a_m such that $I = (a_1, \ldots, a_n)$. Each a_i is an element of $I_{m(i)}$ for some $m(i)$, so if we set $N = \max\{m(i)\}$, then we see that $I_n = I_N = I$ for each $n \geq N$.

Suppose R is not Noetherian. There is an ideal I of R that is not finitely generated. Pick $a_0 \in I$ and set $I_0 = (a_0)$. Inductively, for each $n > 0$, since I is not finitely generated, we can choose $a_{n+1} \in I \setminus I_n$ and set $I_{n+1} = I_n + (a_{n+1})$. This gives an ascending chain of ideals
\[I_0 \subset I_1 \subset \cdots \]
which never terminates. Thus R does not satisfy the ascending chain condition.

Lemma 0.8. For a surjective ring homomorphism $\pi: R \to S$, we have

$$\pi(a_1, a_2) = (\pi(a_1), \pi(a_2)).$$

Proof. Note that $\pi(r_1a_1 + r_2a_2) = \pi(r_1)\pi(a_1) + \pi(r_2)\pi(a_2) \in (\pi(a_1), \pi(a_2))$. On the other hand, if $s_1\pi(a_1) + s_2\pi(a_2) \in (\pi(a_1), \pi(a_2))$, then there are $r_j \in R$ such that $\pi(r_j) = s_j$ and hence

$$s_1\pi(a_1) + s_2\pi(a_2) = \pi(r_1a_1 + r_2a_2).$$

Proposition 0.9. If R is a Noetherian ring and I is an ideal, then R/I is Noetherian.

Proof. Let J be an ideal in R/I. Then $\pi^{-1}(J)$ is an ideal in R, so there are a finite number of elements a_1, \ldots, a_n in R such that $\pi^{-1}(J) = (a_1, \ldots, a_n)$. By the previous lemma, we have

$$J = (\pi(a_1), \ldots, \pi(a_n)).$$

Theorem 0.10 (Hilbert’s Basis Theorem). If R is a Noetherian ring, then $R[x]$ is a Noetherian ring.

Corollary 0.11. If R is Noetherian, then the ring $R[x_1, \ldots, x_n]$ is Noetherian.

Sketch of Proof of Theorem. Let I be an ideal of $R[x]$. For each $n \geq 0$, let I_n denote the ideal in R of “leading coefficients of elements of I of degree n.” This means that I_n consists of all elements r such that there is a polynomial $f \in I$ of the form $f = rx^n + a_{n-1}x^{n-1} + \cdots + a_0$. It is routine to check that I_n is an ideal and that $I_n \subset I_{n+1}$. By the ascending chain condition, there is an $N \geq 0$ such that $I_n = I_N$ for each $n \geq N$.

Now for each $n \leq N$, the ideal I_n is finitely generated, so there are a finite number of generators $\{a^n_i\}_{i=1}^{k_n}$ for I_n. By definition, these generators appear as the leading terms of some polynomials $\{f^n_i\}_{i=1}^{k_n}$ of degree n in $R[x]$. We then claim that the set of polynomials

$$\bigcup_{n=0}^{N} \{f^n_i\}_{i=1}^{k_n}$$

generates I. Let I^* denote the ideal generated by these polynomials.

Let g be arbitrary in I. We prove that $g \in I^*$ by induction on the degree m of g. For $m = 0$, the fact that $g \in I$ means that $g \in I_0$ and hence g belongs to I^* since the generators of I_0 are also generators of I^*.

Suppose now that the claim holds for some $m - 1$. We prove the claim for m. There are two cases.
(i) Case 1: Suppose $m \leq N$. In this case, the leading coefficient b_m of g belongs to I_m, and hence we can write

$$b_m = \sum_{i=1}^{k_m} c_i a_i^m$$

for some $c_i \in R$. The polynomial

$$h = g - \sum_{i=1}^{k_m} c_i f_i^m$$

then has degree less than m. By induction, $h \in I^*$ and since $\sum_{i=1}^{k_m} c_i f_i^m$ belongs to I^*, we see that g does as well.

(ii) Case 2: Suppose $m > N$. In this case, the leading coefficient b_m of g belongs to $I_m = I_N$, and hence we can write

$$b_m = \sum_{i=1}^{k_N} c_i a_i^N$$

for some $c_i \in R$. The polynomial

$$h = g - x^{N-m} \sum_{i=1}^{k_N} c_i f_i^N$$

then has degree less than m. By induction, we are done again.

Definition 0.12. For an ideal I of $\mathbb{C}[x_1, \ldots, x_n]$, define the affine algebraic subset

$$V(I) = \{ x \in \mathbb{C}^n : f(x) = 0 \text{ for each } f \in I \}.$$

Because $\mathbb{C}[x_1, \ldots, x_n]$ is Noetherian, the ideal I is finitely generated by some polynomials f_1, \ldots, f_k, and hence $V(I)$ is the intersection of finitely many hypersurfaces (Exercise 2.2.2).

Remark 0.13.

(a) Recall that ideal I of a ring R is called prime if whenever a product $ab \in I$ of two elements from R belongs to I, then either $a \in I$ or $b \in I$.

(b) Recall that the radical of an ideal I in R is the ideal \sqrt{I} defined by

$$\sqrt{I} = \{ a \in R : a^n \in I \text{ for some } n > 0 \},$$

and we say that an ideal I is a radical ideal if $I = \sqrt{I}$.

(c) Recall that any prime ideal is a radical ideal.

(d) It follows easily from (c) that the intersection of any number of prime ideals is radical.

Example 0.14 (Exercise 2.3.1). We claim that the ideal $I = (xy, yz) \subset \mathbb{C}[x, y, z]$ is radical but not prime. Indeed, it is not prime because the element xy belongs to I, but neither x nor y belong to I. It is radical.
because it is the intersection of prime ideals \(I = (x) \cap (y, z) \), with both \((x) \) and \((y, z) \) being prime as the quotients

\[
\frac{\mathbb{C}[x, y, z]}{(x)} \simeq \mathbb{C}[y, z] \\
\frac{\mathbb{C}[x, y, z]}{(y, z)} \simeq \mathbb{C}[x]
\]

are integral domains.

Lemma 0.15. The algebraic subset \(V(I) \) is irreducible if and only if \(I \) is a prime ideal.

Proof. Exercise. □

Definition 0.16. For a subset \(S \) of \(\mathbb{C}^n \), define the ideal

\[
I(S) = \{ f \in \mathbb{C}[x_1, \ldots, x_n] : f(x) = 0 \text{ for each } x \in S \}
\]

of polynomials vanishing along \(S \).

Remark 0.17. We have defined two operations

\[
V : \{ \text{ideals of } \mathbb{C}[x_1, \ldots, x_n] \} \to \{ \text{algebraic subsets of } \mathbb{C}^n \}
\]

and

\[
I : \{ \text{subsets of } \mathbb{C}^n \} \to \{ \text{ideals of } \mathbb{C}[x_1, \ldots, x_n] \}.
\]

The next theorem, called the Nullstellensatz, states that these two operations are inverses to one another, when suitable conditions are placed on the domains and codomains.

Theorem 0.18 (Nullstellensatz). The operators \(V \) and \(I \) induce a bijective correspondence

\[
\{ \text{radical ideals of } \mathbb{C}[x_1, \ldots, x_n] \} \leftrightarrow \{ \text{algebraic subsets of } \mathbb{C}^n \}.
\]

Moreover, the correspondence restricts to a correspondence

\[
\{ \text{prime ideals of } \mathbb{C}[x_1, \ldots, x_n] \} \leftrightarrow \{ \text{affine subvarieties of } \mathbb{C}^n \}.
\]

Definition 0.19. A ring \(R \) is called **reduced** if the zero ideal is radical.

Lemma 0.20. An integral domain is reduced.

Proof. If \(R \) is an integral domain, then the zero ideal is prime, and hence radical. □
Example 0.21. The ring \(\mathbb{C}[x,y]/(xy) \) is reduced but not an integral domain. This is because the ideal \((xy)\) is radical, but not prime.

Definition 0.22. For an affine algebraic set \(X \subset \mathbb{C}^n \), define the **coordinate ring** \(R(X) \) to be the quotient \(R(X) = \mathbb{C}[x_1, \ldots, x_n]/I(X) \). Since the ideal \(I(X) \) is radical the quotient \(R(X) \) is reduced, and moreover, generated by the images of \(x_1, \ldots, x_n \) (Exercise 2.4.1).

Lemma 0.23. If \(\varphi : R \to S \) is a ring homomorphism and \(I \subset R \) is an ideal satisfying \(I \subset \ker(\varphi) \), then there is a unique ring homomorphism \(\tilde{\varphi} : R/I \to S \) making the following diagram commute:

\[
\begin{array}{ccc}
R & \xrightarrow{\varphi} & S \\
\downarrow{\pi} & & \downarrow{\pi_S} \\
R/I & \xrightarrow{\tilde{\varphi}} & S/J
\end{array}
\]

Proof. Define \(\tilde{\varphi} \) by the rule \(\tilde{\varphi}(r + I) = \varphi(r) \). This is well-defined because if \(i \in I \), then \(\varphi(r + i) = \varphi(r) + 0 = \varphi(r) \) since \(I \subset \ker \varphi \). Moreover, it is a ring homomorphism because \(\varphi \) is.

Lemma 0.24. If \(\varphi : R \to S \) is a ring homomorphism and \(I \subset R \) and \(J \subset S \) are ideals such that \(\varphi(I) \subset J \), then there is a unique ring homomorphism \(\tilde{\varphi} : R/I \to S/J \) such that the following diagram commutes:

\[
\begin{array}{ccc}
R & \xrightarrow{\varphi} & S \\
\downarrow{\pi_R} & & \downarrow{\pi_S} \\
R/I & \xrightarrow{\tilde{\varphi}} & S/J
\end{array}
\]

Proof. Apply the lemma to \(\pi_S \circ \varphi \).

Definition 0.25. Let \(F : \mathbb{C}^m \to \mathbb{C}^n \) be a polynomial map. Define a map \(F^\sharp : \mathbb{C}[y_1, \ldots, y_n] \to \mathbb{C}[x_1, \ldots, x_m] \) by rule

\[
F^\sharp \sigma(x_1, \ldots, x_m) = \sigma(F(x_1, \ldots, x_m)) \quad \text{for} \quad \sigma \in \mathbb{C}[y_1, \ldots, y_n].
\]

Because \(F \) is a polynomial map, it follows that \(F^\sharp \) is a ring homomorphism.

Lemma 0.26. If \(F : \mathbb{C}^m \to \mathbb{C}^n \) is a polynomial map and \(X \subset \mathbb{C}^m \) and \(Y \subset \mathbb{C}^n \) are varieties such that \(F(X) \subset Y \), then \(F^\sharp(I(Y)) \subset I(X) \).

Definition 0.27. Let \(X \subset \mathbb{C}^m \) and \(Y \subset \mathbb{C}^n \) be two algebraic subsets, and let \(f : X \to Y \) be a morphism. Remember that this means that \(f \) is the restriction of a polynomial map \(F : \mathbb{C}^m \to \mathbb{C}^n \). Because \(F^\sharp(I(Y)) \subset I(X) \), there is a unique ring homomorphism \(f^\sharp : R(Y) \to R(X) \), called the **pullback map**, making the following diagram commute:

\[
\begin{array}{ccc}
\mathbb{C}[y_1, \ldots, y_n] & \xrightarrow{F^\sharp} & \mathbb{C}[x_1, \ldots, x_m] \\
\downarrow & & \downarrow \\
R(Y) & \xrightarrow{f^\sharp} & R(X)
\end{array}
\]
Thus \(f^\sharp \) is the ring homomorphism satisfying the property that

\[
f^\sharp \sigma(y_1, \ldots, y_n) = \sigma(f(y_1, \ldots, y_n)) \quad \text{for } \sigma \in R(Y)
\]

where we understand \(\sigma(f(y_1, \ldots, y_n)) \) to denote an element of \(R(X) \).

Example 0.28. Let \(X = V(y - x^2) \subset \mathbb{C}^2 \) and \(Y = \mathbb{C}^1 \). Then \(X \) is isomorphic to \(\mathbb{C}^1 \) via the morphism

\[
f : X \to \mathbb{C}^1
\]

\[(x, y) \mapsto x.\]

Note that \(f \) is induced via the polynomial map \(F : \mathbb{C}^2 \to \mathbb{C}^1 \) determined by \((x, y) \mapsto x\). Remember that the inverse of \(f \) is \(g : \mathbb{C}^1 \to X \) given by \(t \mapsto (t, t^2) \), which is determined by the global map \(G : \mathbb{C}^1 \to \mathbb{C}^2 \) given by \(t \mapsto (t, t^2) \).

The pullback map \(F^\sharp : \mathbb{C}[z] \to \mathbb{C}[x, y] \) is determined by the assignment \(z \mapsto x \). The composition \(f^\sharp = \pi \circ F^\sharp : \mathbb{C}[z] \to R(X) \) is then a well-defined ring homomorphism.

The pullback map \(G^\sharp : \mathbb{C}[x, y] \to \mathbb{C}[z] \) is determined by the assignments

\[
x \mapsto z
\]

\[
y \mapsto z^2.
\]

Because \(G^\sharp(I(X)) = G^\sharp(y - x^2) = 0 \), we see that \(G^\sharp \) induces a well-defined ring homomorphism \(g^\sharp : R(X) \to \mathbb{C}[z] \).

The ring homomorphisms \(f^\sharp : \mathbb{C}[z] \to R(X) \) and \(g^\sharp : R(X) \to \mathbb{C}[z] \) are inverses to one another, and hence define ring isomorphisms. We conclude that

\[
\mathbb{C}[x, y]/(y - x^2) \simeq R(X) \simeq \mathbb{C}[z].
\]

Remark 0.29. Note that we have constructed two operations

\[
R : \{ \text{algebraic subsets of } \mathbb{C}^n \} \to \{ \text{finitely generated reduced } \mathbb{C}\text{-algebras} \}
\]

\[
\sharp : \{ \text{morphisms } f : X \to Y \} \to \{ \text{morphisms } f^\sharp : R(Y) \to R(X) \}
\]

In some sense, these two operations define an “equivalence of categories,” which Augusto will discuss more next time.

Exercise 0.30. Show that for morphisms \(f : X \to Y \) and \(g : Y \to Z \) of affine algebraic subsets we have \((g \circ f)^\sharp = f^\sharp \circ g^\sharp\).

Exercise 0.31. Show that for an affine algebraic subset \(X \), we have \(\text{id}^\sharp_X = \text{id}_{R(X)} \).
Exercise 0.32. Show that if $f : X \to Y$ is an isomorphism of affine algebraic subsets, then $f^\dagger : X \to Y$ is an isomorphism of rings (or \mathbb{C}-algebras).