1. I feel like I didn’t explain my response to Andrew’s question properly, so here is an exercise which fills in the details better. Recall that a map \(f : X \to Y \) is open if and only if \(f(U) \) is open for each open \(U \subset X \). Andrew asked whether there were examples of projection maps \(\pi : X \to X/\sim \) which are not open. The answer is yes, and here is one line of reasoning that I tried to outline on the board.

(i) For a topological space \(X \), a set \(Y \), and a surjective mapping \(f : X \to Y \), show that the set \(\{ V \subset Y : f^{-1}(V) \text{ is open in } X \} \) is a topology on \(Y \) called the quotient topology.

(ii) When \(Y \) is equipped with the quotient topology, show that \(f \) is continuous.

(iii) Define an equivalence relation \(\sim \) on \(X \) by \(x_1 \sim x_2 \) if and only if \(f(x_1) = f(x_2) \), and let \(X/\sim \) denote the quotient space. Show that \(f \) induces a well-defined map \(g : X/\sim \to Y \) described by \(g([x]) = f(x) \).

(iv) Show that \(g \) is continuous.

(v) Show that \(g \) is bijective and hence admits an inverse \(g^{-1} : Y \to X/\sim \).

(vi) Show that the inverse of \(g \) is continuous, and hence \(g \) is a homeomorphism.

(vii) Show that \(f \) is open if and only if \(\pi \) is.

(viii) As sets, let \(X = Y = [0,1] \). Equip \(X \) with the standard topology. Let \(f : X \to Y \) be defined by

\[
 f(x) = \begin{cases}
 0 & 0 \leq x \leq 1/2 \\
 2x - 1 & 1/2 \leq x \leq 1.
\end{cases}
\]

Equip \(Y \) with the quotient topology induced by \(f \). Show that \(f \) is continuous but not open. Conclude that the corresponding projection map \(\pi : X \to X/\sim \) is not open.

2. Recall that an abelian semigroup is a set \(S \) together with a binary operation \(* : S \times S \to S \) such that \(s_1 * s_2 = s_2 * s_1 \) for each \(s_1, s_2 \in S \). We say that \(S \) has a unit if there is an element \(e \in S \) such that \(e * s = s \) for each \(s \in S \). Theorem 4.6.2 says that \(\mathbb{K} \) is an abelian semigroup with unit given by the unknot.

(i) If \(S \) has a unit, show that it is unique. (That is, if \(e_1, e_2 \) are two units for \(S \), show that \(e_1 = e_2 \).)

(ii) We say that an element \(s \in S \) divides another element \(r \in S \), if there is an element \(t \in S \) such that \(s * t = r \). Show that the unknot divides every knot.

(iii) We say that an element \(s \) is prime in \(S \) if whenever \(s \) divides a product \(a * b \), either \(s \) divides \(a \) or \(s \) divides \(b \). Show that if \(K_P \) is a prime knot, then \(K_P \) is a prime element of \(\mathbb{K} \).

(iv) We say that a non-unit \(s \in S \) is irreducible if whenever \(s = s_1 * s_2 \) for some \(s_1, s_2 \in S \), either \(s_1 = e \) or \(s_2 = e \). Show that every prime number is irreducible in \((\mathbb{N}_{>0}, \cdot)\).

(v) Show that every prime knot is irreducible in \(\mathbb{K} \).

(vi) We say that an abelian semigroup with unit \(S \) has unique factorization if for each element \(s \in S \) there are irreducible elements \(s_1, \ldots, s_n \in S \) such that

\[
 s = e * s_1 * \cdots * s_n
\]

and this representation is unique in the sense that if

\[
 s = e * t_1 \cdots * t_m
\]

for some \(t_1, \ldots, t_m \in S \), then \(m = n \) and there is a bijection \(\phi : \{1, \ldots, m\} \to \{1, \ldots, n\} \) such that \(t_{\phi(i)} = s_i \) for each \(i \). Why does \(\mathbb{K} \) have unique factorization?
3. This exercise supplements the proof of Lemma 4.7.1 in Cromwell. Let \(v = (v_1, v_2, v_3) \) be a vector in \(\mathbb{R}^3 \) such that \(v_3 \neq 0 \). If \(H_+ = \{ x_3 > 0 \} \subset \mathbb{R}^3 \) and \(H_- = \{ x_3 < 0 \} \subset \mathbb{R}^3 \), then either \(v \in H_+ \) or \(v \in H_- \).

 (i) If \(v \in H_\pm \), show that there is a unique linear transformation \(L : \mathbb{R}^3 \to \mathbb{R}^3 \) satisfying \(L(e_1) = e_1 \), \(L(e_2) = e_2 \), and \(L(v) = \pm e_3 \).

 (ii) Conclude that \(L \) is the identity on the \(x_1x_2 \)-plane, and sends \(v \) to a vector perpendicular to this plane.

 (iii) Show that \(L \) is orientation preserving.

 (iv) Show that there is an isotopy from the identity map to \(L \).

4. Cromwell 4.11.2

5. Cromwell 4.11.7

6. Cromwell 4.11.8

7. Cromwell 4.11.9