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1. 3 • I - Introduction
-

Given that we now know about species , we must consider the fact that we can perform several

operations on them . This is known as combinatorial algebra .

① Allows us to construct construct alternate species
② Allows us to analyse alternate species
③ Allows us to create associated series

we know that , given two power series of exponential type :

flock Éfn I÷n=◦9⇔=Égn¥_n
--0

h ↳c) = { hn IT is the general coefficient .hn
n = 0

This is constructed from f- andg as follows . . -

b-- fig → hn = fn + gn

In -- fog → hn = { É figi { """" these - "9itj -- n
have been derived prior

.

as they consider two
h = f

'
→ hn = fn+ , species of Eksanestnctre

take output of g (x)
and put into had@ n !

h = fog → hn =
{ K ! n . ! . . . nk ! Fk Sn, - " Snk
◦≤k≤n

n it - it NK IN

Now
, however ,

we must consider constructions with two separate species , F and G , in order to create

corresponding generating series as such • • .

F + G- - C- + G) (e) = Floc) + Gbc)

Not⇐ These identities areF- • G- - CE- G) (x) = 5- (x) • Glx) created in such a way that

displaying their structures are

F ◦ G- _ (Fo G) (x) = F ( G⇔)
only dependant on displaying F
and G 's structures individually

F
'
→ F' (e) = Fbc)



seen earlier . . .

" " ""
' """" ' """"• tnatoteneexponexiaones

① / (F + G) En] / - / Fin] / + / Gcn ] /

i.

i%÷ / Fci ] / / Gg]/

③ / (F ◦ G) (n] / - É { (n.in?..nj)1FcisiT1Ganis1j--0ni+nnI;jni--ni - i

④ /F'[n] / - / F[n+i] /

There could exist many candidates for these definitions , but there
are

very natural solutions compatible .

These notes will focus on ① and ② , being addition / subtraction

and multiplication /division



t.rs#Sumo-tpeciesot Structures

As an example ,
let us consider two species :

① G
'

=

species of simple, connected graphs
② Gd =

species of disconnected graphs

we know that a graph must either be connected or disconnected . Therefore, for any finite set 0 :

G [u] = G' [u] + Gd[u]
and thus . _.

G = G
'

+ Gu → prototype for general definition of adding species

Definition: the sum of two species , F + G

For
any finite set

U :

C- + G) [u] = F [u] + G [u]

And tpons ort along a bijection of 0 : U → V on Fta is

C- + G) [o] (s) = { F [0] (s) if SEFCU]
G [o ] (s) if SEGA]

•

⇐•• = ⇐•• ¥ ⇐••
5- + G
•

F q
•

It is important to note that , where F structures also exist in G (i 5- [u] n F [a] =\ 0)
one must form distinct copies of FCU] and G [u] first . . .

1way factors aregrouped) (doesn't matter order)
- Addition is associative and commutative

,
and the empty species 0 is a neutral element . . .

ie= Ft 0 = 0 t F = F



To show this , let us consider 3 statements and examples :

a) ( F + G) (a) = Fbc) + Gcx) I e
"
= cosh (x) + sinh (a)

↳Eking tilde

aussies ~

b) ( F + G) (x) = Else) + GT (x) I ¥ = ¥ +

,

I exp Gc , + 7- + ⇒ + . . .) = e(¥
+¥" ") [cosh Gc

,
+¥ + -D)+ sinh (x , + ¥ + . . .)c) Zeta = ZF + Zai

F-even is set containing an even number
ever → f- (x) = f-C- x)considering F- = F- even + F-◦od where : Eood is set containing an odd number

Detinition2i-Thesumotafomilyotspecieslfilie-i-Afam.ly
of species is summable for any finite set , U , if Ficu] = ∅ , except for a finite number of indices ic-±

This is defined as follows , where 0 : U
→ V is a bijection and ls , i) C- ( {

*±
Fi )(U]

a) ( { Fi ) CU] = { Fi [u ] = U Ficv] × { i}
i -- I

v.±
i c-I

b) ( { Fi ) [0] Is , it = ( F [o] (s)
,
i)

i -- I

In the same way as previously ,
let us show this with 3 examples :

a) ( ¥
,

Fi) (x) = { Fica
i c-I

b) ( É Fi ) Go = { Éicx)
i. EI i c- I

c) 2-( {i⇔ Fi)
= {ZFI
IEI

Using canonical decomposition , that being each species gives rise to a finite ,
-countable family of species

which sum to the original , we can reflect the examples with the identities :

a) e
"

= I + ¥ + 2¥ + • • • + ¥1 + • • .
Canonical decomposition

Fn [u] = { f- [V7 if I v1 -

- n

b)¥ = I + x + x2 + . - . + sent
. . .

∅ , otherwise

x ,

"

ai
"
x}
"

. . .

Where Fn is restricted to cardinality Pc) exp (x , + Et . . .) = E E
n ≥ 0 14+21<2+3est .. . .

-

n

/
"
K 1 ! 2

""

K2 ! 3
"3
1<3 ! . . .



Now
, looking at some actual examples . _ .

The finitesum Ft F + • • • + F
,
with n copies of F can be denoted by n F. This clearly

follows the some ruleset :

a) (n F) Gc) = nF (a)

b) (ÑF)⇔ = nEcsc)

c) 2nF = n ZF

In the instance where F = I • a .

n =l-¥
= no 1

And on the set U = 0
,
has no structure .



t.3.3-p-dttpea.es of structures

Let us consider the example of the following permutation :

•

*
*

•Fat •F- i

:*
-

i •i→÷
,i i i s

•

= i. ¥
.

!;
" •

•

i ••e•J !
•& F•E¥% ' •

. .
'
-
_

.
if.•⇐•i

A set of fixed points
A derangement g- remaining
elements (not ina loop]

Within this
, any. permutation is clearly comparable with one another

Thus
,
the species of permutations ,

S
,
is the product of the species ,

E
, of sets with the species

Der of derangement s , forming ?

no element
in its

8 = E - Der
← original position

This is a typical example of where multiplication of species is necessary , thus we must define it :

{
Definition ! The product of two species, F . G , for any finite set , 0 , can be denoted as iv. .ua) FCU,] × G [Us ]

This definition comes into rise when we define characteristics of an C- •G) series on the set U :

The result is an ordered pair ,
5- If /g) where . . -

inside of

a) f is a F- structure (from F species) on a subset U , ≤ U
b) 9 is a G-stacte ( from G series) on a subset V2 C- U
e) (U , , V2) make up U ,

where U , U Uz = U and Ui n V2 = ∅

And tpons ort along a bijection of 0 : U → V on F. G for each S = 4-g) is :

(F- • G) [0] (s) = (Flo ,] (f) ,
G [or](g))

with 0 representing U, and Uz split

This can be represented more easily by diagrams . .
.

• •• • ••

ooo
•

•

•
F. a

= '= •• {• • G ¥÷•• F.a ⇐•(⇒⑨

•
• •

•
• •



Multiplication Rules
- Associative and commotive up to isomorphism
- 1 is the neutral element , 0 is the absorbing one

↳ I • F = F . I = F ↳ F. 0 = 0 . F = 0

- It is distributive if F- ( F + G)
e

Let us consider three equalities based on this definition . . .

a) E. G) (x) = F (a) G (a)

b) IÉG) (x) = Écxacx)

c) 2- Fta (09 ,
Jez

, 2-3 ,
.. .) = ZF 64

,
Xz

, OG , . . .
) Zia (x , ,

X2 , I ] , . _ _)

These must hold true for the following combinatorial equations based on the example prior . . .

a) ¥ =

e
"

Derby

b) ¥
,

¥ = ¥ Ñercx)

c) ¥
,

¥ =

exp (x , + ¥ + ⇒ + ^ . .) 2-
☐er (x , , xz ,

as . . .)

We can rearrange these to get expressions for series associated with the Derangement species i

a) Do ↳c) =

b) DÑ (x) IT ¥
14/2

c) 2-
☐er
(x, , xz, . . .)

= e-
"" + +¥ ")

-11,1¥
1<71

This links to the classical formula . . .

In = n ! ( I -÷ + ¥ - . . .
+ ¥:^) , which can be used to figure out numbers in fit Do [ni , nz . . . ]



If we once again consider the finite species Ft Ft . . . .

+ F ,
denoted as -n F

, is also the equivalent of the

product between n and F species . . .

n F = n • F

Thus
, further proof for identifying n with a species .

* These multiplication rules can be used for other combinatorial definitions . . .

Recalling the species of subsets of a set, 8 [ u] = {SIS ≤ u} , we can achieve the combinatorial equality

p = F- • E
,
where E-- e

"

O

• . P (x) = e"e"=e2K

Ñ (e) = ¥5

Thus
, using the following series for the index series Zp , we obtain immediately :

Zoo (x ,
,
xz

,
x} . . .) = (exp ( x , + ¥ + ¥ ×

. . .
))

≥

And deduce the expression :

fix P [n , ,
Nz ,

. .
.] = 2

" +m + ' "

IññÉ¥set
☆

The species D
"]

, denoting subsets of cardinality satisfies the combinatorial equality . . .

8049 = F- a • E
,
where Ek denotes the species of sets of cardinality K (K -elements]

Using this ,
we can derive the following equalities :

a) PEK) (x) = e
"

COMBINATORIAL Ip
"In] / = (1)← INTERPRETATION

OF BINOMIAL COEFICIENTS PT?⃝b) paid (a) = ?¥
,

sci ' scan2×3^3c) 2-pay 64 ,
34.x } , - ") = exp Gc, +¥ + . .

. ) × {
hit Znzt . . .

-
- k

1
"

^
,
!2%2 ! . . ,



Using this binomial equality and the following combinatorial equality

,§o D
""

=p = E
2

We can derive the identity :

{ (E) =2ⁿ
KYO

Definitions: Through associativity , we can apply multiplication rules to finite families Fi of species
where theproduct of F¥ is denoted FK

To do this
.
the product must be defined as follows . _ _

( F, • Fz . F,) [u] = { F
,
[ U ,] ✗ Fz[v2] × _ . . × Fe [Uk]

V1 + uztrr.tv

This is essentially doing the same as simple multiplication ,
with the sum taken over all families (bi) between

i =\ and I = K → The union of these is U .

The transport along a bijection ,
0 : U →V is defined in the following component breakdown

For Si C- Fi Cui] , i = 1
,
. . . ik(Fi . Fz . . . . Fu) [0] ( ( si) i ≤ Kci) = (Fi [Oi] (si)) c. ≤ i ≤k

.

Definitions: The product of an infinite family of species can be defined given the family is multipliable

e.gg Consider the species 2 of linear orderings and its restriction Lk ,
to sets length K

a) ↳ = ✗
"

E- 0 , 1,2 , . -
-

b) L = I + ✗ L = { ×
"
= T.ci + ✗

2" )
K≥o i to



Summation Example

Taking the species of non -empty sets , F- E+ ,
we obtain

Bai = (Et)
"

,
which is summable

A ballot stnrtre
, having K levels , looks as such . . .

I 2 3 4 5

11 :|:| :•
.

:

Using this ,
we can define the following

a) Bal
"☐
Get = &"- 1)

*

b) BICK
>
(x) = ( c)

K

c) 2- Bat">64.x2- . .) = ( etp (x ,
+ ¥ +¥ + . . .) - 1)

"

since this is summable :

Bal = ¥ Bat
""

= { (Et)
"

K≥o

This summation thus can berepresented in the 3 cases as . . .

a) Bal Gc) =¥

b) Bat Cx) =

I

c) 2-
Bat (x , , scz . . .) = 2- exp 64T¥ +¥


