Addition and Multiplication of Species Bergeron - Chapter 1.3

28th September 2022

Week 2

Undergraduate Seminars I Nathan Rochavian

Nathan Roghavan

Given that we now know about species, we must consider the fact that we can perform several operations on them. This is known as combinatorial algebra.

- (1) Allows us to construct construct alternote species (2) Allows us to chally se alternate species
- (3) Allows us to create associated series

We know that, given two power series of exponential type:

$$f(x) = \sum_{n=0}^{\infty} f(n - n!) = g(x) = \sum_{n=0}^{\infty} g(x) = \sum_{n=0}^{\infty}$$

This is constructed from f and g as follows...

$$h = f + g \longrightarrow hn = fn + gn$$

$$h = f \cdot g \longrightarrow hn = \sum_{i+j \ge n}^{\infty} \frac{n}{i \cdot j!} figi$$
we know these - they
have been derived prior

$$h = f' \longrightarrow hn = fn + i$$

$$\lim_{\substack{k \ge n \le n \le n}} hn = \sum_{i+j \ge n}^{\infty} \frac{n!}{k! \cdot j!} figi$$

$$h = f' \longrightarrow hn = fn + i$$

$$\lim_{\substack{k \ge n \le n \le n \le n}} \frac{n!}{k! \cdot n!!} fk g_{n} \dots g_{nk}$$

Now, however, we must consider constructions with two separate species, F and G, in order to create corresponding generating series as such ...

F+G	$\longrightarrow (F+G)(x) = F(x) + G(x)$	
F·G	$\longrightarrow (F \cdot G)(x) = F(x) \cdot G(x)$	Noze: These identifies are created in such a way that
FoG	$(F \circ G)(x) = F(G(x))$	displaying their structures are only dependent on displaying F and G's structures individually
F'		CITE CITE SUCCEMESTING 1410101

Thus, this must be done with the following formulae, replicating that of the exponential ones seen earlier...

$$\bigcirc \left[(F + G)[n] \longrightarrow F[n] + G[n] \right]$$

$$\bigcirc \left[(F \cdot G)[n] \longrightarrow \sum_{i \neq j \neq n} \frac{n!}{i + j!} [F[i]] [G[j]]$$

$$\bigcirc \left[(F \circ G)[n] \longrightarrow \sum_{j \neq 0} \sum_{i \neq j \neq n} \frac{1}{j!} (n_i n_{i-1} n_j) [F[i]] \frac{1}{j!} [f[in]]$$

$$\bigcirc \left[F'[n] \longrightarrow F[n+1] \right]$$

There could exist many condidates for these definitions, but there are very natural solutions compatible.

These notes will focus on (1) and (2), being addition/subtraction and multiplication / division

As an example, let us consider two species. () G² = species of simple, connected graphs (2) G² = species of disconnected graphs

We know that a graph must either be connected or disconnected. Therefore, for any finite set U.

Definition 1' The sum of two species,
$$F + G$$

For any finite set U:
 $(F+G)[U] = F[U] + G[U]$
And trans at along a bijection of $O : U \rightarrow V$ on $F+G$ is
 $(F+G)[O](s) = \begin{cases} F[\sigma](s) & \text{if } s \in F[U] \\ G[\sigma](s) & \text{if } s \in G[U] \end{cases}$
 $f = \begin{cases} F + G \\ F + G \end{cases}$

It is important to note that, where F structures also exist in G (i.e. $F[U] \cap F[G] \neq 0$) one must form distinct copies of F[U] and G[U] first...

- Addition is associative and commutative, and the empty species O is a neutral element...

ie F+0=0+F=F

$\alpha) e^{x} = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \cdots + \frac{x^n}{n!} + \cdots$	Canonical de composition
b) $\frac{1}{1-x} = 1 + x + x^2 + \cdots + x^2 + \cdots$	$F_n[U] = \begin{cases} F[U], & if V = n \\ \phi, & otherwise \end{cases}$
$C) e_{\lambda} \rho \left(\mathcal{I}_{1} + \frac{\mathcal{X}_{2}}{2} + \cdots \right) \approx \sum_{n \geq 0} \sum_{\substack{k_{1} \neq k_{2} \neq k_{3} \neq k_{3$	where Fn is restricted to condimit P

The finite sum F+F+...+F, with n copies of F can be denoted by nF. This clearly follows the some rule set:

a)
$$(nF)(x) = nF(x)$$

b) $(nF)(x) = nF(x)$

c) ZnF = NZF

In the instance where F-1...

$$n: [+] + [+] + ... +] = n \cdot [$$

And on the set U = O, has no structure.

Let us consider three equalities based on this definition ...

a)
$$(\overline{F} \cdot G)(x) = F(x) G(x)$$

b) $(\overline{F} \cdot G)(x) = \widehat{F}(x) \widehat{G}(x)$
c) $Z_{F_{1}G}(x_{1}, x_{2}, x_{3}, ...) = Z_{F}(x_{1}, x_{2}, x_{3}, ...) Z_{G}(x_{1}, x_{2}, x_{3}, ...)$

These must hold the for the following combinatorial equations based on the example prior ...

a)
$$\frac{1}{1-x} = e^{x} \operatorname{Der}(x)$$

b) $\prod_{k \ge 1} \frac{1}{1-x^{k}} = \frac{1}{1-x} \operatorname{Der}(x)$
c) $\prod_{k \ge 1} \frac{1}{1-x_{k}} = e^{x} p\left(x_{1} + \frac{x_{2}}{2} + \frac{x_{3}}{3} + \cdots\right) Z_{0er}\left(x_{1}, x_{2}, x_{3} \cdots\right)$

We can rearrange these to get expressions for series associated with the Derongement species:

a)
$$Der(x) = \frac{e}{1-x}$$

b)
$$\tilde{Der}(x) = \frac{1}{11}$$

 $\frac{1}{1-x^{k}}$

c)
$$Z_{0y}(x_{1,x}x_{1,...}) = e^{-(x_{1}+\frac{x_{2}}{2}+\frac{2i}{3}+...)} \prod_{k>1} \frac{1}{1-x^{k}}$$

This links to the classical formula... $d_n = n! \left(1 - \frac{1}{1!} + \frac{1}{2!} - \dots + \frac{(-1)^n}{n!}\right)$, which can be used to figure out numbers in fix Der [n, n2...] If we once again consider the finite species F+F+....+F, denoted as nF, is also the equivalent of the product between n and F species...

nF=n.F

Thus, fuller proof for identifing ~ with a species.

A These multiplication rules on be used for other combinatorial definitions...

Recalling the species of subsets of a set, & [U] = {SISEU}, we can achieve the combinatorial equality

 $\infty = E \cdot E$, where $E = e^{x}$

 $\hat{\vartheta}(x) = e^{x}e^{x} - e^{2x}$ $\hat{\vartheta}(x) = \frac{1}{(1-x)^{2}}$

Thus, using the following series for the index series Zo, we obtain immediately;

$Z_{\mathcal{B}}(x_{1}, x_{2}, x_{3}...) = \left(e_{\mathcal{P}}\left(x_{1} + \frac{x_{2}}{2} + \frac{x_{3}}{3} + ...\right)\right)^{2}$

And ledue the expression :

 $fix p[n_1, n_2, ...] = 2^{n_1+m_2+...}$

The species & (K), denoting subsets of eardinality satisfies the combinatorial equality... , where Ex denotes the species of sets of andinality K (Kelements) DIN = EL.E Using this, we can derive the following equalities : a) $\mathcal{D}[k](x) = e^{x} \frac{k!}{k!}$ COMBINATORIAL INTERPRETATION $|\delta^{(k)}(n)| = \binom{n}{k}$ b) $\partial_{\mu}(x) = \frac{x^{\mu}}{x^{-\mu}}$ $C \Big\} \mathcal{Z}_{\mathcal{B}}(\mathcal{K}) \left(x_{i_1} x_{i_2} x_{i_3} , \cdots \right) = e \times p \left(x_{i_1} + \frac{x_{i_2}}{2} + \cdots \right) \times \underbrace{\mathcal{Z}_{\mathcal{B}}(\mathcal{K})}_{\mathcal{B}} \frac{x_{i_1} x_{i_2} x_{i_3} x_{i_3}}{1^n n! 2^n n! 2^n n!}$

Summation Example

Taking the species of non-empty sets, F=E+, re dobain

A ballot structure, having k levels, boks as such ...

Using this, we can define the following
a) Bal^{ck]}(x) =
$$(x^{-1})^{k}$$

b) Bal^{ck]}(x) = $(\frac{3c}{1-x})^{k}$
c) ZBal^{cw}(x₁, x₂...) = $(e_{\lambda}p(x_{1} + \frac{x^{2}}{2} + \frac{x_{3}}{3} + ...)^{-1})^{k}$

Since this is summable,

$$B_{\alpha}I = \underset{k \geq 0}{\underline{\xi}} B_{\alpha}I^{\alpha} = \underset{k \geq 0}{\underline{\xi}} (E_{+})^{k}$$

This summation thus can be represented in the 3 cases as...

a)
$$B_{al}(x) = \frac{1}{2 - e^{x}}$$

b) $B_{al}(x) = \frac{1 - x}{1 - 2x}$
c) $Z_{B_{al}}(x_{11}x_{212}) = \frac{1}{2 - e^{x}p}(x_{11} + \frac{x_{12}}{2} + \frac{x_{13}}{3x})$