Addition and Multiplication of Species
Bergeron - Chapter 1.3
$28^{\text {th }}$ September 2022 Week 2

Undedgadoate Serines I Nathan Roghavan
1.3.1 - Introduction

Given that we now know about species, we must consider the fact that we can perform several operations on them. This is known as combinatorial algebra.
(1) Allows us to construct construct altunde species
(2) Allows us to analyse alternate species
(3) Allows us to create associated series

We know that, given two power series of exponential type:

$$
\underbrace{f(x)=\sum_{n=0}^{\infty} f_{n} \frac{x^{n}}{n!}} \underbrace{}_{h(x)=\sum_{n=0}^{\infty} h_{n} \frac{h^{n}}{n!} g_{n} \frac{x^{n}}{n!}} \text { is the general coefficient, } h_{n}
$$

This is constructed from f and g as follows...

$$
\begin{aligned}
& h=f+g \rightarrow h_{n}=f_{n}+g_{n} \\
& h=f \cdot g \rightarrow h_{n}=\sum_{i+j=n}^{\infty} \frac{n \cdot}{i!j!} f_{i} g_{i} \\
& h=f^{\prime} \rightarrow h_{n}=f_{n+1}
\end{aligned}
$$

we know these - they have been derived prior. as they consider two species of the same structure

Now, however, we must consider constanctions with two seperate species, F and G, in order to create corresponding generating series as such...

$$
\begin{aligned}
F+G & \longrightarrow(F+G)(x)=F(x)+G(x) \\
F \cdot G & \longrightarrow(F \cdot G)(x)=F(x) \cdot G(x) \\
F \cdot G & \longrightarrow(F \circ G)(x)=F(G(x)) \\
F^{\prime} & \longrightarrow F^{\prime}(x) \\
& \longrightarrow \frac{d}{d x} F(x)
\end{aligned}
$$

Note: These identities are created in such a way that displaying their structures are only dependent on displaying F and G 's stuctrees individually

Thus, this must be done with the following formulae, replicating that of the exponential ones seen earlier...
(1) $|(F+G)[n]| \longrightarrow|F[n]|+|G[n]|$
(2) $|(F, G)[n]| \longrightarrow \sum_{i+j j}^{\infty} \frac{n!}{i!j!}|F[i]||G[j]|$

(4) $\left|F^{\prime}[n]\right| \longrightarrow|F[n+1]|$

There could exist many candidates for these definitions, but thee ae very nature solvitios compatible.
These notes will focus on (1) and (2), being addition / subtraction and multiplication/division
$1 \cdot 3 \cdot 2$ - Sum ot Species of Stenctures

As an example, let us consider two species:
(1) $G^{c}=$ species of simple, connected graphs
(2) $G^{d}=$ species of disconnected graphs

We know that a graph must either be connected or disconnected. Therefore, for any finite set U :

$$
G[v]=G^{c}[v]+G^{d}[v]
$$

and thus...

$$
G=G^{c}+G^{v} \rightarrow \text { prototype for general definition of adding species }
$$

Definition 1: The sum of two species, $F+G$
For any finite set U :

$$
(F+G)[v]=F[v]+G[v]
$$

And tans ort along a bijection of $\sigma: U \rightarrow V$ on $F+G$ is

$$
(F+G)[\sigma](s)= \begin{cases}F[\sigma](s) & \text { if } s \in F[U] \\ G[\sigma](s) & \text { if } s \in G[v]\end{cases}
$$

ie

It is important to note that, whee F structures also exist in G (ie $F[U] \cap F[G] \neq 0$) one must form distinct copies of $F[U]$ and $G[u]$ first..
(was foclois ne grouped) (posit mater odder)

- Addition is associative and commutatire, and the empty species 0 is a neutral element...

$$
\text { ie } F+0=0+F=F
$$

To show this, let us consider 3 statements and examples:
a) $(F+G)(x)=F(x)+G(x) \longrightarrow e^{x}=\cosh (x)+\sinh (x)$
b) $(F+G)(x)=\tilde{F}(x)+\tilde{G}(x) \longrightarrow \frac{1}{1-x}=\frac{1}{1-x^{2}}+\frac{x}{1-x^{2}}$
c) $Z_{F+G}=Z_{F}+Z_{G} \longrightarrow \exp \left(x_{1}+\frac{x_{2}}{2}+\frac{x_{3}}{3}+\ldots\right)=e^{\left(\frac{x_{2}}{2}+\frac{x_{4}}{4}+\cdots\right)}\left(\cosh \left(x_{1}+\frac{x^{3}}{3}+\cdots\right)\right)+\sinh \left(x_{1}+\frac{x_{3}}{3}+\cdots\right)$
considering $E=E_{\text {even }}+E_{\text {ord }}$ whee: $\begin{aligned} & \text { Even is set containing an even number } \quad \text { od is set containgy an odd number } \quad \text { ever } \rightarrow f(x) \cdot f(-x)\end{aligned}$

Definition 2: The sum of a family of species $\left(F_{i}\right)_{i \in I}$
A family of species is summable for any finite set, $U_{\text {, }}$ if $F_{i}[u]=\varnothing$, except for a finite number of indicies $i \in I$
This is defined as follows, where $\sigma: U \rightarrow V$ is a bijection and $(s, i) \in\left(\sum_{i \in I} F_{i}\right)[U]$
a) $\left(\sum_{i=I} F_{i}\right)[U]=\sum_{i=I} F_{i}[U]=\bigcup_{i \in I} F_{i}[U] \times\{i\}$
b) $\left(\sum_{i=I} F_{i}\right)[\sigma](s, i)=(F[\sigma](s), i)$

In the same way as previously, let us show this with 3 examples:
a) $\left(\sum_{i \in I} F_{i}\right)(x)=\sum_{i \in I} F_{i}(x)$
b) $\left(\sum_{i \in I} F_{i}\right)(x)=\sum_{i \in I} \tilde{F}_{i}(x)$
c) $Z_{\left(\varepsilon_{i \in I} F_{i}\right)}=\sum_{i \in I} Z_{f_{i}}$

Using Canonical decomposition, that being each species gives rise to a finite, countable family of species which sum to the original, we con reflect the examples with the identities:
a) $e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}+\cdots$
b) $\frac{1}{1-x}=1+x+x^{2}+\cdots+x^{n}+\cdots$

Canonical decomposition

$$
F_{n}[U]=\left\{\begin{array}{l}
F[U], \text { if }|U|=n \\
\phi, \text { otherwise }
\end{array}\right.
$$

where F_{n} is restricted to coordination ρ

Now, looking at some actual examples...
The finite sum $F+F+\ldots+F$, with n copies of F can be denoted by $n F$. This clearly follows the sarre rule set:
a) $(n F)(x)=n F(x)$
b) $(\widetilde{\cap F})(x)=\tilde{\tilde{F}}(x)$
c) $Z_{n F}=\cap Z_{F}$

In the instance where $F=1 \ldots$

$$
n=\underbrace{1+1+1+\cdots+1}_{n}=n \cdot 1
$$

And on the set $U=0$, has no stuctur.
$1 \cdot 3 \cdot 3$ - Product of Species of Structures

Let us consider the example of the following permutation:

A set of fixed points

A derangenest of remaining elements (not in a loop)

Within this, any. permutation is clearly comparable with one another
Thus, the species of permutations, S, is the product of the species, E, of sets with the species Der of derongements, forming:

$$
S=E-\operatorname{Der} \varepsilon^{\text {no cement in its }} \text { orgies portion }
$$

This is a typical example of where multiplication of species is necessary, thaws we must define it:
Definition 3: The product of two species, $F . G$, for any finite set, U, can be denoted as $\sum_{\left(0, v_{2}\right)} F\left[U_{1}\right] \times G\left[U_{2}\right]$
This definition comes into rise when we define characteristics of an $(F \cdot G)$ series on the set U :
The result is an odored pair, $s=(f, g)$ whee...
a) f is a F-structure (from F species) on a subset $U_{1} \subseteq U$
b) g is a G-stacte (from G series) on a subset $V_{2} \subseteq U$
c) $\left(U_{1}, U_{2}\right)$ make up U, where $U_{1} \cup U_{2}=U$ and $U_{1} \cap U_{2}=\varnothing$

And tons ort along a bijection of $\sigma: U \rightarrow V$ on $F \cdot G$ for each $S=(f, g)$ is:

$$
(F \cdot G)[\sigma](s)=\left(F\left[\sigma_{1}\right](f), G\left[\sigma_{2}\right](g)\right)
$$

with σ repecesering v_{1} and U_{2} split
This can be represented more easily by diagrams...

Multiplication Rules

- Associative and commutive up to isomorphism
- 1 is the neutral element, O is the absorbing one

$$
\rightarrow 1 \cdot F=F \cdot 1=F \quad \Delta F \cdot O=0 \cdot F=0
$$

- It is distributive ie e $F(F+G)$

Let us consider three equalities based on this definition...
a) $(F \cdot G)(x)=F(x) G(x)$
b) $\widetilde{(F \cdot G)}(x)=\tilde{F}(x) \tilde{G}(x)$
c) $Z_{F+G}\left(x_{1}, x_{2}, x_{3}, \ldots\right)=Z_{F}\left(x_{1}, x_{2}, x_{3}, \ldots\right) Z_{G}\left(x_{1}, x_{2}, x_{3}, \ldots\right)$

These must hold time for the following combinatorial equations based on the example prior...
a) $\frac{1}{1-x}=e^{x} \operatorname{Der}(x)$
b) $\prod_{k \geqslant 1} \frac{1}{1-x^{k}}=\frac{1}{1-x} \tilde{\operatorname{Der}(x)}$
c) $\prod_{k \geqslant 1} \frac{1}{1-x_{k}}=\exp \left(x_{1}+\frac{x_{2}}{2}+\frac{x_{3}}{3}+\ldots\right) z_{o r}\left(x_{1}, x_{2}, x_{3} \ldots\right)$

We con rearrange these to get expressions for series associated with the Derangement species:
a) $\operatorname{Der}(x)=\frac{e^{-x}}{1-x}$
b) $\tilde{\operatorname{Der}}(x)=\prod_{k \geqslant 2} \frac{1}{1-x^{k}}$
c) $Z_{D e r}\left(x_{1}, x 2, \ldots\right)=e^{-\left(x_{1}+\frac{x 2}{2}+\frac{23}{3}+\ldots\right)} \prod_{k \geqslant 1} \frac{1}{1-x^{k}}$

This links to the classical formula...
$\partial_{n}=n!\left(1-\frac{1}{1!}+\frac{1}{2!}-\ldots+\frac{(-1)^{n}}{n!}\right)$, which can be used to figure out numbers in fix $\operatorname{Der}\left[n_{1}, n_{l} \ldots\right]$

If we once again consider the finite species $F+F+\ldots+F$, denoted as $\cap F$, is also the equivalent of the product between \cap and F specks...

$$
n F=n \cdot F
$$

Thus, fo ter proof for identifying n with a species.

* These multiplication rules can be used for other combinatorial definitions...

Recalling the species of subsets of a set, $8[0]=\{s \mid s \subseteq u\}$, we con achieve the combinatorid equality

$$
\gamma=E \cdot E \quad \text {, whee } E=e^{x}
$$

$$
\begin{aligned}
\therefore \quad f(x) & =e^{x} e^{x}-e^{2 x} \\
\tilde{\gamma}(x) & =\frac{1}{(1-x)^{2}}
\end{aligned}
$$

Thus, using the following series for the index series Z_{θ}, we obtain immediately:

$$
Z_{p}\left(x_{1}, x_{2}, x_{3} \ldots\right)=\left(\exp \left(x_{1}+\frac{x_{2}}{2}+\frac{x_{3}}{3}+\ldots\right)\right)^{2}
$$

And deduce the expression:

$$
\text { fix }\left[n_{1}, n_{2}, \cdots\right]=2^{n_{1}+m_{2}+\cdots}
$$

The species $\gamma^{[k]}$, denting subsets of cardinality satisfies te combinatorial equdit...
$8[k]=E_{c} \cdot E$, whee E_{k} denotes be species of sets of cardinality k (kelenctits)
Using this, we car derive the following equalities:
a) $\gamma[k](x)=e^{x} \frac{k^{x}}{k!}$
b) $\gamma^{(k)}(x)=\frac{x^{k}}{1-x}$
c) $z_{p[k]}\left(x_{1}, x_{2}, x_{3}, \cdots\right)=\exp \left(x_{1}+\frac{x_{2}}{2}+\cdots\right) \times \sum_{n, 2 n_{1}+\ldots k k} \frac{x_{1}^{n_{1}^{\prime \prime} x_{2} n^{n} x_{2}^{n_{3}}}}{n_{n}^{n}, 2^{2 n} n_{2}!\ldots}$

Using this binomid equality and the following combinatrid equal its

$$
\sum_{k \geqslant 0} \gamma^{(k)}=\gamma=E^{2}
$$

We con derive be identity:

$$
\sum_{k \geqslant 0}\binom{n}{k}=2^{n}
$$

Definition 2: Trough associativity, we can apply rultipliation rules to finite families F_{i} of species Where teproduct of $\underbrace{F \cdot F \cdot F}_{k}$ is denoted F^{k}
To do this. the product must be defined as follows...

$$
\left(F_{1} \cdot F_{2} \cdot F_{3}\right)[v]=\sum_{v_{1}+v_{2}+\ldots, v} F_{1}\left[U_{1}\right] \times F_{2}\left[v_{2}\right] \times \ldots \times F_{k}\left[U_{k}\right]
$$

This is essortialy doing the sane as simple multiplication, with the sum taken over all families (U_{i}) between $i=1$ and $i=k \rightarrow$ The union of these is U.

The transport along a bijection, $\sigma: U \rightarrow V$ is defined in the following component breakdown

$$
\left(F_{1} \cdot F_{2} \ldots F_{k}\right)[\sigma]\left(\left(s_{i}\right)_{1 \leqslant k<i}\right)=\left(F_{i}\left[\sigma_{i}\right]\left(s_{i}\right)\right)_{1 \leqslant i \leqslant k} \quad \text { For } s_{i \in F_{i}\left(v_{i}\right), i=1, \ldots, k}
$$

Definition 3: The product of an infinite family of species con be defied given the family is nultipliable
egg. Consider the species L of linear orderings and its restriction L_{k}, to sets length k
a) $L_{k}=X^{k} \quad k=0,1,2, \ldots$
b) $L=1+x L=\sum_{k \geqslant 0} x^{k}=\prod_{i \% 0}\left(1+x^{2 i}\right)$

Summation Example
Taking the species of non-empty sets, $F=E_{+}$, we dotain

$$
\text { Bal }^{[k]}=\left(E_{+}\right)^{k} \text {, which is summable }
$$

A ballot stanctre, having k levels, boks as such..,

Using this, we con define the following
a) $\mathrm{Bal}^{[k]}(x)=\left(e^{x}-1\right)^{k}$
b) $\widetilde{B a l}^{[k]}(x)=\left(\frac{x}{1-x}\right)^{k}$
c) $Z_{B a 1}^{(2)}\left(x_{1}, x_{2} \cdots\right)=\left(\exp \left(x_{1}+\frac{x^{2}}{2}+\frac{x_{3}}{3}+\cdots\right)-1\right)^{k}$

Since this is summable:

$$
B_{a l}=\sum_{k \geqslant 0} B_{a l}{ }^{[k]}=\sum_{k<0}\left(E_{t}\right)^{k}
$$

This summation thus con be represented in tee 3 cases as...
a) $\operatorname{BaI}(x)=\frac{1}{2-e^{x}}$
b) $\operatorname{Bal}(x)=\frac{1-x}{1-2 x}$
c) $Z_{\operatorname{san}\left(x_{1}, x_{2} \cdots\right)}=\frac{1}{2-\exp \left(x_{1}+\frac{x 2}{2}+\frac{x_{1}}{3}+\ldots\right)}$

