2.3 The Calculus of Formal Exponential
Generating Functions

In this section we will investigate the analogues of the rules in the preceding
section, which applied to ordinary power series, in the case of exponential

generating functions.

Definition 2.13 The symbol f egf {a,}5 means that the series f is the

—
exponential generating function of the sequence {an}§°, i.e., that

L,
f - § _".I'".
n!
n>0

Let's ask the same questions as in the previous section by supposing
that f egf {a,}5°. Then what is the egf of the sequence {@n41}5°7 We

claim that the answer is f’. because
o0 P~
f Z na,z" !
n!
n=1
@, n—l
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n=1
Ay g1+ z"

n!
n=0

which is exactly equivalent to the assertion that f’ g&f {an+1}8°.

Hence the situation with exponential generating functions is just a trifle
simpler, in this respect, than the corresponding situation for ordinary power
series. Displacement of the subscript by 1 unit in a sequence is equivalent
to action of the operator D on the generating function, as opposed to the
operator (f(z) — f(0))/z, in the case of opsgl’s. Therefore we have, by

induction:

Rule 17 If f eqf {an}i then, for integer h >0,
{ansn}” egf D"J. (2.13)

The reader is invited to compare this Rule 1 with Rule 1 on page 36.




strength of this point of view in problem

Example 2.14 To get a hint of the
Now, with just a glance

solving, let’s find the egl of the Fibonacci mimbers.
at the recurrence
El+'.’ - El+1 + El (" Z O)-

1’ that the egf satisfies the differential equiation

=it

in the solution for the ops version of this prob-
at did not involve any derivatives.
1sion in or-

we see from Rule

At the corresponding stage
lem, we had an equation to solve for f th
We solved it and then had to deal with a partial fraction expal
der to find an exact formula for the Fibonacci numbers. In this version, we

solve the differential equation, getting

fo) = cre™F v e (e =12 V5)/2)

where ¢; and ¢z are to be determined by the initial conditions (which
haven’t been used yet!) f(0) = 0; f'(0) = L. After applying these two
conditions, we find that ¢; = 1/ V5 and ¢; = —1/v/5, from which the egf
of the Fibonacci sequence is

f= (e - %) [V5. (2.14)

Now it's easier to get the exact formula, because no partial fraction expan-
sion is necessary. Just apply the operator [z"/ n!] to both sides of (2.14)
and the formula E,l-l—)- materializes.

To compare, then, the ops method in this case involves an casier func-
tional equation to solve for the generating function: it’s algebraic instead
of differential. The egf method involves an easier trip from there to the
exact formula, because the partial fraction expansion is unnecessary. Both
methods work, which is, after all, the primary desideratumn.
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Rule 2" If f egf {a,}°. and P is a given polynomial, then
P(zD)f g&,f {P(n)an}n>o0-

Next let’s think about the analogue of Rule 3, i.e., about what happens
to sequences when their egf’s are multiplied together. Precisely, suppose
fegf {an}s and g egf {ba}se. The question is, of what sequence is fg

— —p
the egf?

This turns out to have a pretty, and uncommonly useful, answer. To
find it, we carry out the multiplication fg and try to identify the coefficient
of z" /n!. We obtain

il &
T h)-
The coefficient of z" /n! is evidently s

nla, by
\:n'}(f) 1'4'\)
( “r n—

Rule 3’ If f iﬂ: {a,}3¢ and g egf {b,}i°. then fg generates the sequence

{Z C)“r’f‘n‘r}:ﬂ{ (2.15)
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We state this result as:
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formula for the Bell num-

Example 2.15 In (1.44) we found the recurrence
bers. which we may write in the form

b+ 1) =Y (1\) o) (02000 =1

k

(2.17)

We will now apply the methods of this section to find the egf of the Bell

numbers. This will give an independent proof of Theorem 1.5, since (2.17)
can be derived directly, as described in Exercise 7 of Chapter 1.

Let B be the required egf. The egf of the left side of (2.17) is, by Rule
I/ B. If we compare the right side of (2.17) with (2.15) we see that the
on the right of (2.17) is the product of B and the egf of

egf of the sequence
all 1’s. This latter egf is evidently €*, and

the sequence whose entries are
so we have

B =¢*B
as the equation that we must solve in order to find the unknown egf. But
obviously the solution is B = cexp(e®), and since B(0) = 1, we must
have ¢ = e~1, from which B(z) = exp(€” — 1), completing the re-proof of

Theorem L.5.






Example 2.16 In order to highlight the strengths of ordinary vs. exponen-
tial generating functions, let’s do a problem where the form of the convolu-
tion of sequences that occurs suggests the ops form of generating function.
We will count the ways of arranging n pairs of parentheses, each pair con-
sisting of a left and a right parenthesis, into a legal string. A legal string
of parentheses is one with the property that as we scan the string from left
to right we never will have seen more right parentheses than left.
There are exactly 5 legal stringsof 3 pairs of parentheses, namely,

-

(O (00 0)0% 0001 0(0) (2.18)

Let f(n) be the number of legal strings of n pairs of parentheses (f(0) = 1),
for n > 0.

With each legal string we associate a unique nonnegative integer k, as
follows: as we scan the string from left to right, certainly after we have
seen all n pairs of parentheses, the number of lefts will equal the number of
rights. However, these two numbers may be equal even earlier than that.
In the last string in (2.18), for instance, after just & = 1 pairs have been
scanned, we find that all parentheses that have been opened have also been
closed. In general, for any legal string, the integer k that we associate with
it is the smallest positive integer such that the first 2k characters of the
string do themselves form a legal string. The values of k that are associated
with each of the strings in (2.3.6) are 3, 3, 2, 1, 1. We will say that a legal
string of 2n parentheses is primitive if it has k = n. The first two strings
in (2.18) are primitive.

How many legal strings of 2n parentheses will have a given value of k?
Let w be such a string. The first 2k characters of w are a primitive string,
and the last 2n — 2k characters of w are an arbitrary legal string. There
are exactly f(n— k) ways to choose the last 2n — 2k characters, but in how
many ways can we choose the first 2k? That is, how many pnmmue strings

of length 2k are there?
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Lemma 2.17 If k > 1, g(k) is the number of primitive legal strings, and
f(k) is the number of all legal strings of 2k parentheses, then

g(k) = f(k — 1).

Proof: Given any legal string of k—1 pairs of parentheses, make a primitive
one of length 2k by adding an initial left parenthesis and a terminal right
parenthesis to it. Conversely, given a primitive string of length 2k, if its
initial left and terminal right parentheses are deleted, what remains is an
arbitrary legal string of length 2k — 2. Hence there are as many primitive
strings of length 2k as there are all legal strings of length 2k — 2 1.6 thel{fje

are f(k — 1) of them.

Hence the number of legal strings of length 2n that have a given value
of k is f(k —1)f(n — k). Since every legal string has a unique value of £,

it must be that

)= fk-1)f(n—k) (#0;f(0)=1) (219
&

with the convention that f = 0 at all negative arguments.

The recurrence easily allows us to compute the values 1,1,2,5,14,. ..
Now let’s find a generating function for these numbers. The clue as to
which kind of generating function is appropriate comes from the form of
the recurrence (2.19). The sum on the right is obviously related to the
coefficients of the product of two ordinary power series generating functions,
so-that is the species that we will use.

Let F =Y, f(k)z* be the opsgf of {f(n)}n>0. Then the right side of
(2.19) is almost the coefficient of z" in the series F'2. What is it ezactly?

It is the coefficient of z™ in the product of the series F' and the series
S f(k — 1)zF. How is this latter series related to F? It is just zF.
Therefore, if we multiply the right side of (2.19) by 2" and sum over n # 0,
we get 22, If we multiply the left side by 2™ and sum over n # 0, we get
F — 1. Therefore our unknown generating function satisfies the equation

F(z) - 1=zF(z)% (2.20)

Here we have a new wrinkle. We are accustomed to going from recur-
rence relations on a sequence to functional equations that have to be solved
for generating functions. In previous examples, those functional equations
have either been simple linear equations or differential equations. In (2.20)




we have a generating function that satisfies a quadratic equation. When
we solve it, we get
1++41—4x

2x '

Which sign do we want? If we choose the ‘4 then the numerator will
approach 2 as x — 0, so the ratio will become infinite at 0. But our
generating function takes the value 1 at 0, so that can’t be right. 1f we
choose the ‘—’ sign, then a dose of I Hospital's rule shows that we will
indeed have F(0) = 1. Hence our generating function is

P Ptk e} (2.21)
2x
This is surely one of the most celebrated generatin
natorics. The numbers f(n) are the Catalan numbers, and in (2.42) there
is an explicit formula for them. For the moment, we declare that this ex-
ercise. which was intended to show how the form of
the choice of generating function, is over.
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we have g geucrating function that satisfies a quadratic cquation. When

We solve it, we got
1+1-4zx
Pla) s =22 17%
2z
Which sign do we want? If we choose the *+' then the numerator will
approach 2 as z — (), so the ratio will become infinite at 0. But our
generating function takes the value 1 at 0, so that can’t be right. If we
choose the *—° sign, then a dose of L’Hospital's rule shows that we will
indeed have (0) = 1. Hence our generating function is
Flz)=12Vi-& (2.21)
2z
This is surely one of the most celebrated generating functions in combj-
natorics. The numbers f (n) are the Catalan numbers, and in (2.42) there
Is an explicit formula for them. For the moment, we declare that this ex-
ercise, which was intended to show how the form of a recurrence can guide
the choice of generating function, is over.
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Example 2.26 For fixed n, find

N A
M = ;( 1) (:;k)'
We could do this one if we knew the function
L n\ 3k
f(z) = ; 3 )e
because An = f(~1). But f(z) picks out every third term from the series
F(z) = (1+ )", and so
f(z) = (F(x) + Flwix) + F(w2z))/3
={1+z)"+(1+ W) + (L+waz)"} /3.

Thus the numbers that we are asked to find are, for n >0,
)\,. = f(—l) - {(1 — w‘l)" + (1 - w"_)_)"}/:;

{(3 - ﬁi)" " (3+ fh)}
5 —5 (2.31)

= 2~3("/2’“cos(’—167—r).

| -

S
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The first few values of the {M}n>0 are 1. 1, 1, 0, -3, -9, =18, ....

To complete this example we want to prove the helpful property (2.28)
of the cube roots of unity. But for every r > L. the rth roots of unity do
the same sort of thing, namely

\ 1 ifr\m
- v = 2.32
r j,;l . {0 otherwise. (2.32)

Indeed, the left side is
1 ¢

1
(‘('."m)u)/r
’
T
0

j=
which is a finite geometric scries whose sum is easy to find and is as stated
in (2.32). So, with more or less difficulty, it is always possible to select a
subset of the terms of a convergent series in which the exponents form an
arithmetic progression. See Exercise 25.
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i n>0
1 P
= T 2.34
l()g 1 _— ”gl . ( )
e J—. (2.35)
n>0 i
(8] v k
(142 =3 ()= (2.38)
k
1 n+k\ , _
(1= z)k+ Z ( x )L (2.39)
1 1-I—4z\* 2n+k\ o i1
V1-— :l.r( 2x ) N ; ( n )‘r (247)
,\.
1-VI=h Kntk-1)t
2 ) - Z “An Rl C (k>1) (2.48)

n>0

1 P 1 2n\
Z(l Sl Zn+l<n>£

=1+ + 222 + 5z° + 1421 + 4225
+1322% + 42927 + 143028
+ 486227 + - -- (2.42)

=T (i)

k

=1+ 2z + 62 + 202% + 702" + 252.0% + 92448
+ 343227 + 128702® + 486202 + - - - (2.43)




