A quantitative description of Hawking radiation.

Drouot Alexis

Les Houches, May 22nd 2018
Quantum field theory

- Particles are represented by wave functions ψ.
Quantum field theory

- Particles are represented by wave functions ψ.
- Quantum fields are wave function functionals: $\mathbb{E} : \psi \mapsto \mathbb{E}(\psi)$.

If the particle dynamics is given by a propagator $U(t,0)$, i.e. $\psi_t = U(t,0)\psi_0$ then the state dynamics must satisfy:

$$\mathbb{E}_t(\psi_t) = \mathbb{E}_0(\psi_0) \Leftrightarrow \mathbb{E}_t(U(0,t)\psi_t) = \mathbb{E}_0(\psi_0) \Leftrightarrow \mathbb{E}_t(\psi_t) = \mathbb{E}_0(U(0,t)\psi_t).$$

If you want to study the dynamics of quantum fields, you must study the backward propagation given by $U(0,t)$.

This reduces the analysis of quantum fields to (a) a PDE problem and (b) a (possibly difficult) computation.
Quantum field theory

- Particles are represented by wave functions ψ.
- Quantum fields are wave function functionals: $\mathbb{E} : \psi \mapsto \mathbb{E}(\psi)$.
- If the particle dynamics is given by a propagator $U(t, 0)$, i.e.

 $$\psi_t = U(t, 0)\psi_0$$

 then the state dynamics must satisfy

 $$\mathbb{E}_t(\psi_t) = \mathbb{E}_0(\psi_0) \iff \mathbb{E}_t(U(t, 0)\psi_0) = \mathbb{E}_0(\psi_0)$$

 $$\iff \mathbb{E}_t(\psi_t) = \mathbb{E}_0(U(0, t)\psi_t).$$

If you want to study the dynamics of quantum fields, you must study the backward propagation given by $U(0, t)$.
Quantum field theory

- Particles are represented by wave functions ψ.
- Quantum fields are wave function functionals: $E : \psi \mapsto E(\psi)$.
- If the particle dynamics is given by a propagator $U(t, 0)$, i.e.
 \[\psi_t = U(t, 0)\psi_0 \]

 then the state dynamics must satisfy

 \[E_t(\psi_t) = E_0(\psi_0) \iff E_t(U(t, 0)\psi_0) = E_0(\psi_0) \]

 \[\iff E_t(\psi_t) = E_0(U(0, t)\psi_t). \]

- If you want to study the dynamics of quantum fields, you must study the backward propagation given by $U(0, t)$.
Quantum field theory

- Particles are represented by wave functions ψ.
- Quantum fields are wave function functionals: $\mathbb{E} : \psi \mapsto \mathbb{E}(\psi)$.
- If the particle dynamics is given by a propagator $U(t,0)$, i.e.

$$\psi_t = U(t,0)\psi_0$$

then the state dynamics must satisfy

$$\mathbb{E}_t(\psi_t) = \mathbb{E}_0(\psi_0) \iff \mathbb{E}_t(U(t,0)\psi_0) = \mathbb{E}_0(\psi_0)$$

$$\iff \mathbb{E}_t(\psi_t) = \mathbb{E}_0(U(0, t)\psi_t).$$

- If you want to study the dynamics of quantum fields, you must study the backward propagation given by $U(0, t)$.
- This reduces the analysis of quantum fields to (a) a PDE problem and (b) a (possibly difficult) computation.
The Schwarzschild–de Sitter space

- It describes spherically symmetric black holes with positive cosmological constant.
The Schwarzschild–de Sitter space

- It describes spherically symmetric black holes with positive cosmological constant.
- It is the manifold $\mathbb{R} \times (r_-, r_+) \times S^2$, with Lorentzian metric

\[
g = \frac{\Delta_r}{r^2} dt^2 - \frac{r^2}{\Delta_r} dr^2 - r^2 d\sigma_{S^2}(\omega)
\]

\[
\Delta_r = r^2 \left(1 - \frac{\Lambda r^2}{3} \right) - 2M_0 r, \quad \Lambda, M > 0
\]

\[
\Delta_r(r_{\pm}) = 0, \quad \Delta_r > 0 \text{ on } (r_-, r_+).
\]
The Schwarzschild–de Sitter space

- It describes spherically symmetric black holes with positive cosmological constant.
- It is the manifold \(\mathbb{R} \times (r_-, r_+) \times S^2 \), with Lorentzian metric

\[
g = \frac{\Delta_r}{r^2} dt^2 - \frac{r^2}{\Delta_r} dr^2 - r^2 d\sigma_{S^2}(\omega)
\]

\[
\Delta_r = r^2 \left(1 - \frac{\Lambda r^2}{3}\right) - 2M_0 r, \quad \Lambda, M > 0
\]

\[
\Delta_r(r_\pm) = 0, \quad \Delta_r > 0 \text{ on } (r_-, r_+).
\]

- This metric can be extended beyond the horizons \(r = r_+ \) and \(r = r_- \).
The Schwarzschild–de Sitter space

▶ It describes spherically symmetric black holes with positive cosmological constant.

▶ It is the manifold $\mathbb{R} \times (r_-, r_+ \times S^2$, with Lorentzian metric

$$g = \frac{\Delta_r}{r^2}dt^2 - \frac{r^2}{\Delta_r}dr^2 - r^2d\sigma_{S^2}(\omega)$$

$$\Delta_r = r^2 \left(1 - \frac{\Lambda r^2}{3} \right) - 2M_0 r, \; \Lambda, M > 0$$

$$\Delta_r(r_{\pm}) = 0, \; \Delta_r > 0 \text{ on } (r_-, r_+) .$$

▶ This metric can be extended beyond the horizons $r = r_+$ and $r = r_-$.

▶ The surface gravities of the black hole and cosmological horizons are characteristic parameters given by:

$$\kappa_{\pm} = \frac{|\Delta_r'(r_{\pm})|}{2r_{\pm}^2} .$$
Collapsing star in SdS

We set another system of coordinates S_\ast by (t, x, ω) with

$$\frac{dx}{dr} = \frac{r^2}{\Delta r} \implies g = \frac{\Delta r}{r^2} (dt^2 - dx^2) - r^2 d\sigma_{S^2}(\omega)$$

Radial geodesics propagate along $t \pm x = \text{cte}$ and r_+, r_- get send to $+\infty$ and $-\infty$, respectively.
Collapsing star in SdS

- We set another system of coordinates S_* by (t, x, ω) with

$$\frac{dx}{dr} = \frac{r^2}{\Delta_r} \implies g = \frac{\Delta_r}{r^2} (dt^2 - dx^2) - r^2 d\sigma_{S^2}(\omega)$$

Radial geodesics propagate along $t \pm x = \text{cte}$ and r_+, r_- get send to $+\infty$ and $-\infty$, respectively.

- Massive particles in radial free-fall to the black hole follow curves $(t, x(t), \omega)$ with $x(t) = -t - Ae^{-2\kappa t} + O(e^{-4\kappa t})$.

Collapsing star in SdS

- We set another system of coordinates S_* by (t, x, ω) with

$$\frac{dx}{dr} = \frac{r^2}{\Delta r} \Rightarrow g = \frac{\Delta r}{r^2} (dt^2 - dx^2) - r^2 d\sigma_{S^2}(\omega)$$

Radial geodesics propagate along $t \pm x = \text{cte}$ and r_+, r_- get sent to $+\infty$ and $-\infty$, respectively.

- Massive particles in radial free-fall to the black hole follow curves $(t, x(t), \omega)$ with $x(t) = -t - Ae^{-2\kappa_- t} + O(e^{-4\kappa_- t})$.

- A collapsing star is a timelike submanifold

$$\mathcal{B} = \{(t, x, \omega) : x = z(t)\}$$

where $z(t) = -t - Ae^{-2\kappa_- t} + O(e^{-4\kappa_- t})$ is a smooth decreasing function.
Collapsing star in SdS

- We set another system of coordinates S_* by (t, x, ω) with

$$\frac{dx}{dr} = \frac{r^2}{\Delta r} \Rightarrow g = \frac{\Delta r}{r^2} (dt^2 - dx^2) - r^2 d\sigma_{S^2}(\omega)$$

Radial geodesics propagate along $t \pm x = \text{cte}$ and r_+, r_- get send to $+\infty$ and $-\infty$, respectively.

- Massive particles in radial free-fall to the black hole follow curves $(t, x(t), \omega)$ with $x(t) = -t - A e^{-2\kappa t} + O(e^{-4\kappa t})$.

- A collapsing star is a timelike submanifold

$$\mathcal{B} = \{(t, x, \omega) : x = z(t)\}$$

where $z(t) = -t - A e^{-2\kappa t} + O(e^{-4\kappa t})$ is a smooth decreasing function.

- We want to study quantum fields in this space. We need an evolution equation for particles.
The evolution equation

- We consider spin-0 particles with mass m in the Schwarzschild–de Sitter spacetime. The equation is given by

$$(\Box_g + m^2)u = 0.$$
The evolution equation

We consider spin-0 particles with mass m in the Schwarzschild–de Sitter spacetime. The equation is given by

$$(\Box_g + m^2)u = 0.$$

We put reflecting boundary conditions on the collapsing star. We study the backward propagation starting at time $T \to +\infty$:

$$\begin{cases}
(\Box_g + m^2)u = 0 \\
|u|_B = 0 \\
(u, \partial_t u)(T) = (u_0, u_1).
\end{cases}$$

This is the mathematical basis for Hawking radiation.
The evolution equation

- We consider spin-0 particles with mass m in the Schwarzschild–de Sitter spacetime. The equation is given by

$$-(\Box_g + m^2)u = 0.$$

- We put reflecting boundary conditions on the collapsing star. We study the backward propagation starting at time $T \to +\infty$:

$$\begin{cases}
(\Box_g + m^2)u = 0 \\
u|_B = 0 \\
(u, \partial_t u)(T) = (u_0, u_1).
\end{cases}$$

This is the mathematical basis for Hawking radiation.

- We will need to (a) study asymptotic of $u(t = 0)$ when $T \to +\infty$ and (b) compute a certain functional $E(u(t = 0))$ where E is the vacuum quantum state.
The evolution equation

- We consider spin-0 particles with mass m in the Schwarzschild–de Sitter spacetime. The equation is given by

\[(\Box_g + m^2)u = 0. \]

- We put reflecting boundary conditions on the collapsing star. We study the backward propagation starting at time $T \to +\infty$:

\[
\begin{aligned}
(\Box_g + m^2)u &= 0 \\
\left.u\right|_B &= 0 \\
(u, \partial_t u)(T) &= (u_0, u_1).
\end{aligned}
\]

This is the mathematical basis for Hawking radiation.

- We will need to (a) study asymptotic of $u(t = 0)$ when $T \to +\infty$ and (b) compute a certain functional $E(u(t = 0))$ where E is the vacuum quantum state.

- We will focus only on (a) in this talk.
Asymptotic of scalar fields

Theorem [D '17]

Consider u_0, u_1 smooth with compact support, and u solution of

\[
\begin{cases}
(\Box_g + m^2) u = 0 \\
(u, \partial_t u)(T) = (u_0, u_1) \\
u|_\mathcal{B} = 0.
\end{cases}
\]

There exist scattering fields (see later) u_-, u_+ smooth and exponentially decaying; and $c_0 > 0$ such that for t near 0,

\[
u(0,x,\omega) = r_- r u_-(\frac{1}{\kappa} - \ln(x e^{-\kappa - T})), \omega) + u_+(T-x,\omega) + O(\mathcal{H}^1/2(e^{-c_0 T}).
\]

(κ is the surface gravity of the black-hole.)
Asymptotic of scalar fields

Theorem [D ’17]

Consider u_0, u_1 smooth with compact support, and u solution of

\[
\begin{aligned}
(\Box_g + m^2)u &= 0 \\
(u, \partial_t u)(T) &= (u_0, u_1) \\
|u|_B &= 0.
\end{aligned}
\]

There exist scattering fields (see later) u_-, u_+ smooth and exponentially decaying; and $c_0 > 0$ such that for t near 0,

\[
u(0, x, \omega) = \frac{r_-}{r} u_-(\frac{1}{\kappa_-} \ln \left(\frac{x}{e^{-\kappa_- T}} \right), \omega) + u_+(T - x, \omega) + O_{\mathcal{H}^{1/2}}(e^{-c_0 T}).
\]

($\kappa_-\) is the surface gravity of the black-hole.)
\[u_0, u_1 \]

\[t = T \]

\[\frac{r_-}{r} u_- \left(\frac{1}{\kappa_-} \ln \left(\frac{x}{e^{-\kappa_- T}} \right) \right) \]

\[u_+ (T - x) \]
Comments

- The black hole temperature \(\kappa_-/(2\pi) \) emerges.
The black hole temperature $\kappa_−/(2\pi)$ emerges.

The fields u_- and u_+ are Freidlander’s radiation fields; they do not depend on B.
The black hole temperature $\kappa_-/(2\pi)$ emerges.
The fields u_- and u_+ are Freidlander’s radiation fields; they do not depend on B.
Thus the result gives exponential convergence to equilibrium. The rate c_0 can be computed explicitly: it depends only on κ_-, κ_+ and the first resonance of the K–G equation on the black-hole background.
The Hawking effect

Let $\mathcal{F}^{\mathcal{H},\beta}$ the Bose–Einstein state at temperature $1/\beta$ with respect to a Hamiltonian \mathcal{H}.

Interpretation: at time 0, the quantum state is that of a Bose–Einstein gas with cosmological background temperature $\kappa + \frac{2\pi}{\beta}$.

As time goes, this state splits to two Bose–Einstein states with respect to the asymptotic Hamiltonians \mathcal{H}_x.

The first one sees no change in temperature while the second one acquires the black-hole temperature $\kappa - \frac{2\pi}{\beta}$.
The Hawking effect

- Let $|\mathbb{E}^{\mathbb{H},\beta}\rangle$ the Bose–Einstein state at temperature $1/\beta$ with respect to a Hamiltonian \mathbb{H}.

- Let \mathbb{H}_0 be the black-hole Klein–Gordon Hamiltonian in S_*: the K–G equation takes the form $(\partial_t^2 - \mathbb{H}_0)u = 0$.

Interpretation: at time 0, the quantum state is that of a Bose–Einstein gas with cosmological background temperature $\kappa + \frac{2\pi}{\nu(0)}(u_0, u_1)$.

As time goes, this state splits to two Bose–Einstein states with respect to the asymptotic Hamiltonians \mathbb{D}_x^2.

The first one sees no change in temperature while the second one acquires the black-hole temperature $\kappa - \frac{2\pi}{\nu(0)}(u_0, u_1)$.
The Hawking effect

- Let $E_{\mathcal{H}, \beta}$ the Bose–Einstein state at temperature $1/\beta$ with respect to a Hamiltonian \mathcal{H}.
- Let \mathcal{H}_0 be the black-hole Klein–Gordon Hamiltonian in S_*: the K–G equation takes the form $(\partial_t^2 - \mathcal{H}_0)u = 0$.
- Thanks to the theorem:

$$E_{\mathcal{H}_0, 2\pi/\kappa^+}(U(0, T)(u_0, u_1)) = E_{D_x^2, 2\pi/\kappa^+}(u_+, D_x u_+).E_{D_x^2, 2\pi/\kappa^-}(u_-, D_x u_-).\left(1 + O(e^{-c_0 T})\right).$$
The Hawking effect

- Let $E^{H, \beta}$ the Bose–Einstein state at temperature $1/\beta$ with respect to a Hamiltonian H.
- Let H_0 be the black-hole Klein–Gordon Hamiltonian in S_*: the K–G equation takes the form $(\partial_t^2 - H_0)u = 0$.
- Thanks to the theorem:

$$E^{H_0, 2\pi/\kappa_+}(U(0, T)(u_0, u_1))$$

$$= E^{D_x^2, 2\pi/\kappa_+}(u_+, D_x u_+).E^{D_x^2, 2\pi/\kappa_-}(u_-, D_x u_-).(1 + O \left(e^{-c_0 T}\right)).$$

- Interpretation: at time 0, the quantum state is that of a Bose–Einstein gas with cosmological background temperature $\kappa_+/(2\pi)$.
The Hawking effect

- Let $E^{H,\beta}$ the Bose–Einstein state at temperature $1/\beta$ with respect to a Hamiltonian H.
- Let H_0 be the black-hole Klein–Gordon Hamiltonian in S_*: the K–G equation takes the form $(\partial^2_t - H_0)u = 0$.
- Thanks to the theorem:

$$E^{H_0,2\pi/\kappa_+}(U(0, T)(u_0, u_1)) = E^{D_x^2,2\pi/\kappa_+}(u_+, D_x u_+),E^{D_x^2,2\pi/\kappa_-}(u_-, D_x u_-),\left(1 + O\left(e^{-c_0 T}\right)\right).$$

- Interpretation: at time 0, the quantum state is that of a Bose–Einstein gas with cosmological background temperature $\kappa_+/2\pi$.
- As time goes, this state splits to two Bose–Einstein states with respect to the asymptotic Hamiltonians D_x^2.
The Hawking effect

- Let $\mathbb{E}^{H,\beta}$ be the Bose–Einstein state at temperature $1/\beta$ with respect to a Hamiltonian H.
- Let H_0 be the black-hole Klein–Gordon Hamiltonian in S_*: the K–G equation takes the form $(\partial_t^2 - H_0)u = 0$.
- Thanks to the theorem:

\[
\mathbb{E}^{H_0,2\pi/\kappa_+}(U(0, T)(u_0, u_1)) = \mathbb{E}^{D_x^2,2\pi/\kappa_+}(u_+, D_x u_+). \mathbb{E}^{D_x^2,2\pi/\kappa_-}(u_-, D_x u_-). \left(1 + O\left(e^{-c_0 T}\right)\right).
\]

- Interpretation: at time 0, the quantum state is that of a Bose–Einstein gas with cosmological background temperature $\kappa_+/(2\pi)$.
- As time goes, this state splits to two Bose–Einstein states with respect to the asymptotic Hamiltonians D_x^2.
- The first one sees no change in temperature while the second one acquires the black-hole temperature $\kappa_-/(2\pi)$.

Previous related results

- Bachelot late ’90s, Melnyk early ’00s – emission of bosons and of fermions by Schwarzschild black holes and Schwarzschild–de Sitter black holes.
Previous related results

- Bachelot late ’90s, Melnyk early ’00s – emission of bosons and of fermions by Schwarzschild black holes and Schwarzschild–de Sitter black holes.
- Häfner ’09 – emission of fermions by Kerr black-holes. First (and only) non-spherically symmetric setting.
Previous related results

- Bachelot late ’90s, Melnyk early ’00s – emission of bosons and of fermions by Schwarzschild black holes and Schwarzschild–de Sitter black holes.

- Häfner ’09 – emission of fermions by Kerr black-holes. First (and only) non-spherically symmetric setting.

- Bouvier–Gérard ’13 – Hawking effect for interacting fermions
Previous related results

▶ Bachelot late ’90s, Melnyk early ’00s – emission of bosons and of fermions by Schwarzschild black holes and Schwarzschild–de Sitter black holes.
▶ Häfner ’09 – emission of fermions by Kerr black-holes. First (and only) non-spherically symmetric setting.
▶ Bouvier–Gérard ’13 – Hawking effect for interacting fermions
▶ This work provides the first rates of convergence. The previous proofs were not fully constructive.
Previous related results

- Bachelot late ’90s, Melnyk early ’00s – emission of bosons and of fermions by Schwarzschild black holes and Schwarzschild–de Sitter black holes.
- Häfner ’09 – emission of fermions by Kerr black-holes. First (and only) non-spherically symmetric setting.
- Bouvier–Gérard ’13 – Hawking effect for interacting fermions.
- This work provides the first rates of convergence. The previous proofs were not fully constructive.
- We take full advantage of recent decay results for waves in black hole spacetimes. For the dS black-holes, see Bachelot–Motet-Bachelot ’93, Sa-Barreto–Zworski ’97 (resonances), Bony–Häfner ’07 (exponential decay), Dafermos–Rodnianski ’07 (polynomial decay), Melrose–Sa-Barreto–Vasy ’08, Vasy ’13 (geometric methods), Dyatlov ’11 –’ 12 (rotating black holes), Hintz–Vasy ’14– (non-linear results),...
New system of coordinates

- It is more convenient to study the propagation in a different system of coordinates that somehow "follows" the collapse, denoted by \hat{S}.

\[\hat{t} = t - F(r), \quad F(r) \sim -\frac{1}{2} \kappa \pm \ln |r - r \pm | \text{ for } r \text{ near } r \pm. \]

In (\hat{t}, r, ω) the metric is smooth across $r = r \pm$.

- We are studying the backward propagation. Nothing can cross the horizons. Hence the propagation takes place in compact smooth slices.

- After possibly rescaling, in \hat{S} the collapsing star is given by $B = \{ (t, z(\hat{t}), \omega) \}$, $z(\hat{t}) = r - \alpha (\hat{t} - 1) + O(\hat{t} - 1)^2$.
New system of coordinates

- It is more convenient to study the propagation in a different system of coordinates that somehow “follows” the collapse, denoted by \hat{S}.

- Set

$$\hat{t} = t - F(r), \quad F(r) \sim -\frac{1}{2\kappa_{\pm}} \ln |r - r_{\pm}| \text{ for } r \text{ near } r_{\pm}.$$

In (\hat{t}, r, ω) the metric is smooth across $r = r_{\pm}$.
New system of coordinates

- It is more convenient to study the propagation in a different system of coordinates that somehow "follows" the collapse, denoted by \hat{S}.
- Set

$$\hat{t} = t - F(r), \quad F(r) \sim -\frac{1}{2\kappa_{\pm}} \ln |r - r_{\pm}| \text{ for } r \text{ near } r_{\pm}.$$

In (\hat{t}, r, ω) the metric is smooth across $r = r_{\pm}$.
- We are studying the backward propagation. Nothing can cross the horizons. Hence the propagation takes place in compact smooth slices.
New system of coordinates

- It is more convenient to study the propagation in a different system of coordinates that somehow "follows" the collapse, denoted by \hat{S}.

- Set

$$\hat{t} = t - F(r), \quad F(r) \sim -\frac{1}{2\kappa_{\pm}} \ln |r - r_{\pm}| \text{ for } r \text{ near } r_{\pm}. $$

In \hat{t}, r, ω the metric is smooth across $r = r_{\pm}$.

- We are studying the backward propagation. Nothing can cross the horizons. Hence the propagation takes place in compact smooth slices.

- After possibly rescaling, in \hat{S} the collapsing star is given by

$$B = \{(t, z(\hat{t}), \omega)\}, \quad z(\hat{t}) = r_\pm - \alpha(\hat{t} - 1) + O(\hat{t} - 1)^2.$$
Propagation in \mathcal{S}

$$\hat{t} \quad r = r_- \quad r = r_+$$

$$\hat{t} = T$$

$$\hat{t} = 1$$

u_0, u_1

A, B, C
Why study propagation in \(\hat{S} \) instead of \(S_\ast \)?

- Due to the blueshift the wave gets localized on a region of size

\[\Delta r \to 0 \text{ as } T \to \infty. \]

in \(\hat{S} \). The typical frequency of the wave blows up: \(\Delta \xi \to \infty. \)
Why study propagation in \hat{S} instead of S_*?

▶ Due to the blueshift the wave gets localized on a region of size

$$\Delta r \to 0 \text{ as } T \to \infty.$$

in \hat{S}. The typical frequency of the wave blows up: $\Delta \xi \to \infty$.

▶ The boundary affects the behavior of the wave only for

$\hat{t} \in [0, 1]$ i.e. only for fixed time.

▶ A standard wave WKB parametrix for $\hat{t} \in [0, 1]$ allows to analyze the impact of the boundary.

▶ In S_* the boundary affects the propagation for $t \in [0, T/2]$. A harder high frequency analysis is required: it needs to work for time intervals of size $T/2 \to \infty$.

▶ Now we study two separate problems: propagation for $t \in [1, T]$ (before reflection) and propagation for $t \in [0, 1]$ (after reflection).
Why study propagation in \hat{S} instead of S_*?

- Due to the blueshift the wave gets localized on a region of size $\Delta r \to 0$ as $T \to \infty$.

 in \hat{S}. The typical frequency of the wave blows up: $\Delta \xi \to \infty$.

- The boundary affects the behavior of the wave only for $\hat{t} \in [0, 1]$ i.e. only for fixed time.

- A standard wave WKB parametrix for $\hat{t} \in [0, 1]$ allows to analyze the impact of the boundary.
Why study propagation in \(\hat{S} \) instead of \(S_* \)?

- Due to the blueshift the wave gets localized on a region of size

\[
\Delta r \to 0 \quad \text{as} \quad T \to \infty.
\]

in \(\hat{S} \). The typical frequency of the wave blows up: \(\Delta \xi \to \infty \).

- The boundary affects the behavior of the wave only for \(\hat{t} \in [0, 1] \) i.e. only for fixed time.

- A standard wave WKB parametrix for \(\hat{t} \in [0, 1] \) allows to analyze the impact of the boundary.

- In \(S_* \) the boundary affects the propagation for \(t \in [0, T/2] \). A harder high frequency analysis is required: it needs to work for for time intervals of size \(T/2 \to \infty \).
Why study propagation in \hat{S} instead of S_*?

- Due to the blueshift the wave gets localized on a region of size
 \[\Delta r \to 0 \text{ as } T \to \infty. \]
 in \hat{S}. The typical frequency of the wave blows up: $\Delta \xi \to \infty$.
- The boundary affects the behavior of the wave only for $\hat{t} \in [0, 1]$ i.e. only for fixed time.
- A standard wave WKB parametrix for $\hat{t} \in [0, 1]$ allows to analyze the impact of the boundary.
- In S_* the boundary affects the propagation for $t \in [0, T/2]$. A harder high frequency analysis is required: it needs to work for time intervals of size $T/2 \to \infty$.
- Now we study two separate problems: propagation for $t \in [1, T]$ (before reflection) and propagation for $t \in [0, 1]$ (after reflection).
Backward scattering fields

▶ Goal: understand the behavior as $\hat{t} \to -\infty$ to solutions of $(\Box + m^2)u = 0$.

The equation is invariant under time-reversion $t \mapsto -t$. It suffices to understand forwards scattering, then reverse time.

Under time reversion, the surface $\hat{t} = -\infty$ becomes $\{r = r -\} \cup \{r = r +\}$. Therefore: scattering fields are obtained by tracing forwards solutions along the horizons, then reversing time.

This constructs u^+ and u^-. Melrose–Sá-Barreto–Vasy '08 (later extended by Dyatlov '12 and Vasy '13) shows that they decay exponentially.

This strategy is due to Friedlander '80s (in the more complicated Euclidean scattering). For related perspectives in MGR, see Gérard–Georgescu–Häfner '14-'17, Nicolas '17, Dafermos–Rodnianski–Shlapentokh-Rothman '17.
Backward scattering fields

- Goal: understand the behavior as \(\hat{t} \to -\infty \) to solutions of \((\Box + m^2)u = 0\).
- The equation is invariant under time-reversion \(t \mapsto -t \). It suffices to understand forwards scattering, then reverse time.

Under time reversion, the surface \(\hat{t} = -\infty \) becomes \(\{r = r^-\} \cup \{r = r^+\} \).

Therefore: scattering fields are obtained by tracing forwards solutions along the horizons, then reversing time.

This constructs \(u^+ \) and \(u^- \). Melrose–Sá-Barreto–Vasy '08 (later extended by Dyatlov '12 and Vasy '13) shows that they decay exponentially.

This strategy is due to Friedlander '80s (in the more complicated Euclidean scattering). For related perspectives in MGR, see Gérard–Georgescu–Häfner '14-'17, Nicolas '17, Dafermos–Rodnianski–Shlapentokh-Rothman '17.
Backward scattering fields

- Goal: understand the behavior as $\hat{t} \to -\infty$ to solutions of $\left(\Box + m^2\right) u = 0$.
- The equation is invariant under time-reversion $t \mapsto -t$. It suffices to understand forwards scattering, then reverse time.
- Under time reversion, the surface $\hat{t} = -\infty$ becomes $\{r = r_{-}\} \cup \{r = r_{+}\}$.

Melrose–Sá-Barreto–Vasy '08 (later extended by Dyatlov '12 and Vasy '13) shows that they decay exponentially.

This strategy is due to Friedlander '80s (in the more complicated Euclidean scattering). For related perspectives in MGR, see Gérard–Georgescu–Häfner '14-'17, Nicolas '17, Dafermos–Rodnianski–Shlapentokh-Rothman '17.
Backward scattering fields

- Goal: understand the behavior as $\hat{t} \to -\infty$ to solutions of $(\Box + m^2)u = 0$.

- The equation is invariant under time-reversion $t \mapsto -t$. It suffices to understand forwards scattering, then reverse time.

- Under time reversion, the surface $\hat{t} = -\infty$ becomes $\{r = r_-\} \cup \{r = r_+\}$.

- Therefore: scattering fields are obtained by tracing forwards solutions along the horizons, then reversing time.
Backward scattering fields

- Goal: understand the behavior as $\hat{t} \to -\infty$ to solutions of $(\Box + m^2)u = 0$.

- The equation is invariant under time-reversion $t \mapsto -t$. It suffices to understand forwards scattering, then reverse time.

- Under time reversion, the surface $\hat{t} = -\infty$ becomes \(\{r = r_-\} \cup \{r = r_+\} \).

- Therefore: scattering fields are obtained by tracing forwards solutions along the horizons, then reversing time.

- This constructs u_+ and u_-. Melrose–Sá-Barreto–Vasy ’08 (later extended by Dyatlov ’12 and Vasy ’13) shows that they decay exponentially.

- This strategy is due to Friedlander ’80s (in the more complicated Euclidean scattering). For related perspectives in MGR, see Gérard–Georgescu–Häfner ’14–’17, Nicolas ’17, Dafermos–Rodnianski–Shlapentokh-Rothman ’17.
Backward scattering fields

- Goal: understand the behavior as $\hat{t} \to -\infty$ to solutions of $(\Box + m^2)u = 0$.
- The equation is invariant under time-reversion $t \mapsto -t$. It suffices to understand forwards scattering, then reverse time.
- Under time reversion, the surface $\hat{t} = -\infty$ becomes $\{r = r_-\} \cup \{r = r_+\}$.
- Therefore: scattering fields are obtained by tracing forwards solutions along the horizons, then reversing time.
- This constructs u_+ and u_-. Melrose–Sá-Barreto–Vasy ’08 (later extended by Dyatlov ’12 and Vasy ’13) shows that they decay exponentially.
- This strategy is due to Friedlander ’80s (in the more complicated Euclidean scattering). For related perspectives in MGR, see Gérard–Georgescu–Häfner ’14–’17, Nicolas ’17, Dafermos–Rodnianski–Shlapentokh-Rothman ’17.
Backward scattering fields

Theorem

Let u be a solution written in \hat{S} of

\[
\begin{cases}
(\Box_g + m^2)u = 0 \\
(u, \partial_t u)(\hat{t} = T) = (u_0, u_1) \in C_0^\infty
\end{cases}
\]

Let $\tilde{u}(\hat{t}, r, \omega) = u(-\hat{t} - 2F(r) + T, r, \omega)$ (the time-reversed solution).
Theorem

Let u be a solution written in \hat{S} of

$$
\begin{cases}
(\Box_g + m^2)u = 0 \\
(u, \partial_t u)(\hat{t} = T) = (u_0, u_1) \in C_0\infty
\end{cases}
$$

Let $\bar{u}(\hat{t}, r, \omega) = u(-\hat{t} - 2F(r) + T, r, \omega)$ (the time-reversed solution). Set v_\pm be the traces of \bar{u} on the horizons r_\pm:

$$v_\pm(x, \omega) = \bar{u}(x, r_\pm, \omega).$$

Then for some $\nu > 0$,

$$v_\pm(x, \omega) = O(e^{-\nu x})$$ for large x.

Then for some $\nu > 0$,

$$u(\hat{t}, r, \omega) - (v_+ + v_-)(T - \hat{t} - 2F(r), \omega) = O(e^{-\nu T})$$ as $T \to +\infty$.

Backward scattering fields
Backward scattering fields

Theorem

Let u be a solution written in \hat{S} of

\[
\begin{cases}
(\Box_g + m^2)u = 0 \\
(u, \partial_\hat{t} u)(\hat{t} = T) = (u_0, u_1) \in C_0^\infty
\end{cases}
\]

Let $\tilde{u}(\hat{t}, r, \omega) = u(-\hat{t} - 2F(r) + T, r, \omega)$ (the time-reversed solution). Set v_\pm be the traces of \tilde{u} on the horizons r_\pm:

\[v_\pm(x, \omega) = \tilde{u}(x, r_\pm, \omega).\]

Then for some $\nu > 0$,

- $v_\pm(x, \omega) = 0$ for $x \leq 0$ and $v_\pm(x, \omega) = O(e^{-\nu x})$ for large x.

Backward scattering fields

Theorem

Let u be a solution written in \hat{S} of

$$
\begin{cases}
(\Box_g + m^2)u = 0 \\
(u, \partial_t u)(\hat{t} = T) = (u_0, u_1) \in C_0^\infty
\end{cases}
$$

Let $\tilde{u}(\hat{t}, r, \omega) = u(-\hat{t} - 2F(r) + T, r, \omega)$ (the time-reversed solution). Set v_\pm be the traces of \tilde{u} on the horizons r_\pm:

$$v_\pm(x, \omega) = \tilde{u}(x, r_\pm, \omega).$$

Then for some $\nu > 0$,

- $v_\pm(x, \omega) = 0$ for $x \leq 0$ and $v_\pm(x, \omega) = O(e^{-\nu x})$ for large x.
- $u(\hat{t}, r, \omega) - (v_+ + v_-)(T - \hat{t} - 2F(r), \omega) = O(e^{-\nu T})$ as $T \to +\infty$.
Semiclassical description of the blueshift effect

Near the black holes, asymptotically backwards waves look like

\[u_-(T - 2F(r), \omega) \]

where \(u_-(x, \omega) = 0 \) for \(x \leq 0 \) and decays exponentially for \(x \geq 0 \).

Above \(h = e^{-\kappa - T} \rightarrow 0 \) is a small parameter.
Semiclassical description of the blueshift effect

- Near the black holes, asymptotically backwards waves look like
 \[u_-(T - 2F(r), \omega) \]
 where \(u_-(x, \omega) = 0 \) for \(x \leq 0 \) and decays exponentially for \(x \geq 0 \).
- Using \(F(r) \sim -(2\kappa_-)^{-1} \ln(r - r_-) \) near \(r = r_- \),
 \[
 u_-(T - 2F(r), \omega) \sim u_-(T + \frac{1}{\kappa_-} \ln(r - r_-), \omega) = u_-(\ln \left(\frac{r - r_-}{h}\right), \omega).
 \]

Above \(h = e^{-\kappa_- T} \rightarrow 0 \) is a small parameter.
Semiclassical description of the blueshift effect

Near the black holes, asymptotically backwards waves look like

\[u_-(T - 2F(r), \omega) \]

where \(u_-(x, \omega) = 0 \) for \(x \leq 0 \) and decays exponentially for \(x \geq 0 \).

Using \(F(r) \sim -(2\kappa_-)^{-1} \ln(r - r_-) \) near \(r = r_- \),

\[u_-(T - 2F(r), \omega) \sim u_- \left(T + \frac{1}{\kappa_-} \ln(r - r_-), \omega \right) \]

\[= u_- \left(\ln \left(\frac{r - r_-}{h} \right), \omega \right). \]

Above \(h = e^{-\kappa_- T} \to 0 \) is a small parameter.

The semiclassical wavefront set of the \(h \)-dependent distribution

\[u_- \left(\ln \left(\frac{r - r_-}{h} \right), \omega \right) \]

satisfies \(\text{WF}_h \subset \{(r_-, \omega, \xi, 0)\} \). This gives a semiclassical description of the blueshift effect.
Study of the reflection

\[r = r_- \]

\[\hat{t} = 1 \]

\[r = r_+ \]
Study of the reflection

\[r = r_+ \]

\[\hat{t} = 1 \]

\[\pi(WF_h(u)) \]

\[r = r_- \]
What does it tell us?

- No diffraction.
What does it tell us?

- No diffraction.
- Essentially one reflection that occurs at $r = r_-, \hat{t} = 1$.

As a consequence we can study the boundary problem near $r = r_-, \hat{t} = 1$. There the K–G operator is well approximated by a constant coefficients operator with symbol $\sigma(\Box g)(1, r-, 0; \tau, \xi, 0)$.

The angular part does not matter because the reflecting data is only supported near radial frequencies.

This gives a good enough approximation of u after reflection for times in $[1 - ch, 1]$ for any fixed $c > 0$.
What does it tell us?

- No diffraction.
- Essentially one reflection that occurs at $r = r_-^k, \hat{t} = 1$.
- As a consequence we can study the boundary problem near $r = r_-^k, \hat{t} = 1$. There the K–G operator is well approximated by a constant coefficients operator with symbol

$$\sigma(\Box_g)(1, r_-, 0; \tau, \xi, 0).$$

The angular part does not matter because the reflecting data is only supported near radial frequencies.
What does it tell us?

- No diffraction.
- Essentially one reflection that occurs at $r = r_-, \hat{t} = 1$.
- As a consequence we can study the boundary problem near $r = r_-, \hat{t} = 1$. There the K–G operator is well approximated by a constant coefficients operator with symbol
 \[
 \sigma(\square_g)(1, r_-, 0; \tau, \xi, 0).
 \]
 The angular part does not matter because the reflecting data is only supported near radial frequencies.
- This gives a good enough approximation of u after reflection for times in $[1 - ch, 1]$ for any fixed $c > 0$.
Zoom in a box of size $O(h)$ near $r = r_-$ and $\hat{t} = 1$

$r = r_-$

$\sim h$

$\hat{t} = 1$

$\hat{t} = 1 - ch$

$\sim h$

B
Global study of the reflection

\[\hat{t} = 1 - ch \]

\[r = r_- \]

\[r = r_+ \]
Global study of the reflection

- We must show that the wave reflects essentially only once.
Global study of the reflection

- We must show that the wave reflects essentially only once.
- For that we consider the KG equation \((\Box + m^2)u_{WB} = 0\) without boundary, for times in \([0, 1 - ch]\), and initial data \(u(\hat{t} = 1 - ch)\).
Global study of the reflection

- We must show that the wave reflects essentially only once.
- For that we consider the KG equation $(\Box + m^2)u_{WB} = 0$ without boundary, for times in $[0, 1 - ch]$, and initial data $u(\hat{t} = 1 - ch)$.
- As the initial data is localized in frequencies $\sim h^{-1}$, we can construct a WKB approximate solution for $(\Box + m^2)u_{WB} = 0$.

- By H"ormander's hyperbolic energy estimates, u (the solution with boundary) is well approximated by this explicit WKB parametrix for $t \in [0, 1 - ch]$, with error of order $O(h) = O(e^{-\kappa - T})$.

Global study of the reflection

- We must show that the wave reflects essentially only once.
- For that we consider the KG equation \((\Box + m^2)u_{WB} = 0\) without boundary, for times in \([0, 1 - ch]\), and initial data \(u(\hat{t} = 1 - ch)\).
- As the initial data is localized in frequencies \(\sim h^{-1}\), we can construct a WKB approximate solution for \((\Box + m^2)u_{WB} = 0\).
- The trace of the approximate solution is \(O(h)\) on \(B\).
Global study of the reflection

- We must show that the wave reflects essentially only once.
- For that we consider the KG equation \((\Box + m^2)u_{WB} = 0\) **without** boundary, for times in \([0, 1 - ch]\), and initial data \(u(\hat{t} = 1 - ch)\).
- As the initial data is localized in frequencies \(\sim h^{-1}\), we can construct a WKB approximate solution for \((\Box + m^2)u_{WB} = 0\).
- The trace of the approximate solution is \(O(h)\) on \(B\).
- By Hörmander’s hyperbolic energy estimates, \(u\) (the solution with boundary) is well approximated by this explicit WKB parametrix for \(t \in [0, 1 - ch]\), with error of order \(O(h) = O(e^{-\kappa - T})\).
Global study of the reflection

- Going back to \mathcal{S}_*, we get the theorem:

Theorem [D '17]

If u solves

$$
\begin{cases}
(\Box_g + m^2)u = 0 \\
(u, \partial_t u)(T) = (u_0, u_1) \in C_0^\infty, \quad u|_B = 0
\end{cases}
$$

then there exist u_-, u_+ smooth and exponentially decaying; and $c_0 > 0$ such that for t near 0, in \mathcal{S}_*

$$
u(0, x, \omega) = \frac{r_-}{r} u_-(\frac{1}{\kappa_-} \ln \left(\frac{x}{e^{-\kappa_- T}} \right), \omega) \quad \text{WKB part from BH}
$$

$$
+ u_+(T - x, \omega) \quad \text{scattering part to CH} + O_{\mathcal{H}^{1/2}} (e^{-c_0 T}).
$$
Global study of the reflection

Going back to S_*, we get the theorem:

Theorem [D ’17]

If u solves

$$\left\{ \begin{array}{l}
(\square_g + m^2)u = 0 \\
(u, \partial_t u)(T) = (u_0, u_1) \in C_0^\infty, \\
u|_\mathcal{B} = 0
\end{array} \right.$$

then there exist u_-, u_+ smooth and exponentially decaying; and $c_0 > 0$ such that for t near 0, in S_*

$$u(0, x, \omega) = \frac{r_-}{r} u_- \left(\frac{1}{\kappa_-} \ln \left(\frac{x}{e^{-\kappa_- T}} \right), \omega \right) \quad WKB \text{ part from BH}$$

$$+ u_+(T - x, \omega) \quad \text{scattering part to CH} + O_{H^{1/2}}(e^{-c_0 T}).$$

This describes the PDE part of the problem. A delicate calculation remains to derive Hawking’s radiation from here.
Extensions to non-symmetric backgrounds

The simplest class consists of metric of the form

\[g = g_0 + \varepsilon \eta, \]

where \(g_0 \) is the SdS metric; \(\eta = \eta(r, \omega, dr, d\omega) \) is smooth and vanishes in neighborhoods of \(r_{\pm} \); and \(\varepsilon \) is small.
Extensions to non-symmetric backgrounds

- The simplest class consists of metric of the form

\[g = g_0 + \varepsilon \eta, \]

where \(g_0 \) is the SdS metric; \(\eta = \eta(r, \omega, dr, d\omega) \) is smooth and vanishes in neighborhoods of \(r_{\pm} \); and \(\varepsilon \) is small.

- With the same strategy we obtain asymptotic for backward solutions of

\[
\begin{aligned}
\left\{
(\Box_g + m^2)u &= 0 \\
(u, \partial_t u)(T) &= (u_0, u_1), \quad u|_{\partial B} = 0.
\end{aligned}
\]

It is more technical because the WKB phases and amplitudes are no longer explicit; and because the angular propagation kicks in.
Extensions to non-symmetric backgrounds

▶ The simplest class consists of metric of the form

\[g = g_0 + \varepsilon \eta, \]

where \(g_0 \) is the SdS metric; \(\eta = \eta(r, \omega, dr, d\omega) \) is smooth and vanishes in neighborhoods of \(r_{\pm} \); and \(\varepsilon \) is small.

▶ With the same strategy we obtain asymptotic for backward solutions of

\[
\begin{cases}
(\Box_g + m^2)u = 0 \\
(u, \partial_t u)(T) = (u_0, u_1), \quad u|_B = 0.
\end{cases}
\]

▶ It is more technical because the WKB phases and amplitudes are no longer explicit; and because the angular propagation kicks in.
Asymptotic of scalar fields

Theorem [work in progress]

Consider \(u_0, u_1 \) smooth with compact support, and \(u \) solution of

\[
\begin{align*}
\left\{
(\Box_g + m^2)u &= 0 \\
(u, \partial_t u)(T) &= (u_0, u_1), \quad u|_\mathcal{B} = 0.
\end{align*}
\]

There exist \(u^-, u^+ \) smooth and exponentially decaying with

\[
\begin{align*}
u(0, x, \omega) &= a(0, x, \omega) \\
&\times \left(\phi(0, x, \omega) - \ln(\phi(0, x, \omega)) e^{-\kappa - T} \right) + u^+(T-x, \omega) + O(H^{1/2}(e^{-c_0 T})).
\end{align*}
\]

where:

\(\phi \) solves the eikonal equation \(g(\nabla \phi, \nabla \phi) = 0 \);

\(\psi: \mathbb{R}^2 \times S^2 \to S^2 \) solves the linearized eikonal equation \(g(\nabla \phi, \nabla \psi) = 0 \);

\(a \) solves the transport equation \(g(\nabla a, \nabla \phi) + \Box \phi = 0 \).
Asymptotic of scalar fields

Theorem [work in progress]

Consider u_0, u_1 smooth with compact support, and u solution of

\[
\begin{align*}
(\Box_g + m^2)u &= 0 \\
(u, \partial_t u)(T) &= (u_0, u_1), \quad u|_\mathcal{B} = 0.
\end{align*}
\]

There exist u_-, u_+ smooth and exponentially decaying with

\[
u(0, x, \omega) = a(0, x, \omega) \cdot u_- \left(\frac{1}{\kappa_-} \ln \left(\frac{\phi(0, x, \omega)}{\epsilon^{-\kappa_-} T} \right), \psi(0, x, \omega) \right)
\]

\[
+ u_+(T - x, \omega) + O_{H^{1/2}}(e^{-c_0 T})
\]

where:

- ϕ solves the eikonal equation $g(\nabla \phi, \nabla \phi) = 0$;
- $\psi: \mathbb{R}^2 \times S^2 \to S^2$ solves the linearized eikonal equation $g(\nabla \phi, \nabla \psi) = 0$;
- a solves the transport equation $g(\nabla a, \nabla \phi) + \Box \phi = 0$.

Asymptotic of scalar fields

Theorem [work in progress]

Consider u_0, u_1 smooth with compact support, and u solution of

\[
\begin{aligned}
(\Box g + m^2)u &= 0 \\
(u, \partial_t u)(T) &= (u_0, u_1), \\ u|_{\mathcal{B}} &= 0.
\end{aligned}
\]

There exist u_-, u_+ smooth and exponentially decaying with

\[
u(0, x, \omega) = a(0, x, \omega) \cdot u_- \left(\frac{1}{\kappa_-} \ln \left(\frac{\phi(0, x, \omega)}{e^{-\kappa_- T}} \right), \psi(0, x, \omega) \right) + u_+(T - x, \omega) + O_{\mathcal{H}^{1/2}}(e^{-c_0 T})
\]

where:

\begin{itemize}
\item ϕ solves the eikonal equation $g(\nabla \phi, \nabla \phi) = 0$;
\end{itemize}
Asymptotic of scalar fields

Theorem [work in progress]

Consider u_0, u_1 smooth with compact support, and u solution of

$$\begin{cases}
(\Box_g + m^2)u = 0 \\
(u, \partial_t u)(T) = (u_0, u_1), \quad u|_\mathcal{B} = 0.
\end{cases}$$

There exist u_-, u_+ smooth and exponentially decaying with

$$u(0, x, \omega) = a(0, x, \omega) \cdot u_- \left(\frac{1}{\kappa_-} \ln \left(\frac{\phi(0, x, \omega)}{e^{-\kappa_- T}} \right), \psi(0, x, \omega) \right)$$

$$+ u_+(T - x, \omega) + O_{H^{1/2}}(e^{-c_0 T})$$

where:

- ϕ solves the eikonal equation $g(\nabla \phi, \nabla \phi) = 0$;
- $\psi : \mathbb{R}^2 \times S^2 \to S^2$ solves the linearized eikonal equation $g(\nabla \phi, \nabla \psi) = 0$;
Asymptotic of scalar fields

Theorem [work in progress]

Consider u_0, u_1 smooth with compact support, and u solution of

\[
\begin{cases}
(\Box_g + m^2)u = 0 \\
(u, \partial_t u)(T) = (u_0, u_1), \quad u|_\mathcal{B} = 0.
\end{cases}
\]

There exist $u_-, u_+\,$ smooth and exponentially decaying with

\[
u(0, x, \omega) = a(0, x, \omega) \cdot u_- \left(\frac{1}{\kappa_-} \ln \left(\frac{\phi(0, x, \omega)}{e^{-\kappa_- T}} \right), \psi(0, x, \omega) \right) + u_+(T - x, \omega) + O_{H^{1/2}}(e^{-c_0 T})
\]

where:

- ϕ solves the eikonal equation $g(\nabla \phi, \nabla \phi) = 0$;
- $\psi : \mathbb{R}^2 \times S^2 \to S^2$ solves the linearized eikonal equation $g(\nabla \phi, \nabla \psi) = 0$;
- a solves the transport equation $g(\nabla a, \nabla \phi) + \Box \phi = 0$.

Remaining work and continuation

- Perform the second step in this setting: derive Hawking’s result from the previous theorem.
Remaining work and continuation

- Perform the second step in this setting: derive Hawking’s result from the previous theorem.
- Generalize these ideas to Kerr–de Sitter (and beyond!)
Remaining work and continuation

- Perform the second step in this setting: derive Hawking’s result from the previous theorem.
- Generalize these ideas to Kerr–de Sitter (and beyond!)

Thank you!