Analysis and Optimization,
Midterm 2 (75 minutes)

Name:
Uni:

- Write your name above AND on page 2.
- This exam booklet contains 16 pages and 4 problems, each graded out of 25 points.
- You may not use your notes, books, phones and calculating devices.
- If you need more space, use the extra sheets at the back. Indicate clearly that you did so.
<table>
<thead>
<tr>
<th>Problem</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>
Problem 1. (25 points) True or False?

- Report your answers in the table below.
- **For this problem only,** you do not have to justify your solutions.

<table>
<thead>
<tr>
<th>Question</th>
<th>True/False?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td></td>
</tr>
<tr>
<td>(c)</td>
<td></td>
</tr>
<tr>
<td>(d)</td>
<td></td>
</tr>
<tr>
<td>(e)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>

(a) (5 points) For every $a \in \mathbb{R}$ and $b \in \mathbb{R}$,

$$\sqrt{1 + \left(\frac{a + 2b}{3} \right)^2} \geq \frac{1}{3} \sqrt{1 + a^2} + \frac{2}{3} \sqrt{1 + b^2}$$
(b) (5 points) There exists a function f defined near 0, such that $f(0) = 2$, $f'(0) = 1$ and
\[f(x)^3 + f(x) = x + 10. \]

(c) (5 points) 5 is the solution of the optimization problem
\[
\max 2x + y + z \quad \text{subject to} \quad x^2 + y^2 + z^2 \leq 6.
\]
(d) (5 points) If \(f : \mathbb{R}^2 \to \mathbb{R} \) is a smooth convex function then the function \(\varphi : \mathbb{R} \to \mathbb{R} \) given by \(\varphi(x) = f(x, -2x) \) is convex.

(e) (5 points) If \(K \subset \mathbb{R}^n \) and \(L \subset \mathbb{R}^n \) are two compact sets, then the set
\[
M = \{ \overrightarrow{x} \in \mathbb{R}^n : \overrightarrow{x} \in K \text{ or } \overrightarrow{x} \in L \}
\]
is compact.
Problem 2. (25 points)
(a) (15 points) Show that for ε sufficiently close to 0, the function $f : \mathbb{R}^2 \to \mathbb{R}$ defined by
\[f(x, y) = x^2 - 2xy + 2y^2 - 4y + \varepsilon e^x \]
admits a critical point.
(Intentionally left blank)
(b) (10 points) Show that for $\varepsilon > 0$ sufficiently small, this critical point must correspond to a global minimum of f. (You can use the result of 2(a) to solve this question, even if you did not solve 2(a)).
Problem 3. (25 points)
(a) (5 points) Show that the set K given by
\[K = \{(x, y) \in \mathbb{R}^2 : (x + y)^2 + x^2 \leq 1\} \]
is compact.
(b) (10 points) Solve the maximization problem

$$\max 2x^2 - 4x + y^2 + 2xy \quad \text{subject to} \quad (x + y)^2 + x^2 = 1.$$
(c) (10 points) Solve the maximization problem
\[\max \ 2x^2 - 4x + y^2 + 2xy \ \text{subject to} \ (x + y)^2 + x^2 \leq 1. \]
(You can use the result of 3(a) to solve this question, even if you did not solve 3(a))
Problem 4. (25 points) Solve the minimization problem
\[\min x^2 + 2y^2 + 2xy - 8x - 8y \] subject to \(x \geq 1, \; y \geq 2. \)
(Additional page)
(Additional page)