Introduction to modern analysis I, Midterm 1 (75 minutes)

Name:
Uni:

• Write your name above AND on page 2.
• This exam booklet contains 12 pages and 5 problems, each graded out of 20 points.
• You may use one single, one-sided paper sheet of notes
• No books, phones and calculating devices.
• If you need more space, use the extra sheets at the back. Indicate clearly that you did so.
Name:
Uni:

<table>
<thead>
<tr>
<th>Question</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>
Problem 1. (20 points) True or False?

- Report your answers in the table below.
- For this problem only, you do not have to justify your solutions.
- I am not taking points off for wrong answers, so make sure to fill every box with a True/False.

<table>
<thead>
<tr>
<th>Question</th>
<th>True/False?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td></td>
</tr>
<tr>
<td>(c)</td>
<td></td>
</tr>
<tr>
<td>(d)</td>
<td></td>
</tr>
<tr>
<td>(e)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>

(a) (4 points) The set

\[E = \left\{ \frac{1}{1 + n^2} + (n + m)^2 : n \in \mathbb{N}, m \in \mathbb{N} \right\} \subset \mathbb{R} \]

has no accumulation point.
(b) (4 points) Every bounded sequence is convergent.

(c) (4 points) Let $A \subset \mathbb{R}$, $B \subset \mathbb{R}$. Define

$$C = \{ab : a \in A, b \in B\}.$$

If A and B are countable, then C is countable.
(d) (4 points) The set

\[[0, 1) \times (0, 1) \]

is neither an open nor a closed subset of \(\mathbb{R}^2 \).

(e) (4 points) If \(X \) is a metric space and \(U \subset X \) is an open set then every accumulation point of \(U \) must be outside \(U \).
Problem 2. (20 points)

Let \(\{x_n\}_{n \in \mathbb{N}} \subset \mathbb{R} \) be a sequence. Assume that for every \(n \in \mathbb{N} \), \(x_n < 1 \) and that \(x_n \) converges to 1. Define

\[E = \{x_n : n \in \mathbb{N}\} \]

Prove that \(\sup E \) exists and is equal to 1.
Problem 3. (20 points)
Let X be a metric space and $y_0, y_1 \in X$. Show that the set

$$\{x \in X : d(x, y_0) + d(x, y_1) \leq 1\}$$

is closed.
Problem 4. (20 points)
Assume that \(\{x_n\}_{n \in \mathbb{N}} \subset \mathbb{R}^2 \) is a bounded sequence. Define
\[
E = \{x_n : n \in \mathbb{N}\}
\]
Prove that if \(E \) has a single accumulation point then \(x_n \) is convergent.
Problem 5. (20 points)
Let X be a metric space, $K \subset X$ be a compact space and $f : X \to \mathbb{R}$. Assume that for every $x \in K$, there exists $r_x > 0$ and $a_x > 0$ such that
\[y \in N_{r_x}(x) \Rightarrow f(y) \geq a_x. \]
Show that there exists $A > 0$ such that for every $z \in K$, $f(z) \geq A$.
Would this conclusion hold if K was not compact?
(Additional page)
(Additional page)